Chapter 1

The Real and Complex Number Systems

1.1. Introduction

Notation. We begin with the natural numbers

$$\mathbf{N} = \{1, 2, 3, \cdots\}$$

In N we can do addition and multiplication, but in order to do subtraction we need to extend N to the **integers**

$$\mathbf{Z} = \{\cdots, -3, -2, -1, 0, 1, 2, 3, \cdots\}.$$

In \mathbf{Z} we can do addition, subtraction and multiplication, but in order to perform division we need to extend \mathbf{Z} to the **rational numbers** or **rationals**,

 $\mathbf{Q} = \{ \text{all fractions } \frac{p}{q} \text{ where } p \text{ and } q \text{ are integers with } q \neq 0 \}.$

In \mathbf{Q} we have a *field* structure: addition and multiplication are defined with commutative, associative and distributive properties and the existence of additive and multiplicative inverses.

Also **Q** has a natural *order* structure defined on it (based on the ordering in **N**). Given any two rational numbers r and s, exactly one of the following is true:

$$r < s; \quad r = s; \quad s < r$$

However, **Q** is inadequate for many purposes. For instance, if we have a square with each side of length 1, can we measure the length of its diagonal with a rational number? The answer is No. (See the proof below.) This leads to the introduction of so-called "irrational numbers", for example, $\sqrt{2}$.

Theorem 1.1. There is no rational number whose square is 2.

Proof. The theorem asserts that no rational numbers r exist such that $r^2 = 2$; that is, if r is any rational number then $r^2 \neq 2$. Since any rational number r is given by $r = \frac{p}{q}$ for some integers p and q with $q \neq 0$. Therefore, what we need to show is that no matter what such p and q are chosen it is never the case $(p/q)^2 = 2$. The line of attack is indirect, using a method of proof by contradiction; the idea is to show the opposite cannot be true. That

is, assume there *exist* some integers p and q with $q \neq 0$ such that $(p/q)^2 = 2$ and we want to reach a conclusion that is unacceptable (absurd). We can also assume p and q have no common factors greater than 1 since any such common factors can be canceled out, leaving the fraction $\frac{p}{q}$ unchanged. From $(p/q)^2 = 2$ we have

$$p^2 = 2q^2;$$

hence we know p^2 is an *even* number, and hence p itself must be even (otherwise p is odd and p^2 would be odd). So write p = 2k where k is an integer. Then $p^2 = 4k^2 = 2q^2$. Hence we have $q^2 = 2k^2$, which again implies q must be an even number. However, in the beginning, we assumed p and q have no common factors greater than 1, but we have reached a conclusion that p and q are both even and so have a common factor 2. This contradiction shows that the statement that *there exist some integers* p and q with $q \neq 0$ such that $(p/q)^2 = 2$ must be false. This proves the original statement of the theorem. \Box

EXAMPLE 1.1. We now examine the situation a little closely. Let A be the set of all positive rationals p such that $p^2 < 2$ and let B be the set of all positive rationals p such that $p^2 > 2$. We show that A contains no largest number and B contains no smallest number.

More explicitly, we show that, for every p in A (in B, respectively) we can find a rational q in A (in B, respectively) such that q > p (q < p, respectively).

To do this, given each rational p > 0, let

$$q = p - \frac{p^2 - 2}{p + 2} = \frac{2p + 2}{p + 2}.$$

Then q is also rational and

$$q^2 - 2 = \frac{2(p^2 - 2)}{(p+2)^2}.$$

Therefore, if $p \in A$ then $q \in A$ and q > p, and if $p \in B$ then $q \in B$ and q < p.

Definition 1.1. A set is any collection of objects. These objects are referred to as the **elements** of the set. A set containing no element is called the **empty set** and is denoted by \emptyset .

Given a set A, if x is an element of A then we write $x \in A$ (and say x is in A or belongs to A or x is an element of A). If x is not an element of A then we write $x \notin A$.

Given two sets A and B, if every element of A is an element of B, then we write $A \subseteq B$ or $B \supseteq A$; in this case, we say A is a **subset** of B. Note that two sets A and B are equal if and only if $A \subseteq B$ and $B \subseteq A$.

1.2. Ordered Sets

Definition 1.2. Let S be a set. An order on S is a relation, denoted by <, with the following two properties:

(1) If $x \in S$ and $y \in S$, then one and only one of the statements

$$x < y, \quad x = y, \quad y < x$$

is true.

(2) For $x, y, z \in S$, if x < y and y < z, then x < z.

The statement "x < y" may be read as "x is less than y" or "x is smaller than y" or "x precedes y".

Sometimes we write x < y equivalently as y > x. The notation $x \le y$ means x < y or x = y. In other words, $x \le y$ is the negation of x > y. The notation $x \ge y$ has a similar meaning.

Definition 1.3. An ordered set is a set S in which an order < is defined; sometimes an ordered set is denoted by (S, <).

For example, in \mathbf{Q} , we define r < s if (and only if) s - r is a positive rational number. Then $(\mathbf{Q}, <)$ is an ordered set.

Least Upper Bound and Greatest Lower Bound.

Definition 1.4. Suppose (S, <) is an ordered set, and $E \subseteq S$. We say that E is **bounded above** if there exists a $\beta \in S$ such that $x \leq \beta$ for all $x \in E$. Any such a $\beta \in S$ is called an **upper-bound** of E.

Similarly, a set $E \subseteq S$ is called **bounded below** if there exists a $\beta \in S$ such that $x \ge \beta$ for all $x \in E$. Any such a $\beta \in S$ is called a **lower-bound** of E.

Definition 1.5. Suppose (S, <) is an ordered set, $E \subseteq S$ and $\alpha \in S$. We say that α is a **least upper-bound** of A if α satisfies the following two criteria:

- (i) α is an upper-bound of E.
- (ii) If $\gamma < \alpha$, then γ is not an upper-bound of E.

A least upper bound α of a set E, if exists, must be unique: If α_1 and α_2 are both least upper-bound of E, then, by the criteria (ii) of the definition (see also (ii") below), we must have that $\alpha_1 \leq \alpha_2$ and $\alpha_2 \leq \alpha_1$; thus $\alpha_1 = \alpha_2$. We also call the least upper bound α of Ethe **supremum** of E and write

$$\alpha = \sup E.$$

In the same manner, the greatest lower bound α , or infimum, of a set $E \subseteq S$ is defined and denoted by

$$\alpha = \inf E.$$

If $\sup E \in E$, then we call $\sup E$ the **maximum** of E and denote it also by $\max E$. Similarly, if $\inf E \in E$ then we say $\inf E$ is the **minimum** of E and denote it by $\min E$.

Note that the criteria (ii) for least upper-bound is equivalent to each of the following two statements.

(ii') If $\gamma < \alpha$, then there exists a $y \in E$ such that $\gamma < y$.

(ii") If γ is an upper-bound of E, then $\alpha \leq \gamma$. (This is the contrapositive of (ii).)

Definition 1.6. An ordered set S is said to have the **least-upper-bound property** if the following is true:

Every nonempty subset of S that is bounded above has the least upper-bound in S.

Similarly one defines the greatest-lower-bound property.

EXAMPLE 1.2. The ordered set \mathbf{Q} does not have the least-upper-bound property.

Proof. Consider the sets A and B defined in Example 1.1. Clearly $A \subseteq \mathbf{Q}$ is nonempty, and every number in set B is an upper bound of set A (use the fact $\forall \alpha > 0, \beta > 0, \alpha^2 < \beta^2 \Rightarrow \alpha < \beta$). We show A has no least upper bound in **Q**. Suppose $\alpha = \sup A$ existed in **Q**. Then $\alpha^2 \neq 2$; hence either (i) $\alpha^2 < 2$ or (ii) $\alpha^2 > 2$.

In case (i), $\alpha \in A$ and by the proof in Example 1.1, there exists a $\beta \in A$ such that $\alpha < \beta$; but $\beta \leq \alpha$ since α is an upper bound of A, which gives the desired contradiction.

In case (ii), $\alpha \in B$ and by the proof of Example 1.1 there exists a $\beta \in B$ such that $\beta < \alpha$. Since $\beta \in B$ is an upper-bound of A, we reach a contradiction to (ii) of the definition of $\alpha = \sup A$.

Theorem 1.2. Suppose S is an ordered set with the least-upper-bound property. Then S also has the greatest-lower-bound property; that is, every nonempty subset of S that is bounded below has the greatest lower bound in S.

Proof. Assume $B \subseteq S$ is nonempty and bounded below, with a lower-bound $y \in S$. Let L be the set of all lower-bounds of B in S. Then L is nonempty as $y \in L$. Also L is bounded above, for every element of B is an upper-bound of L. Hence by assumption, $\alpha = \sup L$ exists in S. We now prove

$$\alpha = \inf B$$

by showing the two criteria are true:

- (i) α is a lower bound of B, and
- (ii) for every $\gamma \in S$ with $\gamma > \alpha$ there exists a $y \in B$ such that $y < \gamma$.

If (i) is false, then there exists a $\beta \in B$ such that $\beta < \alpha$. Since $\alpha = \sup L$, this β is not an upper bound of L. So there exists a $y \in L$ such that $y > \beta$. Note that, as $y \in L$, y is a lower bound of B and hence $y \leq \beta$, a contradiction.

To show (ii), suppose for some $\gamma \in S$ with $\gamma > \alpha$ no such $y \in B$ existed. Then $\gamma \leq y$ for all $y \in B$; so γ is a lower bound of B; that is, $\gamma \in L$, which resulted in $\gamma \leq \sup L = \alpha$, a desired contradiction.

1.3. Fields

Definition 1.7. A field is a set F with two operations, called **addition** and **multiplica**tion, which satisfy the following so-called field axioms (A), (M), and (D):

(A) Axioms for addition:

- (A1) If $x \in F$ and $y \in F$, then their sum x + y is in F.
- (A2) Addition is commutative: $\forall x, y \in F, x + y = y + x$.
- (A3) Addition is associative: $\forall x, y, z \in F$, (x + y) + z = x + (y + z).
- (A4) F contains an element 0 such that 0 + x = x for all $x \in F$.
- (A5) To every $x \in F$ corresponds an element $-x \in F$ such that

$$x + (-x) = 0.$$

(M) Axioms for multiplication:

- (M1) If $x \in F$ and $y \in F$, then their **product** xy is in F.
- (M2) Multiplication is commutative: $\forall x, y \in F, xy = yx$.
- (M3) Multiplication is associative: $\forall x, y, z \in F, (xy)z = x(yz).$

- (M4) F contains an element $1 \neq 0$ such that 1x = x for all $x \in F$.
- (M5) To every $x \in F$ with $x \neq 0$ corresponds an element $x^{-1} \in F$ such that

$$x(x^{-1}) = 1$$

(D) The distribution law: For all $x, y, z \in F$, it holds that

x(y+z) = xy + xz.

If F is a field, $E \subseteq F$ and E is itself a field under the addition and multiplication of F, then we say that E is a **subfield** of F.

Remark 1.8. (a) One usually writes $x^{-1} = 1/x = \frac{1}{x}$ or $xy^{-1} = x/y = \frac{x}{y}$ or x + y + z = (x + y) + z, xyz = (xy)z, 2x = x + x, $x^3 = xxx$, ...

- (b) Using the customary meaning of addition and multiplication of rational numbers, the set **Q** is a field.
- (c) It is worthwhile that some familiar properties of \mathbf{Q} are also true for general fields.

Lemma 1.3. The axioms for addition imply the following statements.

- (a) If x + y = x + z then y = z.
- (b) If x + y = x then y = 0.
- (c) If x + y = 0 then y = -x.
- (d) -(-x) = x.

Lemma 1.4. The axioms for multiplication imply the following statements.

- (a) If $x \neq 0$ and xy = xz then y = z.
- (b) If $x \neq 0$ and xy = x then y = 1.
- (c) If $x \neq 0$ and xy = 1 then y = 1/x.
- (d) If $x \neq 0$ then 1/(1/x) = x.

Lemma 1.5. The field axioms imply the following statements.

- (a) 0x = 0.
- (b) If $x \neq 0$ and $y \neq 0$ then $xy \neq 0$.
- (c) (-x)y = -(xy) = x(-y).
- (d) (-x)(-y) = xy.

Definition 1.9. An ordered field is a field F which is also an ordered set, such that

- (1) if $x, y, z \in F$ and y < z, then x + y < x + z,
- (2) if $x \in F, y \in F, x > 0$ and y > 0, then xy > 0.

If x > 0, we call x **positive**; if x < 0, we call x **negative**.

For example, \mathbf{Q} is an ordered field.

All the familiar rules for working with inequalities apply in every ordered field; we have the following theorem.

Lemma 1.6. The following statements are true in every ordered field.

(a) If x > 0 then -x < 0, and vice versa.

- (b) If x > 0 and y < z then xy < xz.
- (c) If x < 0 and y < z then xy > xz.
- (d) If $x \neq 0$ then $x^2 > 0$. In particular, 1 > 0.
- (e) If 0 < x < y then 0 < 1/y < 1/x.

1.4. The Real Field

We now state the **existence theorem** which is the core of this chapter.

Theorem 1.7. There exists an ordered field \mathbf{R} which contains \mathbf{Q} as a subfield and has the least-upper-bound property.

The members of **R** are called **real numbers**. The proof of this theorem is rather long and based on the **Dedekind cuts** construction, and will not be discussed in the lecture.

First of all, we prove the following property.

- **Theorem 1.8.** (i) (Archimedean Property) If $x \in \mathbf{R}$, $y \in \mathbf{R}$ and x > 0, then there exists a positive integer n such that nx > y.
 - (ii) (**Density of Q in R**) For any two real numbers a, b with a < b, there exists a rational number r such that a < r < b; that is, $\mathbf{Q} \cap (a, b) \neq \emptyset$ for all intervals $(a, b) \subseteq \mathbf{R}$.

Proof. We prove (i) by contradiction. Suppose the statement (i) is false; that is, for every $n \in \mathbf{N}$, one has $nx \leq y$. Let A be the set $A = \{nx : n \in \mathbf{N}\}$. Then y is an upper-bound of A. Therefore A is a nonempty set of real numbers that is bounded above. Hence the least-upper-bound property would assert that $\alpha = \sup A$ exists in \mathbf{R} . Since x > 0, we have $\alpha - x < \alpha$ and $\alpha - x$ is not an upper bound of A; hence $\alpha - x < mx$ for some $m \in \mathbf{N}$. But then $\alpha < (m+1)x \in A$, contradicting the fact that α is an upper-bound of A.

For (ii), we can reduce the situations to the case where $b > a \ge 0$. (Explain why?)

So assume $a \ge 0$. Let x = b - a > 0. The Archimedean Property of (i) above implies that there exists an $n \in \mathbb{N}$ such that nx > 1; that is, $\frac{1}{n} < b - a$; hence, na + 1 < nb. Consider the set

$$S = \{ r \in \mathbf{N} : r \le na+1 \}.$$

This set S contains only finitely many elements (for example, let $m_0 \in \mathbf{N}$ be such that $m_0 > na + 1$; then S has at most m_0 elements). So let $m = \max S$. Then $m \le na + 1$ and m + 1 > na + 1 (otherwise $m + 1 \in S$). For this $m \in \mathbf{N}$ we have

$$m - 1 \le na < m$$

Since $m \le na + 1 < nb$, we have $\frac{m}{n} < b$. Since na < m, we have $\frac{m}{n} > a$ and hence $a < \frac{m}{n} < b$.

EXAMPLE 1.3. Let $A = \{\frac{n}{n+1} \mid n \in \mathbb{N}\} = \{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\}$. Show that $\sup A = 1$.

Proof. By the definition of supremum, we need to prove the following two statements.

- (i) 1 is an upper-bound of A; that is, $\forall a \in A \ (a \leq 1)$;
- (ii) $\forall \gamma < 1 \exists a \in A \ (\gamma < a)$. [This is Criterion (ii'), equivalent to Criterion (ii) in the definition of supremum.]

To prove (i), let $a \in A$; then $a = \frac{n}{n+1}$ for some $n \in \mathbb{N}$. Since $1 - a = 1 - \frac{n}{n+1} = \frac{1}{n+1} > 0$, we have a < 1 and so (i) is true.

To prove (ii), let $\gamma < 1$; then, by the Archimedean property, there exists a number $n \in \mathbf{N}$ such that $\frac{1}{n} < 1 - \gamma$; so $\frac{1}{n+1} < \frac{1}{n} < 1 - \gamma$. Hence

$$\gamma < 1 - \frac{1}{n+1} = \frac{n}{n+1}$$

Therefore, the number $a = \frac{n}{n+1}$ is in A and satisfies $\gamma < a$, which proves (ii).

Finally, by definition, $\sup A = 1$.

Theorem 1.9 (Existence of *n*-th root). For every real x > 0 and every integer n > 0 there exists one and only one positive real number y such that $y^n = x$. (This number y is called the *n*th root of x and is written $\sqrt[n]{x}$ or $x^{1/n}$.)

Proof. Since 0 < a < b implies $0 < a^n < b^n$, it is clear there exists at most one such y. We now prove the existence.

Let E be the set consisting of all positive real numbers t such that $t^n < x$.

If t = x/(1+x) then $0 \le t < 1$. Hence $t^n \le t < x$ and so $t \in E$, and E is nonempty. For all $a \in \mathbf{R}$ with a > 1+x, it follows that $a^n \ge a > x$ and hence $a \notin E$. This implies that if $a \in E$ then $a \le 1+x$; hence 1+x is an upper-bound of E. By the least-upper-bound property of \mathbf{R} ,

$$y = \sup E$$

exists in **R**. We now prove $y^n = x$ by showing that each of the inequalities $y^n < x$ and $y^n > x$ leads to a contradiction.

The identity

$$b^{n} - a^{n} = (b - a)(b^{n-1} + b^{n-2}a + \dots + a^{n-1})$$

yields the inequality

$$b^n - a^n < (b - a)nb^{n-1}$$

whenever 0 < a < b.

Assume $y^n < x$. Choose h so that 0 < h < 1 and

$$h < \frac{x - y^n}{n(y+1)^{n-1}}.$$

Put a = y, b = y + h. Then

$$(y+h)^n - y^n < hn(y+h)^{n-1} < hn(y+1)^{n-1} < x - y^n.$$

Thus $(y+h)^n < x$, and $y+h \in E$; so $y+h \le y$, a contradiction.

Assume $y^n > x$. Put

$$k = \frac{y^n - x}{ny^{n-1}}.$$

Then 0 < k < y. If $t \ge y - k$, then

$$y^{n} - t^{n} \le y^{n} - (y - k)^{n} < kny^{n-1} = y^{n} - x,$$

and thus $t^n > x$; hence $t \notin E$. This implies that if $t \in E$ then t < y - k. So y - k is an upper-bound of E, thus $y - k \ge y$ as $y = \sup E$ (see, e.g., (ii") above). This gives a desired contradiction.

Hence $y^n = x$, and the proof is complete.

Corollary 1.10. For any two positive real numbers a, b and a positive integer n, it follows that

$$(ab)^{1/n} = a^{1/n}b^{1/n}$$

Proof. Exercise.

Decimals*. Let x > 0 be real. Let n_0 be the largest integer less than or equal to x. (Existence of such an n_0 is guaranteed by the Archimedean property.) This means

$$n_0 \le x < n_0 + 1.$$

Let n_1 be the largest integer such that

$$n_0 + \frac{n_1}{10} \le x.$$

Then $n_1 \in \{0, 1, 2, \dots, 9\}$. (*Why?*) Suppose $n_1, \dots, n_{k-1} \in \{0, 1, 2, \dots, 9\}$ have been defined, let n_k be the largest integer such that

$$n_0 + \frac{n_1}{10} + \frac{n_2}{10^2} + \dots + \frac{n_k}{10^k} \le x.$$

Again $n_k \in \{0, 1, 2, \dots, 9\}$. Once all integers $n_0, n_1, \dots, n_k, \dots$ are defined, let *E* be the set of numbers

$$n_0 + \frac{n_1}{10} + \frac{n_2}{10^2} + \dots + \frac{n_k}{10^k}$$
 $(k = 0, 1, 2, \dots).$

Then $x = \sup E$. The **decimal expansion** of x is

$$x = n_0 . n_1 n_2 n_3 \cdots$$

Conversely, if $n_0, n_1, \dots, n_k, \dots$ are given, then the set E defined above is bounded above, and $\sup E = n_0.n_1n_2n_3\cdots$.

We don't use decimals, so we omit the details.

The Extended Real Number System

We extend the real numbers **R** by adding two symbols, $-\infty$ and $+\infty$. We preserve the order in **R** and define

$$-\infty < x < +\infty$$

for every $x \in \mathbf{R}$.

The extended real number system does not form a field, but it is customary to make the following conventions:

(1) If x is real, then

$$x + (+\infty) = +\infty$$
, $x - (+\infty) = -\infty$, $\frac{x}{\pm \infty} = 0$.

- (2) If x is real and x > 0, then $x(+\infty) = +\infty$, $x(-\infty) = -\infty$.
- (3) If x is real and x < 0, then $x(+\infty) = -\infty$, $x(-\infty) = +\infty$.
- (4) If a subset E of **R** is not bounded above, then we define $\sup E = +\infty$; if E is not bounded below, then we define $\inf E = -\infty$.

1.5. The Complex Field*

Definition 1.10. A complex number is an *ordered pair* (a, b), where a, b are real numbers. The set of all complex numbers is denoted by **C**.

Let x = (a, b), y = (c, d) be two complex numbers. We write x = y if and only if a = c and b = d. We define

$$x + y = (a + c, b + d),$$

$$xy = (ac - bd, ad + bc).$$

Theorem 1.11. The above addition and multiplication turn the set \mathbf{C} of all complex numbers into a field, with (0,0) and (1,0) in the role of zero 0 and unit 1 in \mathbf{C} .

Theorem 1.12. For any real numbers a and b we have

$$(a, 0) + (b, 0) = (a + b, 0), \quad (a, 0)(b, 0) = (ab, 0).$$

Therefore, if we identify every real number $a \in \mathbf{R}$ with the complex number $(a, 0) \in \mathbf{C}$, then **R** becomes a subfield of **C**.

We will write (a, 0) = a for all real numbers a.

Definition 1.11. We define i = (0, 1). Then $i^2 = -1$.

Let $z = (a, b) \in \mathbf{C}$, where $a, b \in \mathbf{R}$. Then z = a + bi. We define $\overline{z} = a - bi$ to be the **conjugate** of z. We also write

$$a = \operatorname{Re} z, \quad b = \operatorname{Im} z$$

Theorem 1.13. Let $z, w \in \mathbf{C}$. Then

$$\overline{z+w} = \overline{z} + \overline{w}, \quad \overline{zw} = \overline{z}\overline{w},$$

 $z+\overline{z} = 2Rez, \quad z-\overline{z} = 2iImz,$

and $z\bar{z} > 0$ if $z \neq 0$. We define the **absolute value** of z to be the real number $(z\bar{z})^{1/2}$. Then |z| > 0 if $z \neq 0$ and |0| = 0.

Theorem 1.14. Let $z, w \in \mathbf{C}$. Then

$$|\bar{z}| = |z|, \quad |zw| = |z||w|, \quad |Rez| \le |z|,$$

(1.1)
$$|z+w| \le |z|+|w|$$

Theorem 1.15 (Schwarz inequality). Let $z_1, \dots, z_n \in \mathbb{C}$ and $w_1, \dots, w_n \in \mathbb{C}$. Then

(1.2)
$$\left|\sum_{j=1}^{n} z_j \bar{w}_j\right|^2 \le \left(\sum_{j=1}^{n} |z_j|^2\right) \left(\sum_{j=1}^{n} |w_j|^2\right).$$

Proof. Let $A = \sum_{j=1}^{n} |z_j|^2$, $B = \sum_{j=1}^{n} |w_j|^2$ and $C = \sum_{j=1}^{n} z_j \bar{w}_j$. If B = 0 then $w_1 = w_2 = \cdots = w_n = 0$, and (1.2) is trivial. Assume B > 0. Then, we have

$$0 \le \sum_{j=1}^{n} |Bz_j - Cw_j|^2 = \sum_{j=1}^{n} (Bz_j - Cw_j) (B\bar{z}_j - \bar{C}\bar{w}_j)$$
$$= \sum_{j=1}^{n} (B^2 |z_j|^2 - B\bar{C}z_j\bar{w}_j - BC\bar{z}_jw_j + |C|^2 |w_j|^2)$$
$$= B(AB - |C|^2).$$

Hence $|C|^2 \leq AB$, which is the Schwarz inequality (1.2).

1.6. Euclidean Spaces

Definition 1.12. For each $n \in \mathbf{N}$, let \mathbf{R}^n denote the set of all ordered *n*-tuples

$$\mathbf{c} = (x_1, x_2, \dots, x_n)$$

where x_1, \dots, x_n are real numbers, called the **coordinates** of **x**. The elements in \mathbb{R}^n are called **points**, or **vectors**, especially when n > 1. Two points \mathbf{x}, \mathbf{y} in \mathbb{R}^n are equal if and only if all their corresponding coordinates are equal; that is, $x_j = y_j$ for all $j = 1, 2, \dots, n$. The **origin** or **null vector** is the vector **0**, all of whose coordinates are zero; that is, $\mathbf{0} = (0, 0, \dots, 0)$.

Let $\mathbf{x} = (x_1, \ldots, x_n), \mathbf{y} = (y_1, \ldots, y_n) \in \mathbf{R}^n$, and $\alpha \in \mathbf{R}$.

(1) The sum of vectors \mathbf{x} and \mathbf{y} is defined by

$$\mathbf{x} + \mathbf{y} := (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n).$$

(2) The difference of vectors \mathbf{x} and \mathbf{y} is defined by

 $\mathbf{x} - \mathbf{y} := (x_1 - y_1, x_2 - y_2, \dots, x_n - y_n).$

(3) The scalar multiplication of vector \mathbf{x} by α is defined by

$$\alpha \mathbf{x} := (\alpha x_1, \alpha x_2, \dots, \alpha x_n).$$

(4) The inner product of vectors \mathbf{x} and \mathbf{y} is defined by

$$\mathbf{x} \cdot \mathbf{y} := x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \sum_{j=1}^n x_j y_j$$

and the **Euclidean norm of vector \mathbf{x}** is defined by

$$\|\mathbf{x}\| := (x_1^2 + \dots + x_n^2)^{1/2} = (\mathbf{x} \cdot \mathbf{x})^{1/2}.$$

(Note that the double bar " \parallel " is used here for the norm, instead of the single bar " \parallel " as was used in the text; this is to distinguish with the absolute value sign.)

The set \mathbf{R}^n equipped with these structures is called a **Euclidean space**.

Theorem 1.16. Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{R}^n$ and $\alpha, \beta \in \mathbf{R}$. Then

$$\begin{aligned} \alpha \mathbf{0} &= \mathbf{0}, \ 0\mathbf{x} = \mathbf{0}, \ \mathbf{0} + \mathbf{x} = \mathbf{x}, \ \mathbf{x} - \mathbf{x} = \mathbf{0}, \ 1\mathbf{x} = \mathbf{x}, \ \mathbf{0} \cdot \mathbf{x} = 0, \\ \alpha(\beta \mathbf{x}) &= \beta(\alpha \mathbf{x}) = (\alpha\beta)\mathbf{x}, \quad \alpha(\mathbf{x} \cdot \mathbf{y}) = (\alpha \mathbf{x}) \cdot \mathbf{y} = \mathbf{x} \cdot (\alpha \mathbf{y}), \\ \mathbf{x} + \mathbf{y} &= \mathbf{y} + \mathbf{x}, \quad \mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}, \quad \mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}, \\ \alpha(\mathbf{x} + \mathbf{y}) &= \alpha \mathbf{x} + \alpha \mathbf{y}, \quad \mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{z}. \end{aligned}$$

Proof. All these properties follow easily from definition; we omit the details.

Theorem 1.17 (Basic Properties of the Euclidean Space). Let $\mathbf{x}, \mathbf{y} \in \mathbf{R}^n$. Then

- (1) $\|\mathbf{x}\| \ge 0$ with equality holding only when $\mathbf{x} = \mathbf{0}$.
- (2) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for all $\alpha \in \mathbf{R}$.
- (3) (Cauchy-Schwarz Inequality) $|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$.
- (4) (**Triangle Inequalities**)

$$\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|, \quad \|\mathbf{x} - \mathbf{z}\| \le \|\mathbf{x} - \mathbf{y}\| + \|\mathbf{y} - \mathbf{z}\|$$

for all $\mathbf{z} \in \mathbf{R}^n$.

Proof. First two properties are immediate from the definition of the norm.

We now prove the Cauchy-Schwarz Inequality. Without loss of generality, assume $\mathbf{y} \neq \mathbf{0}$ and so $\|\mathbf{y}\| > 0$. For each $t \in \mathbf{R}$, we have

 $0 \leq \|\mathbf{x} - t\mathbf{y}\|^2 = (\mathbf{x} - t\mathbf{y}) \cdot (\mathbf{x} - t\mathbf{y}) = \mathbf{x} \cdot \mathbf{x} - 2t\mathbf{x} \cdot \mathbf{y} + t^2\mathbf{y} \cdot \mathbf{y} = \|\mathbf{x}\|^2 - 2t\mathbf{x} \cdot \mathbf{y} + t^2\|\mathbf{y}\|^2$. In this inequality, choosing $t = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{y}\|^2}$ and simplifying, we obtain the Cauchy-Schwarz Inequality.

Finally we prove the Triangle Inequality. From the **Cauchy-Schwarz Inequality**, we have

 $\|\mathbf{x} + \mathbf{y}\|^{2} = \|\mathbf{x}\|^{2} + 2\mathbf{x} \cdot \mathbf{y} + \|\mathbf{y}\|^{2} \le \|\mathbf{x}\|^{2} + 2\|\mathbf{x}\|\|\mathbf{y}\| + \|\mathbf{y}\|^{2} = (\|\mathbf{x}\| + \|\mathbf{y}\|)^{2}.$

Hence $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.

From this, for all $\mathbf{z} \in \mathbf{R}^n$, we have that

$$\|\mathbf{x} - \mathbf{z}\| = \|\mathbf{x} - \mathbf{y} + \mathbf{y} - \mathbf{z}\| \le \|\mathbf{x} - \mathbf{y}\| + \|\mathbf{y} - \mathbf{z}\|.$$

Suggested Homework Problems

Pages 21-23

Problems: 2–7, 19