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1. INTRODUCTION

From the Hardy-Littlewood-Sobolev inequality on S"~! with sharp constant
Beckner [B] derived the following family of inequalities on B"™

Theorem 1. Let u € C™® (W) Then
(1.1)
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forl<qg<ooifn=2and1 < q<n/(n—2)ifn>3, wherec, = 21"?/T (n/2) =
|S"=Y| and do is the standard volume form on S™~*.

The critical case ¢ = n/ (n — 2) was also proved by Escobar [E1, E2] by a different
method. By Lions [L] the following
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is achieved by a positive function u satisfying the following

Au=0 on B",
% + 252y = /=2 on S"TL
Escobar [E2] then classified all positive solutions of the above equation using an
integral method and hence proved the inequality (1.1) for ¢ = n/(n —2). The
inequality for 1 < ¢ < n/(n—2) would also follow in the same way from the
following

Conjecture 1. If u e C* (W) is positive and satisfies the following equation

Au=0 on B™,
Ou — 4 n—1
5, Tau=u? on S"7°,

(1.2)
then u is constant, provided 1 < g <n/(n—2) and0<a <1/(qg—1).

In fact, when 1 < ¢ < n/(n — 2) the trace operator H* (B") — L4 (S"71) is
compact. It follows trivially that
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is achieved by a positive function u satisfying (1.2). The conjecture, if true, then
implies that u is constant if a < 1/(¢—1) and hence the inequality (1.1). By
taking limit ¢ /* n/ (n — 2) one would also obtain the critical case ¢ = n/ (n — 2).
In [W2] the conjecture is even formulated in a more general context, namely the
same uniqueness result should be true on any compact Riemannian manifold with
nonnegative Ricci curvature and with principal curvature > 1 on the boundary. In
its precise form, the conjecture states

Conjecture 2. ([W2]) Let (M™,g) be a smooth compact Riemannian manifold
with Ric > 0 and II > 1 on its boundary ¥. Let v € C* (M) be a positive solution
to the following equation

Au=20 on M,

(13) % +au:uq on 27

where the parameters a and q are always assumed to satisfy a >0 and 1 < ¢ < 5.
n—2

If a < %1, then u must be constant unless q = I5,a = "5=, M is isometric to
B” C R™ and u corresponds to

2 (n—2)/2

2 1—[¢]

n—=21+4¢f |z* - 22 - ¢

u(z) =

for some £ € B™.

This conjecture, if true, would yield Beckner-type inequalities and interesting
geometric results for such manifolds. We refer to [W2] for further discussion.
Conjecture 2 has been completely confirmed in dimension 2 in [GHW].

Theorem 2. Let (X,g) be a compact surface with Gaussian curvature K > 0
and geodesic curvature k > 1 on the boundary. The only positive solution to the
following equation
Au=0 on X,
% +au=u? on 9%,

where a > 0 and g > 1 are constants such that a (¢ —1) < 1.

In higher dimensions the following partial result is proved in [GHW].

Theorem 3. Let (M", g) be a smooth compact Riemannian manifold with nonneg-
ative sectional curvature and the second fundamental form of the boundary I1 > 1.
Then the only positive solution to (1.3) is constant if a < qfll, provided 3 < n < 8

4n
and 1 < q < g

In this short note we study the problem on the model space B, n > 3. The main
result is the following partial result in dimensions n > 3.

Theorem 4. Ifu € C>® (W) is positive and satisfies the equation (1.2), then wu is
constant, provided 1 < qg<mn/(n—2) and 0 < a < (n—2)/2.

The paper is organized as follows. In section 2 we transform the equation (1.2)
to a new equation on the upper half space M = {x,, > 0}. We then study the new
equation by the method of moving planes and prove that the solution is axially
symmetric with respect to the z,-axis. In section 3 we go back to the ball and
finish the proof of Theorem 4 by an integral identity.
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2. ANALYSIS ON R”

In this section we prove the following partial result.

Proposition 1. Suppose u € C* (W) is positive and satisfies the equation (1.2)
with1 < qg<n/(n—2) and 0 < a < (n—2)/2. If £ € S* ! is a critical point of
u|gn-1, then u is azially symmetric w.r.t. the line through the origin and &.

Without loss of generality, we assume that the north pole e, is a critical point
of u|gn-1. The inverse of the stereographic projection ¥ : R — B"\ {e,} is given
by

221 2Ty 1 -1+ \x|2
v (.’ﬁ) = 2 [ P} ) P} .
1+ |z|” 4 2z, 1+ |z|” 4+ 22, 14 |z|” + 22,
(n—2)/2
Let v (z) = uo ¥ (x) (m) . Then v satisfies the following equation
on R
Av=0 on R%,
2.1 2 B
21 _c’gcvn =a <1+|2w|2> v+t (1+|29:|2) vl on R
where
n—2 _n—q(n—2)
a=— a,B = 5

By our assumption a and /3 are both nonnegative. As e, is a critical point of u|gn-1,
using the Taylor expansion of u at e, we have, as x — o0,

v(z) = cola)*" (1 a0 <|$|2)> :

||

ov (n—2)z; nazpx; 1 .
=c | — T — +O0 | —7 =1, ,n—1,
Oz < 2] o] "

where ¢ is a positive constant. We will prove that v is axially symmetric with
respect to the x,-axis by the method of moving planes. We will follow the approach
in the classic work of Gidas, Ni and Nirenberg [GNN].

Remark 1. When a =0, 5 = 0 the equation (2.1) reduces to the following
Av =0 on R%,

—6‘% =07 on R"L
Tn

This equation is invariant under translations x — x + n when n, = 0. When
q=n/(n—2) itis further invariant under Mobius transformations and all positive
solutions were classified by Li and Zhu [LZ] using the more powerful moving sphere
method. Ou [Ou] studied the case ¢ < n/(n —2) by the method of moving planes
and proved that there is no positive solution.
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Since the equation (2.1) is invariant under rotation about the z,-axis, it suffices
to show that v is even in x;. For A € R we define 2* = (2\ — Z1,T9, -, Ty) and
Sa={zeR":z1 <A} Let A={A>0:v(z) >v(z) on X}

Lemma 1. For any Ao > 0 there exists Ry > 0 s.t. for all A > Ao, x € X with
lz] > Ro
v(x) > v (x)‘) .

By this lemma, it is obvious that A contains all sufficiently large A. To prove the
lemma, we assume ¢y = 1 without loss of generality in the following proof. First
observe that we always have |z| < |x>‘| when A > 0 and = € X). We consider
several cases.

Case 1. |2*| > 2|z].

Then

v(x)—wv (x)‘) = |z - ’azk|2_n +0 <|x\1_”)

() o)
> o (1 _9-(n-2) 4 9 (|x|71>)

>0, if |z| is sufficiently large.

Case 2. |2*| < 2|z|, but |2/| < |#| /v/2. Here we write = (x1, ).
We have, with y; = 2\ — 1

v(z)—v(z}) = /y1 —aa—xul (t,2') dt

un —2)¢ ot -
= (=2t __, net dt+o L1
9 n/2 9 (n+2)/2 |w‘n+
1 (t2 + |$/‘ ) <t2 + ‘x/‘ )

1 1 ~ 1 1 Y1 — 1
= - = ) + O
PRV (le" Ix*l”> i < |+ )

_ (n—2) (|x>‘} — |z]) N nex, (’m*| — |z|) Lo <y1 —ac1> ’

Tnfl SnJrl |x|n+1

where in the last step we used the mean value theorem to get r,s € (|z|,2|z]). On
the other hand, as |5r:>‘|2 —|z* = y2 — 22 = 2\ (y1 — 1), we have

NE 2
x — |z 2
lyr — a1 < | ’2)\()' | < /\|Z| (’xk‘ — |a]).

Therefore

v o) > 2D (lmk”xf"lml) +0 <W|—x|>

on—1 |x|"—1 Yt
2 — | -2 14+ 21t
— | |n7|1 | |:(nn_1) +O< 0 >:|
k] 2 ]

>0, if |z| is sufficiently large, depending on A.
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Case 3. |2*| < 2|z, |2/| < || /V2.
It follows |z1| > |z| /2. If 21 > |x| /v/2, by the mean value theorem, there is
s € (z1,1)

0
v(z)—v(zt) = 87::1 (s,2") (1 —y1)
n—2)s 1
= ( ) n/2 +0 n/2 (y1 — 1)
(s +1F) (2 17)
[ (n—2) ( 1 )
> | —=—5+0 (== )| (y1 —21)
V2" ||
>0, if |z| is sufficiently large.
If 1 < —|2| /V2, we let T = (—x1,2’). By the asymptotic expansion
1
v(z)—v (@) =0 (n) .
||
By the same type of analysis as in Case 2, we have
_ (n—2) ( 1 )
v(T) —v () > — || (y1 + 1)
(=) l\flm "

( —2) < 1 )
=2\ +0|—5)]-
It follows that

v(z)—v(zY) =v(z) —v(T)+v (@) —v ()
> 0,if |z| is sufficiently large,depending on Ag.
This finishes the proof of Lemma 1.

Lemma 2. If \g € A, then there exist e <0 s.t. (Ag —¢e,No +¢) CA.
The function v* defined by v* (z) = v (z*0) satisfies
Av* =0 on R7,
v 2 2 2 A 1
— n—
~#=a(mhe) vt () v oon B
Therefore the function w = v — v* satisfies, as both a and § are nonnegative
Aw=0 on R},

ow n—1
—&Mqu on R" ™,

2 8

2 n 2 vl — (v*)?

g=a| —— .
1+ [2f” l+faf?)  v—wv

By the assumption we have w > 0 on X,,. Moreover by the asymptotic expansion
of v it is clear that w cannot be identically zero on X,,. We claim that aaTwl <0
everywhere on the half-plane {z : z; = Ao, z, > 0}. If x,, > 0, this follows from
the Hopf Lemma. When z,, = 0 one can adapt Hopf’s argument to get the same

where
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conclusion, as observed in Ou [Ou]. We elaborate the idea. First observe that, in
view of the boundary condition for w and the Hopf lemma again, we have w (z) > 0
on {z:x1 < Ag,x, = 0}. Given & with & = Ao, &, = 0 we consider on the annulus
A= {m € M cp/2 < |x—&—pe| < p} the following function

w(x)=w(z)+4 (eﬂlp2 - 670('9:757/381'2) .

Note that w = 0 on A N {|z — & — pe1| = p}. For appropriately chosen positive
numbers p, o, and 4, we can guarantee

Aw <0on A;
w>0on dAN{|z — & — per| = p/2}

while on 0ANR"~! we have —% = —gT“; > 0. By the maximum principle w > 0
on A. As w(§) = 0 we must have gfl (&) < 0. Hence Z%Ul &) = g—ﬁ (&) —da < 0.
We now finish the proof of Lemma 2 by contradiction. Suppose there is a se-
quence of positive pp — Ao and x € ¥, s.t. v(zg) < v(zf*). By Lemma 1
{z1} is bounded. Passing to a subsequence we assume x; — T as k — oco. Then
v(T) <w (E)‘O). This implies that Z lies in the half-plane {z : 21 = Ao, z, > 0} and
1%}

hence g2+ () < 0. On the other hand by the mean value theorem there exists

&k in the segment joining zj and x}* s.t. 6‘9—1“1 (&) > 0. In the limit we obtain

% (Z) > 0, a contradiction.

By Lemma 2 A is open in (0,00). It is also clearly closed. Therefore A = (0, 00)
and we have v (z1,2") > v (—z1,2") when 21 < 0. As the equation is symmetric
w.rt. (r1,2") = (—x1,2"), we must have v (x1,2") = v (—z1,2’), i.e. v is even in
Zy.

3. Back TO B®

Before we finish the proof of Theorem 4, we need to explain an integral identity
to be used. Let (M™, g) be a compact Riemannian manifold with boundary ¥ which
may be empty. We denote by T the Einstein tensor, i.e. T = Ric — %97 where R
is the scalar curvature. If = is a conformal vector field, then according to [S] the
following identity holds

- 2n -
/M ERdvg = — /ET(:, v)do,.

We further assume that the boundary is umbilic, i.e. the 2nd fundamental form
is a proportional to the 1st fundamental form. More precisely for any X, Y € TX

H

where H denotes the mean curvature.
By the Codazzi equation we have for any X,Y,Z € TY

R(XaKZ,V) = VXH(Y7Z) 7VYH(X72)
XH YH

= mg(Y,Z) - mg(X,Z)-
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Taking trace yields

n—2

T (X,v) = Ric(X,v) —

XH.

Therefore we obtain

Proposition 2. Suppose (M",g) is compact with an umbilic boundary and Z a

conformal vector field on M s.t. Z is tangential on the boundary, then

2
/ SRdv, = ——— / EHdo,.
M n—1/Js

When v > 0 satisfies (1.2) the metric g = u*(*~2)dz? on B" has scalar curvature
R = 0 and mean curvature

H= Kn —Z a) u+ uq] u/ (=2 = (n —2_ a) w2 (n=2) g gamn/(n=2),
2 2

on the boundary S"~'. Being umbilic is conformally invariant. Therefore we can
apply Proposition 2 in this situation. For each¢=1,--- |n

e

Ei (z) = x5z 5 ¢

is a conformal vector field on B™ and its restriction on the boundary S*~! is given
by

Ei(§) =& —ei = V&,

Therefore by Proposition 2 we have for i =1, --- ,n

/ <V Kn -2 a) w2/ (=2) 4 uq_n/(n_z)] V§»> W2 =D/(=2) 4o —
S"71 2 ) 3 )

here the gradient, the pairing and the volume element do are all with respect to
the standard metric on S”~'. Simplifying yields

(3.1) /S_ [(1 - n2_°l2> u+ (n . 5 - q) Uq:| (Vu, VE) do = 0.

We note that the 1st factor in the integrand is positive as a < "T_Q and ¢ < 5.
By Proposition 1, we know that u|g.-1 is axially symmetric w.r.t. the z,-axis. Thus
we write u (§) = f(&,), with f a smooth function on [—1,1]. If f has a critical
point to € (—1,1), then every point £ € S*~! with &, = t¢ is a critical point of
t|gn—1. By theorem, then u|g.-1 has is axially symmetric w.r.t. the line passing
through 0 and £. In other words, u (x) only depends on the distance between x and
&. Tt is easy to see that then f must then be constant.

If f has no critical point in (—1,1), then f’ is either everywhere positive or
everywhere negative. This implies that (Vu, V&, ) is either everywhere positive or
everywhere negative. We then have a contradiction with (3.1) when ¢ = n.

Therefore u|gn—1 and hence u itself is constant.
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