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Abstract. We propose to study positive harmoninc functions satisfying a
nonlinear Neuman condition on a compact Riemannian manifold with non-
negative Ricci curvature and strictly convex boundary. A precise conjecture is
formulated. We discuss its implications and present some partial results. Re-
lated questions are discussed for compact Riemannian manifolds with positive
Ricci curvature and convex boundary.

1. Introduction

For a compact Riemannian manifold (Mn; g) with nonempty boundary � = @M ,
it is interesting to study connections between the intrinsic geometry gj� and the
extrinsic geometry (the 2nd fundamental form), under a lower bound for scalar
curvature or Ricci curvature. We refer to [ST1, ST2, WY1, MW] and references
therein for recent works in this direction. Some of these works are motivated by
problems in general relativity, in particular about understanding various de�nitions
of quasi-local mass. The following fundamental result was proved by Shi and Tam
[ST1].

Theorem 1. Let (Mn; g) be a compact Riemannian manifold with scalar curvature
R � 0 and with a connected boundary �. Suppose

� M is spin,
� the mean curvature H of � is positive,
� there exists an isometric embedding � : �! Rn as a strictly convex hyper-
surface.

Then

(1.1)
Z
�

H �
Z
�

H0;

where H0 is the mean curvature of � : � ! Rn. Moreover, if equality holds, then
M is isometric to the Euclidean domain enclosed by � : �! Rn.

The right hand side of (1.1) is determined by the intrinsic geometry of �. There-
fore by the inequality the extrinsic geometry of � is constrained by its intrinsic
geometry. But the assumption that there is an isometric embedding of � into Rn
as a strictly convex hypersurface imposes severe restriction on the kind of intrin-
sic geometry of � for which the theorem is applicable. In the more recent work
[MW] Miao and I proved a slightly di¤erent inequality under the stronger condition
Ric � 0, but without any restriction on the intrinsic geometry of the boundary.
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Theorem 2. Let (Mn; g) be a compact Riemannian manifold with Ric � 0 and
with a connected boundary � that has positive mean curvature H. Let � : �! Rm
be an isometric embedding. Then

(1.2)
Z
�

H �
Z
�

����!H 0

���2
H

;

where
�!
H 0 is the mean curvature vector of � : �! Rm. Moreover, if equality holds,

then � (�) is contained in an n-dimensional plane of Rm and M is isometric to the
Euclidean domain enclosed by � (�) in that n-dimensional plane.

Notice that an isometric embedding � : �! Rm always exists by Nash�s famous
theorem.
When the scalar curvature has a negative lower bound, results similar to Theorem

1 were proved by [WY1] and [ST2]. The counterexample to the Min-Oo conjecture
by Brendle, Marques and Neves[BMN] shows that no such result holds when the
scalar curvature has a positive lower bound. Results similar to Theorem 2 are also
established when the Ricci curvature has a positive or negative lower bound. But
in these two cases the inequalities obtained are not sharp. Some rigidity results
under stronger assumptions on the boundary were proved in [MW].
In all of these studies the result is basically an estimate on an integral involving

the mean curvature. It is natural to ask if one can bound the area of the boundary,
the volume of the interior and other more direct geometric or analytic quantities.
It is easy to see that for such results to hold a lower bound for the mean curva-
ture is not enough. For example, for any closed

�
�n�2; h

�
with nonnegative Ricci

curvature, M := B2 � � with the product metric dx2 + h has nonnegative Ricci
curvature and mean curvature H � 1 while the area of @M can be arbitrarily large.
Therefore we will in this paper mostly consider compact Riemannian manifolds
(Mn; g) with nonnegative Ricci curvature and with a connected boundary � whose
2nd fundamental form has a positive lower bound. Motivated by a uniqueness theo-
rem in [BVV], we study positive harmonic functions on M that satisfy a semilinear
Neumann condition on the boundary. We formulate a conjecture which has impor-
tant geometric implications. We will prove some partial results that support this
conjecture.1 Another case we consider is when M has positive Ricci curvature, by
scaling we can always assume Ric � n � 1 and the boundary � is convex in the
sense that its 2nd fundamental form is nonnegative. There is similarly a natural
conjecture on the area of the boundary.
The paper is organized as follows. In section 2 we discuss some natural PDEs

on a compact manifold with boundary. We formulate a uniqueness conjecture
on a semilinear Neumann problem in the nonnegative Ricci case and discuss its
geometric implications. In Section 3 we prove some topological results. In Section
4 we present some partial results and several other conjectures.
Acknowledgement. The work of the author is partially supported by Simons

Foundation Collaboration Grant for Mathematicians #312820.

1After this paper was posted to the arXiv, new progress has been made in the following two
papers: 1. Q. Guo and X. Wang, Uniqueness results for positive harmonic functions on Bn
satisfying a nonlinear boundary condition, arXiv:1912.05568. 2. Q. Guo, F. Hang and X. Wang,
Liouville type theorems on manifolds with nonnegative curvature and strictly convex boundary,
arXiv:1912.05574
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2. from PDE to geometry: a conjecture

We �rst recall a theorem proved by Bidaut-Veron and Veron [BVV] .

Theorem 3. ([BVV] and [I]) Let (Mn; g) be a compact Riemannian manifold with
a (possibly empty) convex boundary. Suppose u 2 C1 (M) is a positive solution of
the following equation

��u+ �u = uq on M;
@u
@� = 0 on @M;

where � > 0 is a constant and 1 < q � (n+ 2) = (n� 2). If Ric � (n�1)(q�1)�
n g,

then u must be constant unless q = (n+ 2) = (n� 2) and (Mn; g) is isometric to�
Sn; 4�

n(n�2)g0

�
or
�
Sn+; 4�

n(n�2)g0

�
. In the latter case u is given on Sn or Sn+ by the

following formula

u =
1

(a+ x � �)(n�2)=2
:

for some � 2 Rn+1 and some constant a > j�j.

This theorem was proved by Bidaut-Veron and Veron [BVV] when @M = ?
and by Ilias [I] when @M 6= ? using the same method. It has some important
corollaries. We focus on the case @M 6= ?. We recall the Yamabe problem on a
compact Riemannian manifold (Mn; g) with boundary. The conformal Laplacian
is de�ned to be Lg = �cn�g +Rg, with cn = 4(n�1)

n�2 . If eg = �4=(n�2)g, then
Legu = ��(n+2)=(n�2)Lg (u�) :

Under the conformal deformation the mean curvature of the boundary transforms
according to the following formula

2 (n� 1)
n� 2

@�

@�
+H� = eH�n=(n�2):

We consider the following functional

Eg (u) =

Z
M

cn jruj2 +Ru2 + 2
Z
@M

Hu2

=

Z
M

uLgudvg +

Z
@M

�
cn
@u

@�
+ 2Hu

�
ud�g

This functional is conformally invariant: Eeg (u) = Eg (u�). If u is positive then
Eg (u) =

Z
M

Regdveg +
Z
@M

2Hegd�eg;
where eg = u4=(n�2)g.
We de�ne

� (M; g) = inf
Eg (u)R
M
juj2

:

The sign of � is conformally invariant. The Yamabe invariant is de�ned to be

Y (M; g) = inf
Eg (u)�R

M
juj2n=(n�2)

�(n�2)=n :
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Aubin [A] showed that Y (M; g) � Y (Sn) = n (n� 1) (jSnj)2=n when @M = ? while
Escobar [E1] and Cherrier [C] proved that Y (M; g) � Y

�
Sn+
�
= n (n� 1) (jSnj =2)2=n

when @M 6= ?.
Let (Mn; g) be a compact Riemannian manifold with convex boundary andRic �

(n� 1). From Theorem 3 one can derive the following
� (Sharp Sobolev inequalities) For 2 < q � (n+ 2) = (n� 2)�

1

V

Z
M

jujq+1
�2=(q+1)

� q � 1
n

1

V

Z
M

jruj2 + 1

V

Z
M

u2:

� Y (M; g) � n (n� 1)V 2=n. Moreover, equality holds i¤ g is Einstein with
totally geodesic boundary.

This discussion also yields an analytic proof of the classic result that V � jSnj
when @M = ? and V � jSnj =2 when @M 6= ?.
Given a compact Riemannian problem (Mn; g) with nonempty boundary, the

type II Yamabe problem studied by Escobar [E2] is whether one can �nd a conformal
metric eg = �4=(n�2)g with zero scalar curvature and constant mean curvature on
the boundary. This leads to the following equation

Lg� = 0 on M;

2 (n� 1)
n� 2

@�

@�
+H� = c�n=(n�2) on @M:

Assuming � (M; g) > 0 Escobar introduced the following minimization

Q (M;@M; g) = inf
Eg (u)�R

@M
juj2(n�1)=(n�2)

�(n�2)=(n�1) :
Motivated by Theorem 3 we propose to study positive solutions of the following
equation

(2.1)
�u = 0 on M;

@u
@� + �u = u

q on @M;

where � > 0 and 1 < q � n= (n� 2), and make the following conjecture.
Conjecture 1. Let (Mn; g) be a compact Riemannian manifold with Ric � 0 and
� � 1 on @M . If 0 < � � 1= (q � 1), then any positive solution u of the above
equation must be constant unless q = n= (n� 2), M is isometric to Bn � Rn and u
corresponds to

ua (x) =

"
2

n� 2
1� jaj2

1 + jaj2 jxj2 � 2x � a

#(n�2)=2
for some a 2 Bn.

At the moment this conjecture is completely open. But in dimension 2 an anal-
ogous problem was studied by the author [W2] in which the following result was
proved.

Theorem 4. Let (�; g) be a compact surface with Gaussian curvature K � 0 and
on the boundary the geodesic curvature � � 1. Consider the following equation

�u = 0 on �;
@u
@� + � = e

u on @�;
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where � is a positive constant. If � < 1 then u is constant; if � = 1 and u is not
constant, then � is isometric to the unit disc B2 and u is given by

u (z) = log
1� jaj2

1 + jaj2 jzj2 � 2Re (za)
;

for some a 2 B2.

Next we discuss a geometric implication of Conjecture 1. For 1 < q < n= (n� 2)
the following minimization problem

inf
(q � 1)

R
M
jruj2 +

R
@M

u2�R
@M

jujq+1
�2=(q+1)

is achieved by smooth positive function satisfying (2.1) with � = 1=(q � 1). If
the conjecture is true then the minimizer is constant and therefore the following
inequality holds

(2.2) j@M j(q�1)=(q+1)
�Z

@M

jujq+1
�2=(q+1)

� (q � 1)
Z
M

jruj2 +
Z
@M

u2:

Letting q % n= (n� 2) yields

j@M j1=(n�1)
�Z

@M

juj2(n�1)=(n�2)
�(n�2)=(n�1)

�
Z
M

2

n� 2 jruj
2
+

Z
@M

u2:

Then

Eg (u) =

Z
M

4 (n� 1)
n� 2 jruj2 +Ru2 + 2

Z
@M

Hu2

�
Z
M

4 (n� 1)
n� 2 jruj2 + 2 (n� 1)

Z
@M

u2

� 2 (n� 1) j@M j1=(n�1)
�Z

@M

juj2(n�1)=(n�2)
�(n�2)=(n�1)

:

Therefore
Q (M;@M; g) � 2 (n� 1) j@M j1=(n�1) :

As Q (M;@M; g) � Q (Bn; @Bn) = 2 (n� 1)
��Sn�1��1=(n�1) we obtain

j@M j �
��Sn�1�� :

In summary Conjecture 1 implies the following conjecture.

Conjecture 2. Let (Mn; g) be a compact Riemannian manifold with Ric � 0 and
� � 1 on @M . Then

j@M j �
��Sn�1�� :

We remark that the inequality (2.2) for 1 � q � n= (n� 2) on a compact Rie-
mannian manifold (Mn; g) with Ric � 0 and � � 1 on @M that would follow from
Conjecture 1 is known to be true on Bn. This was proved by Beckner [B] as a
corollary of the Hardy-Littlewood-Sobolev inequality with sharp constant on the
sphere. Here is the precise statement
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Theorem 5. (Beckner [B]) For 1 � q � n= (n� 2)

cn
(q�1)=(q+1)

�Z
Sn�1

jF (�)jq+1 d�
�2=(q+1)

� (q � 1)
Z
Bn
jru(x)j2 dx+

Z
Sn
jF (�)j2 d�;

where u is the harmonic extension of F and cn = 2�n=2=� (n=2) =
��Sn�1��.

3. Boundary effect on topology

In this section we prove some topological results on compact Riemannian mani-
folds with a lower bound for Ricci curvature and a corresponding lower bound for
the 2nd fundamental form on the boundary. Besides their independent interest,
these topological results will be used to prove some geometric results in the next
section.

Proposition 1. Let (Mn; g) be a compact Riemannian manifold with boundary �.
Suppose Ric � 0.

� If the boundary has positive mean curvature, then H1 (M;�) = 0.
� If the boundary is strictly convex, then H1 (M) = 0.

This result should be well known. A proof using minimal surfaces for the 2nd
part was given by Fraser and Li [FL]. We explain the standard argument with
harmonic forms. By the Hodge theory for compact Riemannian manifolds with
boundary

H1 (M;�) �= H1
R (M) ;

where H1
R (M) is the space of harmonic 1-forms satisfying the relative boundary

condition, i.e. � 2 H1
R (M) i¤ d� = 0; d�� = 0 and � ^ �� = 0 on the boundary.

Note that the boundary condition simply means � (ei) = 0; i = 1; � � � ; n� 1. Thus
hr��; �i = � (�)r�� (�) on the boundary. We compute

r�� (�) = �
n�1X
i=1

rei� (ei)

=
n�1X
i=1

(�ei (� (ei)) + � (reiei))

= �H� (�) :

By the Bochner formula we haveZ
M

jr�j2 +Ric (�; �) =
Z
�

hr��; �i

= �
Z
�

H [� (�)]
2
:

Clearly � = 0 if Ric � 0 and H > 0. Therefore H1 (M;�) = 0.
For the second part we recall

H1 (M) �= H1
A (M) ;

where H1
A (M) is the space of harmonic 1-forms satisfying the absolute boundary

condition, i.e. � 2 H1
A (M) i¤ d� = 0; d�� = 0 and � (�) = 0 on the boundary.
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Working with a local orthonormal frame fe0 = �; e1; � � � ; en�1g on � we have

hr��; �i =
n�1X
i=1

� (ei)r�� (ei)

=
n�1X
i=1

� (ei)rei� (�)

=
n�1X
i=1

� (ei) [ei (� (�))� � (rei�)]

= �
n�1X
i;j=1

�ij� (ei)� (ej) :

Therefore Z
M

jr�j2 +Ric (�; �) = �
Z
�

n�1X
i;j=1

�ij� (ei)� (ej) :

Since Ric � 0 and � > 0, we must have � = 0. Therefore H1 (M) = 0.

Remark 1. In the second part if we only assume � � 0, then the same argument
proves that a harmonic form � 2 H1

A (M) must be parallel. As � (�) = 0 on the
boundary � we can write � = hX; �i on �, where X is a vector �eld on �. As � is
parallel it is easy to see that X is a parallel vector �eld on �. Therefore we conclude
that either H1 (M) = 0 or there exists a nonzero parallel vector �eld on �.

In dimension 3 we have the following consequence.

Corollary 1. Let
�
M3; g

�
be a compact Riemannian 3-manifold with boundary �.

Suppose Ric � 0 and the boundary is strictly convex. Then the boundary � is
topologically a sphere.

Proof. We have the long exact sequence

� � � ! H1 (M;�)! H1 (M)! H1 (�)! H2 (M;�)! � � �

By Poincare duality H2 (M;�) � H1 (M). Since H1 (M) = 0 we must have
H1 (�) = 0, i.e. � is topologically a sphere. �

In fact the same argument combined with Remark 1 yields

Proposition 2. Let
�
M3; g

�
be a compact Riemannian 3-manifold with boundary

�. Suppose Ric � 0 and the boundary is convex. Then � is either a topological
sphere or a �at torus.

Therefore the boundary cannot be a Riemann surface of higher genus.
The above two results in dimension 3 may be deduced from the work of Meeks-

Simon-Yau [MSY], but the argument here is much more elementary.

The same argument works for the following situation.

Proposition 3. Let (Mn; g) be a compact Riemannian manifold with positive Ricci
curvature and convex boundary. If the boundary is convex, then both H1 (M;�) and
H1 (M) vanish.
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When the Ricci curvature has a negative lower bound, we can also prove the
vanishing of H1 (M;�) if the boundary has su¢ ciently large mean curvature.

Proposition 4. Let (Mn; g) be a compact Riemannian manifold with boundary �.
Suppose Ric � � (n� 1). If H � (n� 1), then H1 (M;�) = 0.

The proof is more complicated. We �rst recall the following result which can
be proved by classic methods.

Proposition 5. Let (Mn; g) be a compact Riemannian manifold with Ric � � (n� 1).
Let � be the distance function to the boundary. Suppose the mean curvature of the
boundary satis�es H � (n� 1). Then in the support sense

�� � � (n� 1) :

We compute

�ec� = ec�
h
c��+ c2 jr�j2

i
� ec�

�
� (n� 1) c+ c2

�
= ec�

"�
c� n� 1

2

�2
� (n� 1)

2

4

#
:

Let � = e(n�1)�=2. We have

(3.1) �� � � (n� 1)
2

4
�:

It is well know that this implies that the �rst Dirichlet eigenvalue �1 � (n�1)2
4 .

We now prove the �rst part of Proposition 3. Let � 2 H1
R (M). By a computation

due to Yau we have

jr�j2 � n

n� 1 jr j�jj
2
:

By the Bochner formula we have

1

2
� j�j2 = jr�j2 +Ric (�; �)

� n

n� 1 jr j�jj
2 � (n� 1) j�j2 :

Therefore

j�j� j�j � 1

n� 1 jr j�jj
2 � (n� 1) j�j2 :

Let f = j�j(n�2)=(n�1). Direct calculation yields

�f � � (n� 2) f:

Let u = f=�. Direct calculation yields

�u �
"
(n� 1)2

4
� (n� 2)

#
u� 2��1 hru;r�i

=
(n� 3)2

4
u� 2��1 hru;r�i
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Suppose that f is not identically zero. By the maximum principle u must achieve
its positive maximum somewhere on the boundary and furthermore at this point
we must have

@u

@�
� 0:

On the other hand on the boundary, as H � n� 1

@u

@�
= u

"
n� 2
n� 1

hr��; �i
j�j2

+
n� 1
2

#

= u

�
�n� 2
n� 1H +

n� 1
2

�
� u

�
� (n� 2) + n� 1

2

�
= �u (n� 3) =2:

This is strictly negative when n � 4 and hence a contradiction. Therefore � is
identically zero. When n = 3 and if � is not identically zero, then by the Hopf
lemma u must be a positive constant. By scaling � we can assume that u � 1 or
� = f . Therefore ��� = �. By elliptic regularity � is smooth. From the proof of
(3.1) it follows that � is smooth everywhere and jr�j � 1. But this is impossible
as � is not smooth at a cut point, e.g. at a point where it achieves its maximum.
Therefore we must have � = 0 too when n = 3.

The same argument can be used to prove the following: Let (Mn; g) be a compact
Riemannian manifold with boundary �. Suppose Ric � � (n� 1). If the second
fundamental form of � satis�es � > (n� 1) =

p
2 (n� 2), then H1 (M) = 0. The

only di¤erence is that at the end we have for � 2 H1
A (M)

@u

@�
= u

"
n� 2
n� 1

hr��; �i
j�j2

+
n� 1
2

sinhR

coshR

#

= u

"
�n� 2
n� 1

�ij� (ei)� (ei)

j�j2
+
n� 1
2

sinhR

coshR

#

� u
�
�n� 2
n� 1

coshR

sinhR
+
n� 1
2

sinhR

coshR

�
:

Is the constant sharp? It seems reasonable to expect H1 (M) = 0 if � > 1.

4. On the size of the boundary

In this section we prove some estimates on the size of the boundary, in particular
we show that Conjecture 2 is true in dimension 3. First we recall a result in Xia
[X].

Proposition 6. Let (M; g) be a compact Riemannian manifold with boundary �.
Suppose Ric(g) � 0 and � � 1. Then �1(�) � n � 1 and the equality holds i¤
(M; g) is isometric to the unit ball in Euclidean space Rn.
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The proof is based on Reilly�s formula [Re]. For completeness and comparison
later, we present the proof. Let u be the solution of the following equation�

�u = 0 on M;
uj� = f

where f is a �rst eigenfunction on �, i.e. �4� f = �1f . Let � = @u
@� with � being

the outer unit normal. By Reilly�s formulaZ
M

(�u)
2 �

��D2u
��2 �Ric (ru;ru)

=

Z
�

�
2���f +H�

2 +�(rf;rf)
�
d�

�
Z
�

�2�1�f + (n� 1)�2 + jrf j2

As �u = 0 and
R
�
jrf j2 = �1

R
�
f2Z

�

�2�1�f + (n� 1)�2 + �1f2 � 0;

whence

�1(�1 � n+ 1)
n� 1

Z
@M

f2 �
Z
@M

(�� �1
n� 1f)

2 � 0:

Therefore �1 � n� 1.
If �1 = n�1, then we must have D2u = 0; � = f and � = gj�. As a consequence

we have D2f = �fg on @�. By the well known Obata theorem @M is isometric to
the standard sphere Sn�1. Let f1; � � � ; fn be a standard basis of the �rst eigenspace
on @M �= Sn�1 and u1; � � � ; un the corresponding harmonic extensions on M . We
know that ru1; � � � ;run are parallel vector �elds on M . It is then easy to see that
U = (u1; � � � ; un) isometrically embeds M into Rn with the image the unit ball.
This is basically the same argument used by Choi and Wang [CW] to prove that

the 1st eigenvalue of an embedded minimal hypersurface �n�1 � Sn is at least
(n� 1) =2. But a conjecture of Yau the 1st eigenvalue should equal to n�1. By the
same argument we have the following estimate for a general compact Riemannian
manifold with Ric � n and with a convex boundary.

Proposition 7. Let (Mn; g) be a compact Riemannian manifold with boundary �.
Suppose Ric(g) � n� 1 and � � 0. Then �1(�) � (n� 1) =2.

Remark 2. In view of Yau�s conjecture, we also conjecture that in this case the
best lower bound is n� 1.

Proof. Let u be the solution of the following equation

(4.1)
�
�u = 0 on M;

uj� = f
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where f is a �rst eigenfunction on �, i.e. �4� f = �1f . Let � = @u
@� with � being

the outer unit normal. By Reilly�s formulaZ
M

(�u)
2 �

��D2u
��2 �Ric (ru;ru)

=

Z
�

�
2���f +H�

2 +�(rf;rf)
�
d�

�
Z
�

�2�1�f;

as � � 0. Thus we get

2�1

Z
�

�f � (n� 1)
Z
M

jruj2

From the equation of u we have
R
�
jruj2 =

R
�
f�. Thus

[2�1 � (n� 1)]
Z
M

jruj2 � 0;

Therefore �1 � (n� 1) =2. �

We will also need the following result due to Ros [Ros], which was also proved
by Reilly�s formula.

Theorem 6. (Ros) Let (M; g) be a compact Riemannian manifold with boundary.
If Ric � 0 and the mean curvature H of @M is positive, thenZ

@M

1

H
d� � n

n� 1V:

The equality holds i¤ M is isometric to an Euclidean ball.

We can now prove the following result in dimension 3.

Theorem 7. Let (M3; g) be a compact Riemannian manifold with boundary �.
Suppose Ric(g) � 0 and � � gj�. Then

� A (�) � 4�;
� V (M) � 4�=3.

Moreover if equality holds in either case, M is isometric to the unit ball B3 � R3.

Proof. By Proposition 6 we have �1 (�) � 2. By Corollary 1 � is topologically
S2. Then by a theorem of Hersch [H] (see also [SY, page 135]) A (�) � 8�=�1 (�)
and moreover equality holds i¤ � is a round sphere. By Proposition 6 we have
�1 (�) � 2. Therefore A (�) � 4�. If equality holds, then �1 (�) = 2 and hence M
is isometric to B3 by the rigidity part of Proposition 6.
The 2nd part easily follows from combining the �rst part and Theorem 6. �

Example 1. Let
�
Sn�2; h

�
be compact Riemannian manifold with nonnegative

Ricci curvature. Then B2�S has nonnegative Ricci curvature and the boundary has
mean curvature H = 1. This show that the conjecture is not true if the condition
on 2nd fundamental form is weakened to a condition on the mean curvature.

In the case of positive Ricci curvature we make the following
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Conjecture 3. Let (Mn; g) be a compact Riemannian manifold with Ric � n� 1
and � � 0 on � = @M . Then

j�j �
��Sn�1�� :

Moreover if equality holds then (Mn; g) is isometric to the hemisphere Sn+ = fx 2
Rn+1 : jxj = 1; xn+1 � 0g � Rn+1.

In [HW] the following rigidity result was established.

Theorem 8. Let (Mn; g) (n � 2) be a compact Riemannian manifold with non-
empty boundary � = @M . Suppose

� Ric� (n� 1) g;
� (�; gj�) is isometric to the standard sphere Sn�1 � Rn,
� � is convex in M in the sense that its second fundamental form is nonneg-
ative.

Then (M; g) is isometric to the hemisphere Sn+.

Therefore the conjecture, if true, is a far-reaching generalization of the above
rigidity result. When n = 2 the above theorem can be reformulated as follows.

Theorem 9. Let (M2; g) be compact surface with boundary and the Gaussian cur-
vature K � 1: Suppose the geodesic curvature k of the boundary 
 satis�es k � 0.
Then L(
) � 2�. Moreover equality holds i¤ (M; g) is isometric to S2+.

It implies a classic result of Toponogov [T]:

Let (M2; g) be a closed surface with Gaussian curvature K � 1.
Then any simple closed geodesic in M has length at most 2�.
Moreover if there is one with length 2�, then M is isometric to
the standard sphere S2.

We refer to [HW] for more details. In view of this connection, Conjecture 3 can
be viewed as a generalization of Toponogov�s theorem in higher dimensions. We
note that Marques and Neves [MN] o¤ered a generalization of Toponogov�s theorem
in dimension 3 in terms of the scalar curvature.
As an evidence for Conjecture 3 we show that it is true under the stronger

condition that sectional curvatures are at least one.

Proposition 8. Let (Mn; g) be a compact Riemannian manifold with sec � 1 and
� � 0 on � = @M . Then

j�j �
��Sn�1�� :

Moreover if equality holds then (Mn; g) is isometric to the hemisphere Sn+ = fx 2
Rn+1 : jxj = 1; xn+1 � 0g � Rn+1.

Proof. The proof of the inequality is elementary. By the Gauss equation for any
orthonormal pair X;Y 2 Tp�

R� (X;Y;X; Y ) = R� (X;Y;X; Y ) + � (X;X)� (Y; Y )��(X;Y )2

� 1 + � (X;X)� (Y; Y )��(X;Y )2 :

Since � � 0 it is a simple algebraic fact that �(X;X)� (Y; Y ) � �(X;Y )2 � 0.
Therefore R� (X;Y;X; Y ) � 1, i.e. sec� � 1. By the Bishop-Gromov volume
comparison we have j�j �

��Sn�1��.
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Moreover if j�j =
��Sn�1��, then � is isometric to Sn�1. By Theorem 8 M is

isometric to the hemisphere Sn+. �

Similarly we have the following parallel result when sectional curvature is non-
negative.

Proposition 9. Let (Mn; g) be a compact Riemannian manifold with sec � 0 and
� � 1 on � = @M . Then

j�j �
��Sn�1�� :

Moreover if equality holds then (Mn; g) is isometric to the hemisphere Bn = fx 2
Rn : jxj � 1g.

Using Proposition 7 one can easily prove the following by the same method used
to prove Theorem 7.

Proposition 10. Let (M3; g) be a compact Riemannian manifold with boundary
�. Suppose Ric(g) � 2 and � � 0. Then A (�) � 8�

As stated in Conjecture 3 the optimal upper bound should be 4�.
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