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Abstract. We revisit some uniqueness results for a geometric nonlinear PDE
related to the scalar curvature in Riemannian geometry and CR geometry. In
the Riemannian case we give a new proof of the uniqueness result assuming
only a positive lower bound for Ricci curvature. We apply the same principle in
the CR case and reconstruct the Jerison-Lee identity in a more general setting.
As a consequence we prove a stronger uniqueness result in the CR case. We
also discuss some open problems for further study.

1. Introduction

Let (�n; g) be a Riemannian manifold and eg = u4=(n�2)g another metric confor-
mal to g, where u is a positive smooth function on �. The scalar curvatures are
related by the following equation

�4 (n� 1)
n� 2 �gu+Ru = eRu(n+2)=(n�2):

Let (Sn; gc) be the sphere with the standard metric. A conformal metric eg =
u4=(n�2)gc has constant scalar curvature n (n� 1) i¤

(1.1) � 4

n (n� 2)�u+ u = u
(n+2)=(n�2); on Sn:

Conformal di¤eomorphisms of Sn give rise to a natural family of solutions to the
above equation

ut;� (x) = (cosh t+ (sinh t)x � �)�(n�2)=2 ;
where t � 0; � 2 Sn. It is a remarkable theorem that these are all the positive
solutions to (1.1). There are now several proofs for this theorem. Analytically, by
the stereographic projection (1.1) is equivalent to the following equation

��v = n (n� 2)
4

v(n+2)=(n�2) on Rn

whose positive solutions were classi�ed by Gidas-Ni-Nirenberg [GNN] using the
moving plane method. Geometrically, it follows from the following more general
theorem of Obata.

Theorem 1. ([O2]) Suppose (�n; g) is a closed Einstein manifold and g = �2g
is a conformal metric with constant scalar curvature, where � is a positive smooth
function. Then � must be constant unless (�n; g) is isometric to the standard sphere
(Sn; gc) up to a scaling and � corresponds to the following function on Sn

� (x) = c (cosh t+ sinh tx � �)�2

for some c > 0; t � 0 and � 2 Sn.
1
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Obata�s proof is short and elegant and is based on the following formula

T = T + (n� 2)��1
�
D2�� ��

n
g

�
;

where T and T are the traceless Ricci tensor of g and g, respectively. But this
argument is quite subtle as it requires using the unknown metric g = �2g as the
background metric instead of the given Einstein metric g.
There is parallel story in CR geometry. Let M2m+1 be a CR manifold ande� = f2=m� two pseudohermitian structures. The pseudohermitian scalar curvatures

of � and e� are related by the following formula
�2 (m+ 1)

m
�bf +Rf = eRf (m+2)=m:

On S2m+1 =
�
z 2 Cm+1 : jzj = 1

	
the canonical pseudohermitian structure �c =�

2
p
�1@ jzj2

�
jS2m+1 satis�es R�� = (m+ 1) =2��� and R = m (m+ 1) =2. There-

fore � = f2=m�c has scalar curvature m (m+ 1) =2 i¤

(1.2) � 4

m2
�bf + f = f

(m+2)=m on S2m+1:

Pseudoconformal di¤eomorphisms of S2m+1 yield a natural family of solutions to
the above equation

ft;� (z) =
��cosh t+ (sinh t) z � ����1=m :

It is a remarkable result of Jerison and Lee [JL] that these are all the positive
solutions of (1.2). The proof is based on a highly nontrivial identity on

�
S2m+1; ��c

�
,

with � = f2=m

Re
�
gD� + gE� � 3�0

p
�1U�

�
;�

(1.3)

=

�
1

2
+
1

2
�

��
jD�� j2 +

���E�����2�
+ �

h
jD� � U�j2 + jU� + E� �D�j2 + jU� + E�j2 +

����1�
D�� + ��1��E�
��2i :
where

D�� = �
�1��;� ; D� = �

�1��D�� ; E� = �
�1�
E�
 ;

E�� = �
�1��;� � �

�2���� �
1

2
��1 (g � �) ��� ;

U� =
2

m+ 2
D��;� ; g =

1

2
+
1

2
�+ ��1 j@�j2 + i�0:

Here and throughout this paper we always work with a local unitary frame fT� :
� = 1; � � � ;mg for T 1;0M and T0 = T is the Reeb vector �eld. It should be
emphasized that in all these formulas covariant derivatives are calculated w.r.t. the
unknown pseudoconformal structure ��c.
The Jerison-Lee identity is in fact valid on any closed Einstein pseudohermitian

manifold. Here by Einstein we mean R�� = ���� and A�� = 0 (torsion-free).
The following more general uniqueness result, which is the analogue of the Obata
theorem, was proved in [W].



UNIQUENESS RESULTS REVISITED 3

Theorem 2. ([W]) Let
�
M2m+1; �

�
be a closed Einstein pseudohermitian mani-

fold. Suppose � = �� is another pseudohermitian structure with constant pseudo-
hermitian scalar curvature. Then � must be constant unless

�
M2m+1; �

�
is CR

isometric to
�
S2m+1; �c

�
up to a scaling and � corresponds to the following function

on S2m+1
� (z) = cm

��cosh t+ (sinh t) z � ����2
for some t � 0 and � 2 S2m+1.

We note that like the Obata argument all calculations have to be carried out with
respect to the unknown pseudehermitian structure � = ��. Complicated formulas
relating the curvature tensors of � and � as well as various Bianchi identities are
also heavily used in the proof.
The Jerison-Lee identity is truly remarkable and a better understanding is highly

desirable. In this paper, we propose a di¤erent approach to reconstruct the formula.
The basic idea is to study the model case carefully and then come up with the right
quantities to apply the maximum principle. We �rst revisit the Riemannian case
and give a new(?) proof of the uniqueness results. In fact, this new proof does
not require the Einstein condition. A positive lower bound for Ricci curvature
su¢ ces. Suppose (Mn; g) is a compact Riemannian manifold with Ric � n� 1 and
u 2 C1 (M) is positive and satis�es the following equation

��u+ n (n� 2)
4

u =
n (n� 2)

4
u(n+2)=(n�2):

If we write u = v�(n�2)=2, then v satis�es

�v =
n

2
v�1

�
jrvj2 + 1� v2

�
:

By the study of the model case, we consider � = v�1
�
jrvj2 + v2 + 1

�
. A simple

calculation shows that
�� � (n� 2) hr log v;r�i

and therefore the maximum principle comes into play. This simple argument yields
the following result which is more general than Obata�s theorem.

Theorem 3. Let (Mn; g) be a smooth compact Riemannian manifold with a (pos-
sibly empty) convex boundary. Suppose u 2 C1 (M) is a positive solution of the
following equation

��u+ �u = u(n+2)=(n�2) on M;
@u
@� = 0 on @M;

where � > 0 is a constant. If Ric � (n� 1) g and � � n (n� 2) =4, then u must be
constant unless � = n (n� 2) =4 and (M; g) is isometric to (Sn; gc) or

�
Sn+; gc

�
. In

the latter case u is given on Sn or Sn+ by the following formula

u(x) = cn (cosh t+ (sinh t)x � �)�(n�2)=2 :
for some t � 0 and � 2 Sn.

The above theorem is actually not new. It is a special case of a theorem by
Bidaut-Véron and Véron [BVV] and Ilias [I]. Their method is based on a sophis-
ticated integration by parts which can handle the subcritical case as well. We will
say more about their result in the last section.
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We apply the same principle to the CR case. Here the �rst di¢ culty is that
there is no natural �rst order quantity and therefore we have to go to the 2nd order.
There are three natural tensors of order 2 to consider and we must take a suitable
contraction and combination to apply the maximum principle. As our argument
in the Riemannian case, this approach has the advantage that the calculations are
done on a �xed pseudohermitian manifold

�
�2m+1; �

�
which does not have to be

Einstein. The unknown pseudohermitian structure � = �e� and its curvature tensor
do not enter the discussion at all. All it takes is to do covariant derivatives. Of
course we are using a lot of hindsight from Jerison-Lee. Besides the identity (1.3)
Jerison and Lee [JL] gave three additional divergence formulas on the Heisenberg
group. The formula we obtain can be viewed as the generalization of their �rst
formula ((4.2) in [JL]) to any pseudohermitian manifold with torision zero. (One
can even drop this condition, but the additional terms involving the torsion A��
and its divergence seem too complicated). The calculations are still formidable.
But we hope that this approach sheds more light on the Jerison-Lee work. We
do get a more general identity, see Theorem 6. As a result we prove a stronger
uniqueness theorem.

Theorem 4. Let
�
M2m+1; �

�
be a closed pseudohermitian manifold with A�� = 0

and R�� � m+1
2 . Suppose f > 0 satis�es the following equation on M

��bf + �f = f (m+2)=m;
where � > 0 is a constant. If � � m2=4, then f is constant unless � = m2=4 and
(M; �) is isometric to

�
S2m+1; �c

�
and in this case

f = cm
��cosh t+ (sinh t) z � ����1=m

for some t > 0; � 2 S2m+1.

The paper is organized as follows. In the 2nd section we discuss the Riemannian
case. In Section 3 we study the model case in CR geometry as a guide for �nding
the right quantities. In Section 4 we present our reconstruction of the Jerison-Lee
identity and prove the above uniqueness result. We discuss some open problems in
the last section.

2. The Riemannian case

On (Sn; gc) we consider the equation

(2.1) � 4

n (n� 2)�u+ u = u
(n+2)=(n�2):

If u is positive, the equation simply means that u4=(n�2)gc has the same scalar
curvature n (n� 1). For t � 0; � 2 Sn the map �t;� : Sn ! Sn de�ned by

�t;� (x) =
1

cosh t+ sinh t (x � �) (x� (x � �) �) +
sinh t+ cosh t (x � �)
cosh t+ sinh t (x � �)�

is a conformal di¤eomorphism with ��t;�gc = u
4=(n�2)
t;� gc with

ut;� (x) = (cosh t+ (sinh t)x � �)�(n�2)=2 :
Therefore these are solutions of the equation (2.1).
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If we write u = v�(n�2)=2, then v = cosh t+ (sinh t)x � �. We compute

jrvj2 = sinh2 t jr (x � �)j2

= sinh2 t
�
1� (x � �)2

�
= sinh2 t� (v � cosh t)2

= �1� v2 + 2v cosh t:

It follows that v�1
�
jrvj2 + v2 + 1

�
= 2 cosh t is a constant.

Suppose now (Mn; g) is a compact Riemannian manifold with Ric � n� 1 and
u 2 C1 (M) is positive and satis�es the following equation

(2.2) ��u+ n (n� 2)
4

u =
n (n� 2)

4
u(n+2)=(n�2):

If Ric = n � 1 as in Obata�s theorem, the above equation simply means that the
scalar curvature of eg := u4=(n�2) equals n (n� 1). In the following discussion,
this geometric interpretation plays no role. We write u = v�(n�2)=2. By direct
calculation, v > 0 satis�es the following equation

�v =
n

2
v�1

�
jrvj2 + 1� v2

�
:

In view of the model case, we set � = v�1
�
jrvj2 + v2 + 1

�
. The above equation

becomes �v + nv = n
2�. As v� = jrvj

2
+ v2 + 1, we compute using the Bochner

formula
1

2
v��+ hrv;r�i+ 1

2
��v

=
��D2v

��2 + hrv;r�vi+Ric (rv;rv) + v�v + jrvj2
� (�v)

2

n
+ hrv;r�vi+ n jrvj2 + v�v

=
�v

n
(�v + nv) + hrv;r (�v + nv)i

=
1

2
��v +

n

2
hrv;r�i :

Therefore we obtain
�� � (n� 2) hr log v;r�i :

If @M 6= ;, direct calculation yields the following formula for the normal derivative
along @M

1

2

@�

@�
= f�1

�
�

�
D2v (�; �) + f � 1

2
�

�
+ hrf;r�i ��(rf;rf)

�
;

where f = vj@M ; � = @v
@� and � is the 2nd fundamental form. By these calculations,

we can now deduce the following uniqueness result.

Theorem 5. Let (Mn; g) be a smooth compact Riemannian manifold with a (pos-
sibly empty) convex boundary. Suppose u 2 C1 (M) is a positive solution of the
following equation

��u+ �u = u(n+2)=(n�2) on M;
@u
@� = 0 on @M;
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where � > 0 is a constant. If Ric � (n� 1) g and � � n (n� 2) =4, then u must be
constant unless � = n (n� 2) =4 and (M; g) is isometric to (Sn; gc) or

�
Sn+; gc

�
. In

the latter case u is given on Sn or Sn+ by the following formula

u(x) = cn (cosh t+ (sinh t)x � �)�(n�2)=2 :
for some t � 0 and � 2 Sn.

Proof. We �rst take � = n (n� 2) =4. By scaling u we can consider the equivalent
equation (2.2). Then the above calculations for the associated v and � yield

�� � (n� 2) hr log v;r�i on M ; @�
@�

� 0 on @M

under our assumptions. By the maximum principle and Hopf lemma, � must be
a constant. Inspecting the proof shows that we must have D2v = 1

n�vg. If v is
not constant, it is easy to deduce from this over-determined system that (M; g) is
isometric to (Sn; gc) or

�
Sn+; gc

�
and v is up to a constant a linear function. This

�nishes the proof when � = n (n� 2) =4.
When � < n (n� 2) =4, we consider the scaled metric eg = cg. Then u satis�es

�e�u+ c�1�u = c�1u(n+2)=(n�2):
We choose c = 4�

n(n�2) < 1. As Ric (eg) � n�1
c eg > (n� 1) eg, we can apply the result

for � = n (n� 2) =4 on (Mn; eg). �

3. The CR sphere

Consider the unit sphere S2m+1 =
�
z 2 Cm+1 : jzj = 1

	
with the canonical

pseudohermitian structure

�c =
�
2
p
�1@ jzj2

�
jS2m+1 = 2

m+1X
i=1

(xidyi � yidxi) ;

i.e. �c (X) = 2 hJ�;Xi at � 2 S2m+1. Then
d�c (X;Y ) = 4 hJX; Y i :

The Reeb vector �eld is

T =

p
�1
2

m+1X
i=1

�
zi
@

@zi
� zi

@

@zi

�

=
1

2

m+1X
i=1

�
xi
@

@yi
� yi

@

@xi

�
=
1

2
J�:

Therefore the adapted metric gc = 4g0, where g0 is the standard metric on S2m+1.
We have R�� = (m+ 1) =2��� ; R = m (m+ 1) =2. We now consider the following
equation

(3.1) � 4

m2
�bf + f = f

(m+2)=m on S2m+1:

If f > 0, it simply means the pseudohermitian structure f2=m�c has the same
constant scalar curvature m (m+ 1) =2.
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For t � 0; � 2 Sn the map �t;� : S2m+1 ! S2m+1 de�ned by

�t;� (z) =
1

cosh t+ sinh t
�
z � �

� �z � �z � �� ��+ sinh t+ cosh t �z � ��
cosh t+ sinh t

�
z � �

��
is a pseudoconformal di¤eomorphism with ��t;��c = f

2=m
t;� �c, where

ft;� (z) =
��cosh t+ (sinh t) z � ����1=m :

Therefore these are solutions to the equation (3.1). We write such a solution as
f = ��m=2. Then

� (z) =
��cosh t+ (sinh t) z � ���2 :

We want to see what identities � satisfy. In the following, we always take �c and
its adapted metric gc = 4g0 as a background metric. With f (z) = z � �, we have

� = cosh2 t+ sinh2 t jf j2 + sinh t cosh t
�
f + f

�
:

As f� = 0,
�� = sinh t

�
cosh t+ sinh tf

�
f�:

We also observe, as T (z) = 1
2Jz,

f0 =
1

2

d

dt
jt=0f

�
eirz

�
=

p
�1
2
f:

If we write f = u +
p
�1v, then u0 = � 1

2v. Moreover, 4 jruj
2
= 1 � u2 (1st

eigenfunction). As a �rst eigenfunction, we have D2f = � 1
4fg�. It follows

f�;� = 0;

f�;� = D
2f
�
T�; T�

�
+

p
�1
2
f0���

=

�
�1
4
f +

p
�1
2
f0

�
���

= �1
2
f��� :

Lemma 1. We have

��1 j@�j2 = 1

2
sinh t

�
1� jf j2

�
:

Proof. As f� = 0, we have f� = 2u�. We compute

j@�j2 = � sinh2 t j@f j2

= 4� sinh2 t j@uj2

= 2� sinh2 t
�
jruj2 � u20

�
=
1

2
� sinh2 t

�
1� u2 � v2

�
=
1

2
� sinh2 t

�
1� jf j2

�
:

�

Let g = 1
2 +

1
2�+ �

�1 j@�j2 +
p
�1�0.
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Lemma 2. The function � satis�es the following three tensor equations

��;� = 0;

��;� � �
�1���� =

1

2
(g � �) ��� :

�0;� =

p
�1
2
��1g��

Proof. The 1st identity is obvious. We have �0 = i
2 sinh t cosh t

�
f � f

�
. Thus

g =
1

2
+
1

2
�+

1

2
sinh2 t

�
1� jf j2

�
� 1
2
sinh t cosh t

�
f � f

�
= cosh2 t+ sinh t cosh tf

= cosh t
�
cosh t+ sinh tf

�
:

We compute

��;� = sinh
2 tf�f� �

1

2
f sinh t

�
cosh t+ sinh tf

�
���

= ��1���� �
1

2
sinh t

�
cosh tf + sinh t jf j2

�
���

To �nish the proof of the 2nd identity, we check

g � � = � sinh2 t jf j2 � sinh t cosh tf

= � sinh t
�
cosh tf + sinh t jf j2

�
:

The last identity follows from

�0;� =
i

2
sinh t cosh tf�:

�

Remark 1. There is an additional identity

�0;0 =
1

2
��1

�
1� �2
4

+ ��1 j@�j2 + ��2 j@�j4 + �20
�

which is of higher order as it involves the 2nd order derivative in the direction of
the Reeb vector �eld.

4. Reconstructing the Jerison-Lee identity

We now consider the general case. Let
�
M2m+1; �

�
be a closed pseudohermitian

manifold with torsion A�� = 0. Suppose f 2 C1 (M) is a positive solution of the
following equation

� 4

m2
�bf + f = f

(m+2)=m :

If � has scalar curvature m (m+ 1) =2 , the equation simply means that e� = f2=m�
has also scalar curvature m (m+ 1) =2. But this interpretation does not play any
role in our discussion. Let � = f�2=m. The above equation becomes

(4.1) ��;� =
m

2
i�0 +

m

4
(1� �) + m+ 2

2
��1 j@�j2 :
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Motivated by the study in the model case, we introduce

B�� = ��;� � �
�1���� �

1

2

�
1

2
� 1
2
�+ ��1 j@�j2 + i�0

�
��� ;

C� = i�0;� +
1

2
��1

�
1

2
+
1

2
�+ ��1 j@�j2 � i�0

�
��

Note that the equation (4.1) simply means B�� = 0. As the study of the model case
suggests, to prove the uniqueness result we must prove ��� = 0; B�� and C� = 0.
We set

g =
1

2
+
1

2
�+ ��1 j@�j2 + i�0:

Then we can rewrite these equations as

B�� = ��;� � �
�1���� �

1

2
(g � �) ��� ;

C� = i�0;� +
1

2
��1g��;

��� =
m

2
(g � �) + ��1 j@�j2 :

We further introduce the contractions

A� = ����� ; B� = B���� :

Therefore we have three complex (1; 0) vector �elds A�; B� and C�. Their conju-
gates will be denoted by A�; B� and C�. Our �rst goal is to calculate the divergence
for these vector �elds. We need some preliminary formulas.

Lemma 3. We have�
��1 j@�j2

�
�
= ��1 (A� +B�) +

1

2
��1 (g � �)��;

g� = �
�1 (A� +B�)� C� + ��1g��;

g� = �
�1 (A� +B�) + C�

Proof. We compute�
��1 j@�j2

�
�
= ��1

�
����;� + ��;���

�
� ��2 j@�j2 ��

= ��1
�
A� + ��;��� + i�0��

�
� ��2 j@�j2 ��:

Eliminating ��;� using the formula for B�� yields�
��1 j@�j2

�
�
=��1

�
A� +B���� + �

�1 j@�j2 �� +
1

2
(g � �)�� + i�0��

�
� ��2 j@�j2 ��:

=��1
�
A� +B� +

1

2
(g + 2i�0 � �)��

�
=��1

�
A� +B� +

1

2
(g � �)��

�
:
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This proves the 1st identity. Di¤erentiating g yields

g� =
1

2
�� +

�
��1 j@�j2

�
�
+ i�0;�

= ��1 (A� +B�) +
1

2
��1g�� + i�0;�

= ��1 (A� +B�)� C� + ��1g��

Di¤erentiating g yields

g� = �
�1 (A� +B�) +

1

2
��1g�� � i�0;�

= ��1 (A� +B�) + C�:

�

Lemma 4. We have

��;�� =
m+ 2

2

�
��1 (A� +B�) + C�

�
+R���� �

m+ 1

2
��;

B��;� =
(m� 1)
2

��1A� +
m+ 1

2
��1B� �

(m� 1)
2

C� :

Proof. We compute, using Lemma 3

��;�� =��;�� + i��;0 +R����

=
m

2
(g� � ��) +

�
��1 j@�j2

�
�
+ i��;0 +R����

=
m

2

�
��1 (A� +B�) + C� � ��

�
+ ��1 (A� +B�) +

1

2
��1 (g � �)��

+ i��;0 +R����

=
m

2

�
��1 (A� +B�) + C�

�
+ ��1 (A� +B�) +

1

2
��1g�� + i��;0

+R���� �
m+ 1

2
��

=
m+ 2

2

�
��1 (A� +B�) + C�

�
+R���� �

m+ 1

2
��:

Similarly, using the equation of �

B��;� =��;�� � �
�1
�
��;��� + ����;�

�
+ ��2 j@�j2 �� �

1

2

�
g� � ��

�
=��;�� � �

�1
�
��;��� +A�

�
+ ��2 j@�j2 �� �

1

2

�
g� � ��

�
=
m� 1
2

�
g� � ��

�
+
�
��1 j@�j2

�
�
� m
2
��1 (g � �)�� � �

�1A� :



UNIQUENESS RESULTS REVISITED 11

Using Lemma 3, we obtain

B��;� =
m� 1
2

h
��1

�
A� +B�

�
� C� + �

�1 (g � �)��
i

+

�
��1

�
A� +B�

�
+
1

2
��1 (g � �)��

�
� m
2
��1 (g � �)�� � �

�1A�

=
m� 1
2

h
��1

�
A� +B�

�
� C�

i
+ ��1B�

=
m� 1
2

�
��1A� � C�

�
+
m+ 1

2
��1B� :

�

We are ready to calculated the divergence for the three vector �elds A�; B� and
C�.

Lemma 5. We have

A�;� =
m+ 2

2

�
C� + �

�1 (A� +B�)
�
�� + j��� j2 +Q;

B�;� =

�
(m� 1)
2

��1A� +
m+ 1

2
��1B� �

(m� 1)
2

C�

�
�� + �

�1B��� +
���B�����2

C�;� =
m+ 2

2
��1C��� �

m+ 1

2
��1C��� +

1

2
��2 (A� +B�)�� + S;

where

Q = R������ �
m+ 1

2
j@�j2

S = �m
2

�
�0;0 �

1

2
��1

�
1� �2
4

+ ��1 j@�j2 + ��2 j@�j4 + �20
��

Proof. The 1st two identities follow directly from Lemma 3 and Lemma 4. To prove
the 3rd identity, we �rst note �0;� = ��;0 and ��;0� = ��;�0 as we assume that
(M; �) is torsion-free. We compute�

��1 j@�j2
�
0
=��1

�
����;0 + ��;0��

�
� ��2 j@�j2 �0

=��1��

�
iC� �

i

2
��1g��

�
+ ��1��

�
�iC� +

i

2
��1g��

�
� ��2 j@�j2 �0

=i��1
�
��C� � ��C�

�
+
i

2
��2 j@�j2 (g � g)� ��2 j@�j2 �0

=i��1
�
��C� � ��C�

�
:
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Using these identities as well as the previous lemmas, we compute

C�;� =i��;�0 +
1

2
��1g��� +

1

2
��1g��� �

1

2
��2g j@�j2

=i

�
m

2

�
i�00 �

1

2
�0

�
+
m+ 2

2

�
��1 j@�j2

�
0

�
+
1

2
��1��

�
��1 (A� +B�) + C�

�
+
m

4
��1g (g � �)

=� m
4
i�0 �

m

2
�00 �

m+ 2

2
��1 (��C� � ��C�)

+
1

2
��1��

�
��1 (A� +B�) + C�

�
+
m

4
��1g (g � �)

=
m+ 2

2
��1��C� �

m+ 1

2
��1��C� +

1

2
��2�� (A� +B�)

� m
2
�00 +

m

4
��1 jgj2 � m

4
(g + i�0)

=
m+ 2

2
��1��C� �

m+ 1

2
��1��C� +

1

2
��2�� (A� +B�)

� m
2

�
�00 �

1

2
��1 jgj2 + 1

2

�
1

2
+
1

2
�+ ��1 j@�j2

��
:

Using the formula for g in the last term yields the 3rd identity. �

These three formulas demonstrate that the three vector �elds A�; B� and C�
intertwine with one another. The basic strategy, following Jerison-Lee, is to come
up with a linear combination of the three vectors �elds whose divergence is a sum of
squares. The divergence of C� is much more complicated as the last term S involves
2nd order derivatives in the T direction which we don�t know how to control. But
fortunately this extra term is purely real. Another simple but crucial fact for the
�nal formula is the following.

Lemma 6. B��� is real, i.e. B��� = B���.

Proof. We have

B�� = ��;� �
i

2
�0��� � ��1���� �

1

2
(Re g � �) ���

=
1

2

�
��;� + ��;�

�
� ��1���� �

1

2
(Re g � �) ��� :

It is clearly hermitian. Therefore B��� = B������ is real. �

We can now state the �nal formula, which can be viewed as a generalization of
the formula (4.2) on the Heisenberg group in [JL].

Theorem 6. Let
�
M2m+1; �

�
is a closed pseudohermitian manifold with torsion

A�� = 0. Suppose � 2 C1 (M) is positive and satis�es the equation (4.1). Then

Re
h�
��(m+1)

�
(g + 3i�0)�

�1A� + (g � i�0)��1B� � i3�0C�
��

�

i
=��(m+1)

��
1

2
+
1

2
�

��
j��� j2 +

���B�����2�+ �12 + 12�+ ��1 j@�j2
�
Q

+
����1A� � C���2 + ����1B� + C���2 + jC�j2 + ��1 j����
 +B�
�� j2i ;
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where

Q = R������ �
m+ 1

2
j@�j2 :

Proof. By direct calculation, the divergence on the LHS is given by

��(m+1)
�
(g + 3i�0)

�
��1A�;� � (m+ 2)��2A���

�
+ ��1 (g� + 3i�0;�)A�

+ (g � i�0)
�
��1B�;� � (m+ 2)��2B���

�
+ ��1 (g� � i�0;�)B�

�i3
�
�0C�;� + �0;�C� � (m+ 1)��1�0C���

��
:

Using Lemma as well as the formula �i�0;� = C�� 1
2�

�1g�� the above expression
is (ignoring the factor ��(m+1))

(g + 3i�0)

�
m+ 2

2
��1C��� �

m+ 2

2
��2A��� +

m+ 2

2
��2B��� + j��� j2 +Q

�
+ ��1

�
��1 (A� +B�)� 2C� +

3

2
��1g��

�
A�

+ (g � i�0)
�
�m� 1

2
��1C��� +

m� 1
2

��2A��� �
m+ 1

2
��2B��� +

���B�����2�
+ ��1

�
��1 (A� +B�) + 2C� �

1

2
��1g��

�
B�

� i3
�
�0

�
�m
2
��1C��� �

m+ 1

2
��1C��� +

1

2
��2 (A� +B�)��

��
+ 3

�
C� �

1

2
��1g��

�
C� � 3i�0S:

After expansions and cancellations, we arrive at

(g + 3i�0)
�
j��� j2 +Q

�
+ (g � i�0)

���B�����2 + ��2 jA� +B�j2 + 2��1 (B� �A�)C�
+ 3 jC�j2 + ��2E1 + ��2E2 + ��1E3 � 3i�0S;

where

E1 =
(m� 1)
2

(A��� �A���)Re g �
�
m+

1

2

�
i�0 (A��� +A���) ;

E2 = (2m+ 1) i�0B���

E3 =
(m� 1)
2

(C��� � C���)Re g +
5m+ 1

2
i�0 (C��� + C���) :
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It is clear that all these three terms as well as the last term (recall S is real) are
purely imaginary. Therefore

Re
h�
��(m+1)

�
(g + 3i�0)�

�1A� + (g � i�0)��1B� � i3�0C�
��

�

i
=��(m+1)Re

�
(g + 3i�0)

�
j��� j2 +Q

�
+ (g � i�0)

���B�����2 + ��2 jA� +B�j2
�2��1 (A� +B�)C� + 3 jC�j2

i
=��(m+1)

��
1

2
+
1

2
�+ ��1 j@�j2

��
j��� j2 +

���B�����2 +Q�+ ��2 jA� +B�j2
+3 jC�j2 + 2��1Re (B� �A�)C�

i
:

It is then elementary to show that this equals the RHS. �

Remark 2. The divergence formula (4.2) in [JL] has been used recently by Ma and

Ou [MO] to show that the following equation on the Heisenberg group Hm

��bu = uq;

where q < (m+ 2) =m, has no positive solution.

With this identity, we can now prove the following.

Theorem 7. Let
�
M2m+1; �

�
be a closed pseudohermitian manifold with A�� = 0

and R�� � m+1
2 . Suppose f > 0 satis�es the following equation on M

��bf + �f = f (m+2)=m;

where � > 0 is a constant. If � � m2=4, then f is constant unless � = m2=4 and
(M; �) is isometric to

�
S2m+1; �c

�
and in this case

f = cm
��cosh t+ (sinh t) z � ����1=m

for some t > 0; � 2 S2m+1.

It su¢ ces to prove it for � = m2=4 as the case when � < m2=4 then follows by
scaling � as in the proof of Theorem 5. Therefore in the following we assume � =
m2=4. By scaling f we consider the equivalent equation 4

m2�bf + f = f
(m+2)=m.

By our previous discussion, � := f�m=2 satis�es the identity in Theorem 6. Under
our assumption, Q � 0. The RHS of the identity is nonnegative while the LHS is
a divergence. Therefore, all the terms on the RHS must vanish. In particular,

��� = 0; B�� = 0; R���� =
m+ 1

2
��:

The arguments in [W] can then be applied to �nish the proof.

5. Some open problems

In the introduction, we have alluded to a more general uniqueness result in the
Riemannian case, which can be stated as follows.
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Theorem 8. ([BVV, I] ) Let (Mn; g) be a smooth compact Riemannian manifold
with a (possibly empty) convex boundary. Suppose u 2 C1 (M) is a positive solution
of the following equation

��u+ �u = uq on M;
@u
@� = 0 on @M;

where � > 0 is a constant and 1 < q � (n+ 2) = (n� 2). If Ric � (n� 1) g and
� (q � 1) � n, then u must be constant unless q = (n+ 2) = (n� 2) ; � = n (n� 2) =4
and (M; g) is isometric to

�
Sn; 4�

n(n�2)gSn
�
or
�
Sn+; 4�

n(n�2)gSn
�
. In the latter case

u is given on Sn or Sn+ by the following formula

u(x) = cn (cosh t+ (sinh t)x � �)�(n�2)=2 :
for some t � 0 and � 2 Sn.

Our Theorem 5 corresponds to the special case q = (n+ 2) = (n� 2). It would
be interesting if the method presented in Section 2 can be sharpened to give a new
proof of the above theorem in it full generality.
It is natural to wonder if there is a CR analogue of Theorem 8. We are tempted

to make the following conjecture.

Conjecture 1. Let
�
M2m+1; �

�
be a closed pseudohermitian manifold with A�� = 0

and R�� � m+1
2 . Suppose f > 0 satis�es the following equation on M

��bf + �f = fq;
where � > 0 is a constant and 1 < q � (m+ 2) =m. If � (q � 1) � m=2, then f is
constant unless q = (m+ 2) =m; � = m2=4 and (M; �) is isometric to

�
S2m+1; �c

�
and in this case

f (z) = cm
��cosh t+ (sinh t) z � ����1=m

for some t > 0; � 2 S2m+1.

The case q = (m+ 2) =m is exactly our Theorem 7.
The Conjecture, if true, would imply the following sharp Sobolev inequality on

any closed pseudohermitian manifold
�
M2m+1; �

�
with A�� = 0 and R�� � m+1

2 :
for 1 � q � (m+ 2) =m�

1

V

Z
M

jF jq+1 dv
�2=(q+1)

� 2 (q � 1)
m

1

V

Z
M

jrbF j2 dv +
1

V

Z
M

jF j2 dv:

This family of inequalities was proved on
�
S2m+1; �c

�
by Frank and Lieb [FL] as

a corollary of their sharp Hardy-Littlewood integral inequality on the Heisenberg
group. It is interesting to know if it holds in a more general setting.
A possible approach to the above conjecture is to modify the Jerison-Lee identity.

We hope to report progress on this front in the future.
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