
Chapter 1

The Real and Complex
Number Systems

1.1. Introduction

Notation. We begin with the natural numbers

N = {1, 2, 3, · · · }.

In N we can do addition and multiplication, but in order to do subtraction we need to
extend N to the integers

Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }.

In Z we can do addition, subtraction and multiplication, but in order to perform division
we need to extend Z to the rational numbers or rationals,

Q = {all fractions p
q where p and q are integers with q 6= 0}.

In Q we have a field structure: addition and multiplication are defined with commuta-
tive, associative and distributive properties and the existence of additive and multiplicative
inverses.

Also Q has a natural order structure defined on it (based on the ordering in N). Given
any two rational numbers r and s, exactly one of the following is true:

r < s; r = s; s < r.

However, Q is inadequate for many purposes. For instance, if we have a square with
each side of length 1, can we measure the length of its diagonal with a rational number? The
answer is No. (See the proof below.) This leads to the introduction of so-called “irrational
numbers”, for example,

√
2.

Theorem 1.1. There is no rational number whose square is 2.

Proof. The theorem asserts that no rational numbers r exist such that r2 = 2; that is, if
r is any rational number then r2 6= 2. Since any rational number r is given by r = p

q for

some integers p and q with q 6= 0. Therefore, what we need to show is that no matter what
such p and q are chosen it is never the case (p/q)2 = 2. The line of attack is indirect, using
a method of proof by contradiction; the idea is to show the opposite cannot be true. That
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2 1. The Real and Complex Number Systems

is, assume there exist some integers p and q with q 6= 0 such that (p/q)2 = 2 and we want
to reach a conclusion that is unacceptable (absurd). We can also assume p and q have no
common factors greater than 1 since any such common factors can be canceled out, leaving
the fraction p

q unchanged. From (p/q)2 = 2 we have

p2 = 2q2;

hence we know p2 is an even number, and hence p itself must be even (otherwise p is odd
and p2 would be odd). So write p = 2k where k is an integer. Then p2 = 4k2 = 2q2.
Hence we have q2 = 2k2, which again implies q must be an even number. However, in
the beginning, we assumed p and q have no common factors greater than 1, but we have
reached a conclusion that p and q are both even and so have a common factor 2. This
contradiction shows that the statement that there exist some integers p and q with q 6= 0
such that (p/q)2 = 2 must be false. This proves the original statement of the theorem. �

Example 1.1. We now examine the situation a little closely. Let A be the set of all positive
rationals p such that p2 < 2 and let B be the set of all positive rationals p such that p2 > 2.
We show that A contains no largest number and B contains no smallest number.

More explicitly, we show that, for every p in A (in B, respectively) we can find a rational
q in A (in B, respectively) such that q > p (q < p, respectively).

To do this, given each rational p > 0, let

q = p− p2 − 2

p+ 2
=

2p+ 2

p+ 2
.

Then q is also rational and

q2 − 2 =
2(p2 − 2)

(p+ 2)2
.

Therefore, if p ∈ A then q ∈ A and q > p, and if p ∈ B then q ∈ B and q < p.

Definition 1.1. A set is any collection of objects. These objects are referred to as the
elements of the set. A set containing no element is called the empty set and is denoted
by ∅.

Given a set A, if x is an element of A then we write x ∈ A (and say x is in A or belongs
to A or x is an element of A). If x is not an element of A then we write x /∈ A.

Given two sets A and B, if every element of A is an element of B, then we write A ⊆ B
or B ⊇ A; in this case, we say A is a subset of B. Note that two sets A and B are equal
if and only if A ⊆ B and B ⊆ A.

1.2. Ordered Sets

Definition 1.2. Let S be a set. An order on S is a relation, denoted by <, with the
following two properties:

(1) If x ∈ S and y ∈ S, then one and only one of the statements

x < y, x = y, y < x

is true.

(2) For x, y, z ∈ S, if x < y and y < z, then x < z.
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The statement “x < y” may be read as “x is less than y” or “x is smaller than y” or “x
precedes y”.

Sometimes we write x < y equivalently as y > x. The notation x ≤ y means x < y or
x = y. In other words, x ≤ y is the negation of x > y. The notation x ≥ y has a similar
meaning.

Definition 1.3. An ordered set is a set S in which an order < is defined; sometimes an
ordered set is denoted by (S,<).

For example, in Q, we define r < s if (and only if) s− r is a positive rational number.
Then (Q, <) is an ordered set.

Least Upper Bound and Greatest Lower Bound.

Definition 1.4. Suppose (S,<) is an ordered set, and E ⊆ S. We say that E is bounded
above if there exists a β ∈ S such that x ≤ β for all x ∈ E. Any such a β ∈ S is called an
upper-bound of E.

Similarly, a set E ⊆ S is called bounded below if there exists a β ∈ S such that x ≥ β
for all x ∈ E. Any such a β ∈ S is called a lower-bound of E.

Definition 1.5. Suppose (S,<) is an ordered set, E ⊆ S and α ∈ S. We say that α is a
least upper-bound of A if α satisfies the following two criteria:

(i) α is an upper-bound of E.

(ii) If γ < α, then γ is not an upper-bound of E.

A least upper bound α of a set E, if exists, must be unique: If α1 and α2 are both least
upper-bound of E, then, by the criteria (ii) of the definition (see also (ii”) below), we must
have that α1 ≤ α2 and α2 ≤ α1; thus α1 = α2. We also call the least upper bound α of E
the supremum of E and write

α = supE.

In the same manner, the greatest lower bound α, or infimum, of a set E ⊆ S is
defined and denoted by

α = inf E.

If supE ∈ E, then we call supE the maximum of E and denote it also by maxE.

Similarly, if inf E ∈ E then we say inf E is the minimum of E and denote it by minE.

Note that the criteria (ii) for least upper-bound is equivalent to each of the following
two statements.

(ii’) If γ < α, then there exists a y ∈ E such that γ < y.

(ii”) If γ is an upper-bound of E, then α ≤ γ. (This is the contrapositive of (ii).)

Definition 1.6. An ordered set S is said to have the least-upper-bound property if the
following is true:

Every nonempty subset of S that is bounded above has the least upper-bound in S.

Similarly one defines the greatest-lower-bound property.

Example 1.2. The ordered set Q does not have the least-upper-bound property.
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Proof. Consider the sets A and B defined in Example 1.1. Clearly A ⊆ Q is nonempty,
and every number in set B is an upper bound of set A (use the fact ∀α > 0, β > 0, α2 <
β2 ⇒ α < β). We show A has no least upper bound in Q. Suppose α = supA existed in
Q. Then α2 6= 2; hence either (i) α2 < 2 or (ii) α2 > 2.

In case (i), α ∈ A and by the proof in Example 1.1, there exists a β ∈ A such that
α < β; but β ≤ α since α is an upper bound of A, which gives the desired contradiction.

In case (ii), α ∈ B and by the proof of Example 1.1 there exists a β ∈ B such that
β < α. Since β ∈ B is an upper-bound of A, we reach a contradiction to (ii) of the definition
of α = supA. �

Theorem 1.2. Suppose S is an ordered set with the least-upper-bound property. Then
S also has the greatest-lower-bound property; that is, every nonempty subset of S that is
bounded below has the greatest lower bound in S.

Proof. Assume B ⊆ S is nonempty and bounded below, with a lower-bound y ∈ S. Let L
be the set of all lower-bounds of B in S. Then L is nonempty as y ∈ L. Also L is bounded
above, for every element of B is an upper-bound of L. Hence by assumption, α = supL
exists in S. We now prove

α = inf B

by showing the two criteria are true:

(i) α is a lower bound of B, and

(ii) for every γ ∈ S with γ > α there exists a y ∈ B such that y < γ.

If (i) is false, then there exists a β ∈ B such that β < α. Since α = supL, this β is not
an upper bound of L. So there exists a y ∈ L such that y > β. Note that, as y ∈ L, y is a
lower bound of B and hence y ≤ β, a contradiction.

To show (ii), suppose for some γ ∈ S with γ > α no such y ∈ B existed. Then γ ≤ y
for all y ∈ B; so γ is a lower bound of B; that is, γ ∈ L, which resulted in γ ≤ supL = α,
a desired contradiction. �

1.3. Fields

Definition 1.7. A field is a set F with two operations, called addition and multiplica-
tion, which satisfy the following so-called field axioms (A), (M), and (D):

(A) Axioms for addition:

(A1) If x ∈ F and y ∈ F , then their sum x+ y is in F .

(A2) Addition is commutative: ∀x, y ∈ F, x+ y = y + x.

(A3) Addition is associative: ∀x, y, z ∈ F, (x+ y) + z = x+ (y + z).

(A4) F contains an element 0 such that 0 + x = x for all x ∈ F .

(A5) To every x ∈ F corresponds an element −x ∈ F such that

x+ (−x) = 0.

(M) Axioms for multiplication:

(M1) If x ∈ F and y ∈ F , then their product xy is in F .

(M2) Multiplication is commutative: ∀x, y ∈ F, xy = yx.

(M3) Multiplication is associative: ∀x, y, z ∈ F, (xy)z = x(yz).
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(M4) F contains an element 1 6= 0 such that 1x = x for all x ∈ F .

(M5) To every x ∈ F with x 6= 0 corresponds an element x−1 ∈ F such that

x(x−1) = 1.

(D) The distribution law: For all x, y, z ∈ F, it holds that

x(y + z) = xy + xz.

If F is a field, E ⊆ F and E is itself a field under the addition and multiplication of F ,
then we say that E is a subfield of F .

Remark 1.8. (a) One usually writes x−1 = 1/x = 1
x or xy−1 = x/y = x

y or

x+ y + z = (x+ y) + z, xyz = (xy)z, 2x = x+ x, x3 = xxx, · · ·

(b) Using the customary meaning of addition and multiplication of rational numbers,
the set Q is a field.

(c) It is worthwhile that some familiar properties of Q are also true for general fields.

Lemma 1.3. The axioms for addition imply the following statements.

(a) If x+ y = x+ z then y = z.

(b) If x+ y = x then y = 0.

(c) If x+ y = 0 then y = −x.
(d) −(−x) = x.

Lemma 1.4. The axioms for multiplication imply the following statements.

(a) If x 6= 0 and xy = xz then y = z.

(b) If x 6= 0 and xy = x then y = 1.

(c) If x 6= 0 and xy = 1 then y = 1/x.

(d) If x 6= 0 then 1/(1/x) = x.

Lemma 1.5. The field axioms imply the following statements.

(a) 0x = 0.

(b) If x 6= 0 and y 6= 0 then xy 6= 0.

(c) (−x)y = −(xy) = x(−y).

(d) (−x)(−y) = xy.

Definition 1.9. An ordered field is a field F which is also an ordered set, such that

(1) if x, y, z ∈ F and y < z, then x+ y < x+ z,

(2) if x ∈ F, y ∈ F, x > 0 and y > 0, then xy > 0.

If x > 0, we call x positive; if x < 0, we call x negative.

For example, Q is an ordered field.

All the familiar rules for working with inequalities apply in every ordered field; we have
the following theorem.

Lemma 1.6. The following statements are true in every ordered field.

(a) If x > 0 then −x < 0, and vice versa.
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(b) If x > 0 and y < z then xy < xz.

(c) If x < 0 and y < z then xy > xz.

(d) If x 6= 0 then x2 > 0. In particular, 1 > 0.

(e) If 0 < x < y then 0 < 1/y < 1/x.

1.4. The Real Field

We now state the existence theorem which is the core of this chapter.

Theorem 1.7. There exists an ordered field R which contains Q as a subfield and has the
least-upper-bound property.

The members of R are called real numbers. The proof of this theorem is rather long
and based on the Dedekind cuts construction, and will not be discussed in the lecture.

First of all, we prove the following property.

Theorem 1.8. (i) (Archimedean Property) If x ∈ R, y ∈ R and x > 0, then there
exists a positive integer n such that nx > y.

(ii) (Density of Q in R) For any two real numbers a, b with a < b, there exists a
rational number r such that a < r < b; that is, Q ∩ (a, b) 6= ∅ for all intervals
(a, b) ⊆ R.

Proof. We prove (i) by contradiction. Suppose the statement (i) is false; that is, for every
n ∈ N, one has nx ≤ y. Let A be the set A = {nx : n ∈ N}. Then y is an upper-bound
of A. Therefore A is a nonempty set of real numbers that is bounded above. Hence the
least-upper-bound property would assert that α = supA exists in R. Since x > 0, we have
α− x < α and α− x is not an upper bound of A; hence α− x < mx for some m ∈ N. But
then α < (m+ 1)x ∈ A, contradicting the fact that α is an upper-bound of A.

For (ii), we can reduce the situations to the case where b > a ≥ 0. (Explain why?)

So assume a ≥ 0. Let x = b − a > 0. The Archimedean Property of (i) above implies
that there exists an n ∈ N such that nx > 1; that is, 1

n < b − a; hence, na + 1 < nb.
Consider the set

S = {r ∈ N : r ≤ na+ 1}.
This set S contains only finitely many elements (for example, let m0 ∈ N be such that
m0 > na+ 1; then S has at most m0 elements). So let m = maxS. Then m ≤ na+ 1 and
m+ 1 > na+ 1 (otherwise m+ 1 ∈ S). For this m ∈ N we have

m− 1 ≤ na < m.

Since m ≤ na + 1 < nb, we have m
n < b. Since na < m, we have m

n > a and hence
a < m

n < b. �

Example 1.3. Let A = { n
n+1 | n ∈ N} = {12 ,

2
3 ,

3
4 , · · · }. Show that supA = 1.

Proof. By the definition of supremum, we need to prove the following two statements.

(i) 1 is an upper-bound of A; that is, ∀a ∈ A (a ≤ 1);

(ii) ∀ γ < 1 ∃a ∈ A (γ < a). [This is Criterion (ii’), equivalent to Criterion (ii) in the
definition of supremum.]
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To prove (i), let a ∈ A; then a = n
n+1 for some n ∈ N. Since 1−a = 1− n

n+1 = 1
n+1 > 0,

we have a < 1 and so (i) is true.

To prove (ii), let γ < 1; then, by the Archimedean property, there exists a number
n ∈ N such that 1

n < 1− γ; so 1
n+1 <

1
n < 1− γ. Hence

γ < 1− 1

n+ 1
=

n

n+ 1
.

Therefore, the number a = n
n+1 is in A and satisfies γ < a, which proves (ii).

Finally, by definition, supA = 1. �

Theorem 1.9 (Existence of n-th root). For every real x > 0 and every integer n > 0 there
exists one and only one positive real number y such that yn = x. (This number y is called

the nth root of x and is written n
√
x or x1/n.)

Proof. Since 0 < a < b implies 0 < an < bn, it is clear there exists at most one such y. We
now prove the existence.

Let E be the set consisting of all positive real numbers t such that tn < x.

If t = x/(1 + x) then 0 ≤ t < 1. Hence tn ≤ t < x and so t ∈ E, and E is nonempty.
For all a ∈ R with a > 1 +x, it follows that an ≥ a > x and hence a /∈ E. This implies that
if a ∈ E then a ≤ 1 + x; hence 1 + x is an upper-bound of E. By the least-upper-bound
property of R,

y = supE

exists in R. We now prove yn = x by showing that each of the inequalities yn < x and
yn > x leads to a contradiction.

The identity

bn − an = (b− a)(bn−1 + bn−2a+ · · ·+ an−1)

yields the inequality

bn − an < (b− a)nbn−1

whenever 0 < a < b.

Assume yn < x. Choose h so that 0 < h < 1 and

h <
x− yn

n(y + 1)n−1
.

Put a = y, b = y + h. Then

(y + h)n − yn < hn(y + h)n−1 < hn(y + 1)n−1 < x− yn.

Thus (y + h)n < x, and y + h ∈ E; so y + h ≤ y, a contradiction.

Assume yn > x. Put

k =
yn − x
nyn−1

.

Then 0 < k < y. If t ≥ y − k, then

yn − tn ≤ yn − (y − k)n < knyn−1 = yn − x,

and thus tn > x; hence t /∈ E. This implies that if t ∈ E then t < y − k. So y − k is an
upper-bound of E, thus y− k ≥ y as y = supE (see, e.g., (ii”) above). This gives a desired
contradiction.

Hence yn = x, and the proof is complete. �
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Corollary 1.10. For any two positive real numbers a, b and a positive integer n, it follows
that

(ab)1/n = a1/nb1/n.

Proof. Exercise. �

Decimals*. Let x > 0 be real. Let n0 be the largest integer less than or equal to x.
(Existence of such an n0 is guaranteed by the Archimedean property.) This means

n0 ≤ x < n0 + 1.

Let n1 be the largest integer such that

n0 +
n1
10
≤ x.

Then n1 ∈ {0, 1, 2, · · · , 9}. (Why?) Suppose n1, · · · , nk−1 ∈ {0, 1, 2, · · · , 9} have been de-
fined, let nk be the largest integer such that

n0 +
n1
10

+
n2
102

+ · · ·+ nk
10k
≤ x.

Again nk ∈ {0, 1, 2, · · · , 9}. Once all integers n0, n1, · · · , nk, · · · are defined, let E be the set
of numbers

n0 +
n1
10

+
n2
102

+ · · ·+ nk
10k

(k = 0, 1, 2, · · · ).

Then x = supE. The decimal expansion of x is

x = n0.n1n2n3 · · · .

Conversely, if n0, n1, · · · , nk, · · · are given, then the set E defined above is bounded
above, and supE = n0.n1n2n3 · · · .

We don’t use decimals, so we omit the details.

The Extended Real Number System

We extend the real numbers R by adding two symbols, −∞ and +∞. We preserve the order
in R and define

−∞ < x < +∞

for every x ∈ R.

The extended real number system does not form a field, but it is customary to make
the following conventions:

(1) If x is real, then

x+ (+∞) = +∞, x− (+∞) = −∞, x

±∞
= 0.

(2) If x is real and x > 0, then x(+∞) = +∞, x(−∞) = −∞.
(3) If x is real and x < 0, then x(+∞) = −∞, x(−∞) = +∞.
(4) If a subset E of R is not bounded above, then we define supE = +∞; if E is not

bounded below, then we define inf E = −∞.
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1.5. The Complex Field*

Definition 1.10. A complex number is an ordered pair (a, b), where a, b are real numbers.
The set of all complex numbers is denoted by C.

Let x = (a, b), y = (c, d) be two complex numbers. We write x = y if and only if a = c
and b = d. We define

x+ y = (a+ c, b+ d),

xy = (ac− bd, ad+ bc).

Theorem 1.11. The above addition and multiplication turn the set C of all complex num-
bers into a field, with (0, 0) and (1, 0) in the role of zero 0 and unit 1 in C.

Theorem 1.12. For any real numbers a and b we have

(a, 0) + (b, 0) = (a+ b, 0), (a, 0)(b, 0) = (ab, 0).

Therefore, if we identify every real number a ∈ R with the complex number (a, 0) ∈ C, then
R becomes a subfield of C.

We will write (a, 0) = a for all real numbers a.

Definition 1.11. We define i = (0, 1). Then i2 = −1.

Let z = (a, b) ∈ C, where a, b ∈ R. Then z = a + bi. We define z̄ = a − bi to be the
conjugate of z. We also write

a = Rez, b = Imz.

Theorem 1.13. Let z, w ∈ C. Then

z + w = z̄ + w̄, zw = z̄w̄,

z + z̄ = 2Rez, z − z̄ = 2iImz,

and zz̄ > 0 if z 6= 0. We define the absolute value of z to be the real number (zz̄)1/2.
Then |z| > 0 if z 6= 0 and |0| = 0.

Theorem 1.14. Let z, w ∈ C. Then

|z̄| = |z|, |zw| = |z||w|, |Rez| ≤ |z|,

(1.1) |z + w| ≤ |z|+ |w|.
Theorem 1.15 (Schwarz inequality). Let z1, · · · , zn ∈ C and w1, · · · , wn ∈ C. Then

(1.2)

∣∣∣∣∣∣
n∑

j=1

zjw̄j

∣∣∣∣∣∣
2

≤

 n∑
j=1

|zj |2
 n∑

j=1

|wj |2
 .

Proof. Let A =
∑n

j=1 |zj |2, B =
∑n

j=1 |wj |2 and C =
∑n

j=1 zjw̄j . If B = 0 then w1 = w2 =

· · · = wn = 0, and (1.2) is trivial. Assume B > 0. Then, we have

0 ≤
n∑

j=1

|Bzj − Cwj |2 =

n∑
j=1

(Bzj − Cwj)(Bz̄j − C̄w̄j)

=
n∑

j=1

(B2|zj |2 −BC̄zjw̄j −BCz̄jwj + |C|2|wj |2)

= B(AB − |C|2).
Hence |C|2 ≤ AB, which is the Schwarz inequality (1.2). �
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1.6. Euclidean Spaces

Definition 1.12. For each n ∈ N, let Rn denote the set of all ordered n-tuples

x = (x1, x2, . . . , xn),

where x1, · · · , xn are real numbers, called the coordinates of x. The elements in Rn are
called points, or vectors, especially when n > 1. Two points x,y in Rn are equal if and
only if all their corresponding coordinates are equal; that is, xj = yj for all j = 1, 2, . . . , n.
The origin or null vector is the vector 0, all of whose coordinates are zero; that is,
0 = (0, 0, . . . , 0).

Let x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Rn, and α ∈ R.

(1) The sum of vectors x and y is defined by

x + y := (x1 + y1, x2 + y2, . . . , xn + yn).

(2) The difference of vectors x and y is defined by

x− y := (x1 − y1, x2 − y2, . . . , xn − yn).

(3) The scalar multiplication of vector x by α is defined by

αx := (αx1, αx2, . . . , αxn).

(4) The inner product of vectors x and y is defined by

x · y := x1y1 + x2y2 + · · ·+ xnyn =
n∑

j=1

xjyj

and the Euclidean norm of vector x is defined by

‖x‖ := (x21 + · · ·+ x2n)1/2 = (x · x)1/2.

(Note that the double bar “‖” is used here for the norm, instead of the single bar
“|” as was used in the text; this is to distinguish with the absolute value sign.)

The set Rn equipped with these structures is called a Euclidean space.

Theorem 1.16. Let x,y, z ∈ Rn and α, β ∈ R. Then

α0 = 0, 0x = 0, 0 + x = x, x− x = 0, 1x = x, 0 · x = 0,

α(βx) = β(αx) = (αβ)x, α(x · y) = (αx) · y = x · (αy),

x + y = y + x, x + (y + z) = (x + y) + z, x · y = y · x,
α(x + y) = αx + αy, x · (y + z) = x · y + x · z.

Proof. All these properties follow easily from definition; we omit the details. �

Theorem 1.17 (Basic Properties of the Euclidean Space). Let x,y ∈ Rn. Then

(1) ‖x‖ ≥ 0 with equality holding only when x = 0.

(2) ‖αx‖ = |α|‖x‖ for all α ∈ R.

(3) (Cauchy-Schwarz Inequality) |x · y| ≤ ‖x‖‖y‖.
(4) (Triangle Inequalities)

‖x + y‖ ≤ ‖x‖+ ‖y‖, ‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖

for all z ∈ Rn.
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Proof. First two properties are immediate from the definition of the norm.

We now prove the Cauchy-Schwarz Inequality. Without loss of generality, assume y 6= 0
and so ‖y‖ > 0. For each t ∈ R, we have

0 ≤ ‖x− ty‖2 = (x− ty) · (x− ty) = x · x− 2tx · y + t2y · y = ‖x‖2 − 2tx · y + t2‖y‖2.
In this inequality, choosing t = x·y

‖y‖2 and simplifying, we obtain the Cauchy-Schwarz In-

equality.

Finally we prove the Triangle Inequality. From the Cauchy-Schwarz Inequality, we
have

‖x + y‖2 = ‖x‖2 + 2x · y + ‖y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2.
Hence ‖x + y‖ ≤ ‖x‖+ ‖y‖.

From this, for all z ∈ Rn, we have that

‖x− z‖ = ‖x− y + y − z‖ ≤ ‖x− y‖+ ‖y − z‖.
�
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