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Abstract. We give a simpler proof of the sharp Frank-Lieb inequality on
the Heisenberg group Hm. The proof bypasses the sophisticated argument for
existence of a minimizer and is based on the study of the 2nd variation of
subcritical functionals using their fundamental techniques.

1. Introduction

In a ground-breaking work [FL1], Frank and Lieb determined the sharp constant
and extremal functions for the Folland-Stein inequality on the Heisenberg group
Hm. Recall

Hm = fu = (z; t) : z 2 Cm; t 2 Rg
with the group law

u � u0 = (z; t) � (z0; t) =
�
z + z0; t+ t0 + 2 Im zz0

�
:

The Haar measure on Hm is the standard Lebesgue measure du = dzdt. For � > 0
we write �u =

�
�z; �2t

�
for the dilation. We denote the homogeneous norm on Hm

by

juj = j(z; t)j =
�
jzj4 + t2

�1=4
:

Throughout the paper Q = 2m+ 2. The Frank-Lieb inequality then states

Theorem 1. Let 0 < � < Q and p = 2Q= (2Q� �). Then for any f; g 2 Lp (Hm)�����
Z
Hm�Hm

f(u)g (v)

ju�1vj�
dudv

����� �
�
2�m+1

m!

��=Q
m!� ((Q� �) =2)
�2 ((2Q� �) =4) kfkp kgkp ;

with equality if and only if

f (u) = cH
�
�
�
a�1u

��
; g (u) = c0H

�
�
�
a�1u

��
for some c; c0 2 C and a 2 Hm (unless f � 0 or g � 0). Here H is the function
de�ned by

H (z; t) =

��
1 + jzj2

�2
+ t2

��(2Q��)=4
:

Via the Cayley transform, Theorem 1 is equivalent to the following formulation
on the sphere S2m+1 =

�
z 2 Cm+1 : jzj = 1

	
.

Theorem 2. Let 0 < � < Q and p = 2Q= (2Q� �). Then for any f; g 2
Lp
�
S2m+1

������
Z
S2m+1�S2m+1

f(�)g (�)

j1� � � �j�=2
d� (�) d� (�)

����� �
�
2�m+1

m!

��=Q
m!� ((Q� �) =2)
�2 ((2Q� �) =4) kfkp kgkp ;

1
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with equality if and only if

f (�) =
c

j1� � � �j(2Q��)=2
; g (�) =

c0

j1� � � �j(2Q��)=2

for some c; c0 2 C and � 2 Cm+1 with j�j < 1 (unless f � 0 or g � 0).

Their proof consists of two major steps. The �rst step is to prove that the
in�mum

inf

(�����
Z
Hm�Hm

f(u)g (v)

ju�1vj�
dudv

����� : kfkp = kgkp = 1
)

is achieved by some (f; g) and moreover f = g. This requires some sophisticated
harmonic analysis on Hm. The 2nd step is to work on S2m+1 and determine the
extremal function f = g. By using the invariance of the problem under the CR
automorphism group and a Hersch-type argument, they �rst arrange that f satis�es
a moment zero condition. Then by exploiting masterfully the 2nd variation of the
functional with test functions provided by the moment zero condition, they prove
that such f must be constant.
In this paper, we present a shorter proof of the Frank-Lieb inequality which

bypasses the subtle proof of existence and the Hersch-type argument. We use a
scheme of subcritical approximation. The starting point is that the operator

I�f (�) =

Z
S2m+1

f (�)

j1� � � �j�=2
d� (�) :

is compact from Lp
�
S2m+1

�
to Lp

0 �S2m+1�, if p > 2Q= (2Q� �) and p0 = p= (p� 1).
Therefore the minimization problem

�p = inf
n
kI�fkp0 : kfkp = 1

o
has a minimizer up which can be taken to be nonnegative. Moreover, due to a
symmetry-breaking, up automatically satis�es a moment zero condition. Therefore
we can analyze the 2nd variation of the functional kI�fkp0 = kfkp at up by fully
using Frank and Lieb�s techniques. Though we could not prove that up is con-
stant as we had expected, we are able to show that up converges to a constant in
L2Q=(2Q��)

�
S2m+1

�
as p & 2Q= (2Q� �). This is enough to yield Frank-Lieb�s

sharp inequality.
The paper is organized as follows. In Section 2, we present a proof for Jerison-

Lee�s sharp Sobolev inequality which is equivalent to Frank-Lieb�s inequality with
� = Q � 2. The analysis is simpler in this special case. In Section 3, we collect
some fundamental results on the operator I�. We present the proof for Frank-Lieb�s
inequality in Section 4. Finally, we make some further remarks and raise several
open problems in the last Section.
Acknowledgment. We would like to thank Rupert Frank for useful suggestions.

2. Proof of Jerison-Lee inequality

The Frank-Lieb inequality for � = Q � 2 is equivalent to the following sharp
Sobolev inequality established by Jerison and Lee in 1990�s
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(2.1)Z
S2m+1

�
jrbf j2 +

m2

4
f2
�
d� � �m2

4

�
2

m!

� 1
m+1

�Z
S2m+1

jf j2(m+1)=m d�
� m

m+1

:

Here we use the canonical pseudohermitian structure �c =
�
2
p
�1@ jzj2

�
jS2m+1 on

S2m+1 with Webster scalar curvature R = m (m+ 1) =2 and the adapted Riemann-
ian metric 4g0, where g0 is the standard metric on S2m+1. (But to be consistent
with the general case, we still use the standard measure d� which di¤ers from the
usual pseudohermitian volume form �c ^ (d�c)m by a scaling constant.) To prove
this fundamental result, Jerison and Lee [JL1] �rst proved that the sharp constant

(2.2) � = inf
n
E (f) : kfk2(m+1)=m = 1

o
;

where E (f) =
R
S2m+1

�
jrbf j2 + m2

4 f
2
�
d�, is achieved by a smooth and positive

minimizer u satisfying the following PDE

(2.3) ��bu+
m2

4
u = �u(m+2)=m on S2m+1:

This was achieved by a blow-up analysis which we outline. For any q < (m+ 2) =m,
the embedding from S1;2

�
S2m+1

�
to Lq+1

�
S2m+1

�
is compact and therefore the

minimization problem

�q = inf
n
E (f) : kfkq+1 = 1

o
has a smooth and positive solution uq which then satis�es the PDE

(2.4) ��bu+
m2

4
u = �qu

q on S2m+1:

and kuqkq+1 = 1. If fuqg does not blow up as q % (m+ 2) =m, the limit is a
solution for (2.2). If it does blow up, then one can properly scale and extract a
limit on Hm. As Hm is equivalent to S2m+1, this limit also yields a solution to
(2.2). In [JL2] they proved that any positive solution of the PDE (2.3) must be of
the form

u (�) = c jcosh t+ (sinh t) � � �j�2

for some t � 0 and � 2 S2m+1. The inequality (2.1) then follows.
In Section 3 of [FL1], assuming existence of a minimizer for (2.2) Frank and

Lieb presented a simpler proof for the classi�cation of all extremal functions. We
will apply their idea to show directly that fuqg converges to a constant as q %
(m+ 2) =m. Therefore constant functions are minimizers for (2.2) and hence the
sharp inequality(2.1).
For � 2 S2m+1 and t � 0 we de�ne �t;� : S2m+1 ! S2m+1 by

�t;� (�) =
1

cosh t+ sinh t� � � (� � (� � �) �) +
sinh t+ cosh t� � �
cosh t+ sinh t� � � �:

This is a one-parameter family of CR automorphisms with �0;� = Id. Moreover,
��t;��c = �t;��c, where

�t;� (�) =
1

jcosh t+ (� � �) sinh tj2
:
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(For more details we refer to the appendices of [FL1].) Given a function f , we get
a family ft;� de�ned by

ft;� (�) = f � �t;� (�)�m=2t;� (�) :

It is well known that the CR Yamabe functional is invariant under such transfor-
mations, more speci�cally

E (ft;�) = E (f) ; kft;�k2(m+1)=m = kfk2(m+1)=m :

With this invariance, we can establish a CR analogue of the Kazdan-Warner identity
[KW].

Proposition 1. If a positive function f 2 C1
�
S2m+1

�
satis�es the following PDE

(2.5) ��bf +
m2

4
f = Kf (m+2)=m;

where K is a smooth function on S2m+1, then

(2.6)
Z
S2m+1

�
hrK;r �i0 + TKT �

�
f2(m+1)=md� = 0;

where
 � (�) = Re (� � �) ; T = J�

and h�; �i0 stands for the standard metric on S2m+1.

Proof. As f satis�es the equation (2.5), it is a critical point of the functional

F (u) = E (u) =

�Z
S2m+1

Ku2(m+1)=md�

�m=(m+1)
:

Thus
d

dt
jt=0F (ft;�) = 0:

But E (ft;�) = E (f) and, by a change of variables,Z
S2m+1

Kf
2(m+1)=m
t;� d� =

Z
S2m+1

K (f � �t;�)2(m+1)=m �m+1t;� d�

=

Z
S2m+1

K � ��1t;�f2(m+1)=md�:

Therefore we obtain Z
S2m+1

hrK;Xi0 f
2(m+1)=md� = 0;

with X = d
dt jt=0�t;�. Direct calculation yields

X = r � + (T �)T

and hence the formula (2.6) �

Corollary 1. If u > 0 satis�es (2.4) with 1 < q < (m+ 2) =m, thenZ
S2m+1

u (�)
q+1

�d� (�) = 0:
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Proof. The equation (2.4) can be written as

��bu+
m2

4
u = Ku(m+2)=m;

with K = �qu
q�(m+2)=m. By Proposition 1 and integration by parts

0 =

Z
S2m+1

�
hrK;r �i0 + TKT �

�
u2(m+1)=md�

=

�
q � m+ 2

m

�
�q

Z
S2m+1

�
hru;r �i0 + TuT �

�
uqd�

=
1

q + 1

�
q � m+ 2

m

�
�q

Z
S2m+1

�

ruq+1;r �

�
0
+ Tuq+1T �

�
d�

= � 1

q + 1

�
q � m+ 2

m

�
�q

Z
S2m+1

uq+1
�
� � + T

2 �
�
d�

=
2 (m+ 1)

q + 1

�
q � m+ 2

m

�
�q

Z
S2m+1

uq+1 �d�:

Therefore
R
S2m+1 u

q+1 �d� = 0 for all � 2 S2m+1. This yields the desired conclu-
sion. �

By calculating the 2nd variation of the functional at the minimizer uq, we have
for any f with

R
S2m+1 u

q
qfd� = 0Z

S2m+1

�
jrbf j2 +

m2

4
f2
�
d� � q

Z
S2m+1

�
jrbuqj2 +

m2

4
u2q

�
d�

Z
S2m+1

uq�1q f2d�:

By Corollary 1, we can take f (�) = uq (�)xi or uq (�) yi, where xi = Re �i; yi =
Im �i. Therefore, summing the corresponding inequalities for all such f�s, we obtain,
in view of kuqkq+1 = 1

q

Z
S2m+1

�
jrbuqj2 +

m2

4
u2q

�
d� �

Z
S2m+1

"X
i

jrb (uqxi)j2 + jrb (uqyi)j2 +
m2

4
u2q

#
d�

=

Z
S2m+1

"
jrbuqj2 + u2q

 
m2

4
�
X
i

(xi�bxi + yi�byi)

!#
d�

=

Z
S2m+1

�
jrbuqj2 +

m (m+ 2)

4
u2q

�
d�:

Therefore

(q � 1)
Z
S2m+1

jrbuqj2 d� �
m2

4

�
m+ 2

m
� q
�Z

S2m+1

u2qd�:

As kuqkq+1 = 1, the above inequality implies that
R
S2m+1 jrbuqj2 d� ! 0 as

q % m+2
m . It follows that we can choose a sequence qi % m+2

m s.t. the sequence
fui = uqig converges to a nonzero constant c, i.e.Z

S2m+1

jrb (ui � c)j2 d� ! 0; kui � ck2(m+1)=m ! 0:

Therefore the constant function c is a minimizer of (2.2) and the inequality (2.1)
follows.
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3. Preliminaries for the general case

In this Section, we present some fundamental technical results needed for the
proof of the Frank-Lieb inequality in the general case. We �rst recall the Funk-
Hecke theorem on S2m+1 (cf. [FL1, BLM] and references therein for more details).
The space L2

�
S2m+1

�
can be decomposed into its U (m+ 1)-irreducible components

(3.1) L2
�
S2m+1

�
= �j;k�0Hj;k;

Here Hj;k is the space of restrictions to S2m+1 of harmonic polynomials p (z; z) on
Cm+1 that are homogeneous of degree j in z and degree k in z. For an integrable
function K on the unit disc in C we can de�ne an integral operator with kernel
K (� � �) on S2m+1 by

(If) (�) =

Z
S2m+1

K (� � �) f (�) d� (�) :

The Funk-Hecke theorem states that such operators are diagonal with respect to
the decomposition (3.1). We need the following explicit results.

Proposition 2. (Corollary 5.3 in [FL1]) Let �1 < � < (m+ 1) =2.

(1) The eigenvalue of the operator with kernel j1� � � �j�2� on the subspace
Hj;k is

Ej;k =
2�m+1� (m+ 1� 2�)

�2 (�)

� (j + �)

� (j +m+ 1� �)
� (k + �)

� (k +m+ 1� �)
(2) The eigenvalue of the operator with kernel j� � �j2 j1� � � �j�2� on the sub-

space Hj;k is

Ej;k

�
1� (�� 1) (m+ 1� 2�) (2jk + n (j + k � 1 + �))

(j � 1 + �) (j +m+ 1� �) (k � 1 + �) (k +m+ 1� �)

�
When � = 0 or 1, the formulas are to be understood by taking limits with �xed j

and k.

Remark 1. It is clear that Ej;k > 0 for all j and k if � = �=4 with � 2 (0; Q).
Therefore we draw the following important corollary: the operator I� is positive in
the sense that

hI�f; fi =
Z
S2m+1�S2m+1

f(�)f (�)

j1� � � �j�=2
d� (�) d� (�) � 0:

From Proposition 2 Frank and Lieb deduced the following inequality which plays
a crucial role.

Theorem 3. Let 0 < � < Q = 2 (m+ 1), then there exist C > 0 s.t. for any f on
S2m+1 one hasZ

S2m+1

f (�)f (�)Re � � �
j1� � � �j�=2

d� (�) d� (�)

� �

4 (m+ 1)� � hI�f; fi+
C (2 (m+ 1)� �)
4 (m+ 1)� � hI� (f � af ) ; f � af i ;

where af = 1
jS2m+1j

R
S2m+1 f (�) d� (�) is the average of f .

Remark 2. Taking C = 0, this is precisely Theorem 5.1 in [FL1]. By inspecting
their proof, it is easy to get the above strengthened version.
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Proposition 3. If ft;� = f � �t;��(m+1)=pt;� , then

I� (ft;�) = I�

�
f�

(m+1)=p0��=4
t;��

�
� �t;���=4t;� :

Proof. By direction calculation, the following identity holds

(3.2)
���1� �t;� (�) � �t;� (�)���2 = ��1� � � ���2 �t;� (�)�t;� (�) :

We compute by a change of variables

I� (ft;�) (�) =

Z
S2m+1

f � �t;� (�)�(m+1)=pt;� (�)��1� � � ����=2 d� (�)

=

Z
S2m+1

f (�)
�
�t;� � ��1t;� (�)

��(m+1)=p0���1� � � ��1t;� (�)����=2 d� (�) :

It is easy to see that �t;� � ��1t;� (�) = 1=�t;�� (�) while using (3.2) we have���1� � � ��1t;� (�)���2 = ��1� �t;� (�) � ���2 �t;�� � �t;� (�) (�)�t;�� (�)
=
��1� �t;� (�) � ���2 �t;�� (�) =�t;� (�)

Therefore

I� (ft;�) (�) = [�t;� (�)]
�=4
Z
S2m+1

f (�)�t;�� (�)
(m+1)=p0��=4��1� �t;� (�) � ����=2 (�) d� (�)

= I�

�
f�

(m+1)=p0��=4
t;��

�
� �t;� (�)��=4t;� (�) :

�

4. Proof of the sharp inequality

We �x � 2 (0; Q). Recall that the operator I� is de�ned by

I�f (�) =

Z
S2m+1

f (�)

j1� � � �j�=2
d� (�) :

Given 1 < p < Q
Q�� , set p

� = Qp
Q�p(Q��) > 1. By the work of Folland-Stein [FS],

I� is a bounded operator from Lp
�
S2m+1

�
to Lp

� �S2m+1�. In other words, there
exists a positive constant C s.t. for all f 2 Lp

�
S2m+1

�
.

kI�fkp� � C kfkp :

The contribution of Frank and Lieb [FL1] (Theorem 2) is the determination of
the sharp constant and extremal functions when p = 2Q

2Q�� and hence p
� = 2Q

2Q+� .
Indeed, it is easy to verify that the sharp inequality in Theorem 2 is equivalent to

Theorem 4. For f 2 L
2Q

2Q��
�
S2m+1

�
kI�fk 2Q

2Q+�
�
�
2�m+1

m!

��=Q
m!� ((Q� �) =2)
�2 ((2Q� �) =4) kfk 2Q

2Q��
:

To present our proof of the above sharp inequality, we start with the following
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Proposition 4. For 1 < p < Q
Q�� ; 1 < q < p� = Qp

Q�p(Q��) , the operator I� :

Lp
�
S2m+1

�
! Lq

�
S2m+1

�
is compact.

This result is more or less standard. We outline the proof. Write 1
q =

�
p +

1��
p�

with � 2 (0; 1). By the Holder inequality, we have

kI�fkq � kI�fk
�
p kI�fk

1��
p�

Therefore it su¢ ces to prove that I� from Lp
�
S2m+1

�
to Lp

�
S2m+1

�
is compact.

For any kernel K (�; �), the following inequality for the integral operator IK is well
known (in a much more general setting)

kIKfkp � CK kfkp ;
where

CK = max

(
sup
�

Z
S2m+1

jK (�; �)j d� (�) ; sup
�

Z
S2m+1

jK (�; �)j d� (�)
)
:

If K is continuous, it can be approximated uniformly by polynomials in �; � by the
Stone-Weierstrass theorem. Therefore IK : Lp

�
S2m+1

�
! Lp

�
S2m+1

�
is compact

as it can be approximated by operators of �nite rank. In our case K (�; �) =
j1� � � �j��=2. It is easy to see that it can be approximated by continuous kernels

K" (�; �) =

�
"��=2; if j1� � � �j � ";

j1� � � �j��=2 if j1� � � �j � ":

Therefore I� : Lp
�
S2m+1

�
! Lp

�
S2m+1

�
is compact.

We now take p > 2Q
2Q�� . By a simple calculation, its dual p

0 := p
p�1 < p�.

Therefore the following minimization problem

(4.1) �p = sup
n
kI�fkp0 = kfkp : f 2 L

q
�
S2m+1

�
; f 6= 0

o
has a solution up by Proposition 4. To simplify the presentation, we will drop the
subscript p temporarily. We can obviously assume that u � 0. It satis�es the
following Euler-Lagrange equation (when properly scaled)�

vp�1 = I�(u)
up�1 = I�(v)

:

Then

hI�(u� v); u� vi =


vp�1 � up�1; u� v

�
= �

Z
S2m+1

�
up�1 � vp�1

�
(u� v) d�

� 0:
By the positivity of I� (Remark 1), we must have u = v, i.e.

I�(u) = up�1:

Then

�p =
kI�ukp0
kukp

= kukp�2p

or kukp = �
1=(p�2)
p . It is clear that limp! 2Q

2Q��
�
1=(p�2)
p = ��2(Q��)=(2Q��).
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Lemma 1. The function u satis�esZ
S2m+1

u (�)
p
�d� (�) = 0:

Proof. We consider for any � 2 S2m+1 the family ut;� = u � �t;��(m+1)=pt;� . Clearly
kut;�kp = kukp. By Proposition 3, we have

I� (ut;�) = I�

�
u�

(m+1)=p0��=4
t;��

�
� �t;���=4t;� :

Therefore

kI� (ut)kp
0

p0 =

Z
S2m+1

�
�p0=4
t;� (�)

�
I�

�
u�

(m+1)=p0��=4
t;��

�
� �t;� (�)

�p0
d� (�)

=

Z
S2m+1

�
�p0=4�m+1
t;� � ��1t;� (�)

�
I�

�
u�

(m+1)=p0��=4
t;��

�
(�)
�p0

d� (�)

=

Z
S2m+1

�
m+1��p0=4
t;�� (�)

�
I�

�
u�

(m+1)=p0��=4
t;��

�
(�)
�p0

d� (�) :

Di¤erentiating log
�
kI� (ut)kp0 = kutkp

�
at t = 0 yields,

0 =

Z
S2m+1

24 ��
m+ 1� �p0

4

�
�I�(u)

p0 + p0
�
m+ 1

p0
� �

4

�
I�(u)

p0�1I�(u
�
�)

35 d�
=

�
m+ 1� �p0

4

�Z
S2m+1

�
I�(u)

p0
�
�+ I�(u)

p0�1I�(u
�
�)

�
d�;

where
�
� (�) =

d

dt
jt=0�t;�� (�) = 2Re (� � �) :

By the Euler-Lagrange equation, I�(u) = up�1. Therefore we have

0 =

Z
S2m+1

�
up

�
�+ uI�(u

�
�)

�
d�

=

Z
S2m+1

�
up

�
�+ I� (u) (u

�
�)

�
d�

= 2

Z
S2m+1

up
�
�d�;

i.e.
R
S2m+1 u

p (�)Re (� � �) d� (�) = 0 for all � 2 S2m+1. The conclusion follows. �

By the 2nd variation, we have for all real f with
R
Sn u

p�1f = 0

(p0 � 1)
Z
S2m+1

(I�u)
p0�2

(I�f)
2 � (p� 1)2

Z
S2m+1

up�2f2:

Using the Euler-Lagrange equation I�(u) = up�1, this simpli�es as

(4.2)
Z
S2m+1

u2�p (I�f)
2 � (p� 1)2

Z
S2m+1

up�2f2:
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By the Holder inequalityZ
S2m+1

fI�f =

Z
S2m+1

u(p�2)=2fu(2�p)=2I�f

�
�Z

S2m+1

up�2f2
�1=2�Z

S2m+1

u2�p (I�f)
2

�1=2
� (p� 1)

Z
S2m+1

up�2f2:

In summary, we have for all real f with
R
Sn u

p�1f = 0Z
S2m+1�S2m+1

f(�)f (�)

j1� � � �j�=2
d� (�) d� (�) � (p� 1)

Z
S2m+1

up�2f2:

By Lemma 1, we can take f (z) = u (z)Re zi or u (z) Im zi; i = 1; � � � ;m + 1 and
adding these inequalities yieldsZ

S2m+1�S2m+1

Re � � �
j� � �j�=2u(�)u(�)d� (�) d� (�) � (p� 1)

Z
S2m+1

up:

Combined with Theorem 3, this implies

(p� 1)
Z
S2m+1

up � �

4 (m+ 1)� � hI�u; ui+
C (2 (m+ 1)� �)
4 (m+ 1)� � hI� (u� a) ; (u� a)i

=
�

4 (m+ 1)� �

Z
S2m+1

up +
C (2 (m+ 1)� �)
4 (m+ 1)� � hI� (u� a) ; (u� a)i ;

where a is the average of u. Therefore we have�
p� 4 (m+ 1)

4 (m+ 1)� �

�Z
S2m+1

up � C (2 (m+ 1)� �)
4 (m+ 1)� � hI� (u� a) ; (u� a)i :

Note that 4(m+1)
4(m+1)�� =

2Q
2Q�� .

By the positivity of I�, the RHS is nonnegative. As a consequence (now reat-
taching the subscript p), we have hI� (up � ap) ; (up � ap)i ! 0 as p & 2Q

2Q�� . By
the Euler-Lagrange equation I�(u) = up�1again and the observation that I� maps
a constant function to a constant function, this means

R
S2m+1 u

p�1
p (up � ap) ! 0

as p& 2Q
2Q�� . Thus, as p&

2Q
2Q��Z

S2m+1

upp = ap

Z
S2m+1

up�1p + o (1)

� ap
��S2m+1��1=p�Z

S2m+1

upp

�(p�1)=p
+ o (1) :

This implies

kupkp � ap
��S2m+1��1=p + o (1) :

On the other hand, we have kupkp � ap
��S2m+1��1=p by the Holder inequality.

Therefore limp& 2Q
2Q��

kupkp � ap
��S2m+1��1=p = 0. We assume that up

w��! v in
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L
2Q

2Q�� (S2m+1). Clearly, limp& 2Q
2Q��

ap = a, the average of v. We have

kvk 2Q
2Q��

� lim
p& 2Q

2Q��

kupk 2Q
2Q��

� lim
p& 2Q

2Q��

kupkp
��S2m+1��(p� 2Q

2Q�� )=p

= lim
p& 2Q

2Q��

ap
��S2m+1��1=p

= a
��S2m+1�� 2Q��2Q :

In view of the Holder inequality, we must have v = a, i.e. v is constant and all the
inequalities in the formula above are equalities, i.e.

a
��S2m+1�� 2Q��2Q = kvk 2Q

2Q��
= lim

p& 2Q
2Q��

kupk 2Q
2Q��

:

The weak �-convergence plus the convergence of the norms implies strong conver-
gence up ! a in L

2Q
2Q�� (S2m+1). Therefore the constant function is a minimizer

for
inf kI�fk 2Q

2Q+�
= kfk 2Q

2Q��
:

Theorem 4 then follows from a simple calculation.

5. Further remarks

In a later paper [FL2], Frank and Lieb showed that the new method developed
in [FL1] can be adapted to give a new, rearrangement-free proof of the following
sharp Hardy-Littlewood-Sobolev inequality on Rn which was proved originally by
Lieb [L] using rearrangement arguments.

Theorem 5. Let 0 < � < n and p = 2n= (2n� �). Then for any f; g 2 Lp (Sn)�����
Z
Sn�Sn

f(�)g (�)

j� � �j�
d� (�) d� (�)

����� � ��=2
� ((n� �) =2)
� (n� �=2)

�
� (n)

� (n=2)

�1��=n
kfkp kgkp ;

with equality if and only if

f (�) =
c

j1� � � aj(2n��)=2
; g (�) =

c0

j1� � � aj(2n��)=2

for some c; c0 2 C and a 2 Rn+1 with jaj < 1 (unless f � 0 or g � 0).

Our method can also be adapted to give a simpler proof of Lieb�s theorem. In
this case, we work with the operator

I�f (�) =

Z
Sn

f (�)

j� � �j�
d� (�)

and consider, for p > 2n= (2n� �), the minimization problem

(5.1) �p = sup
n
kI�fkp0 = kfkp : f 2 L

p (Sn) ; f 6= 0
o
:

The rest of proof requires minor modi�cations and we omit the details.
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We end with some open problems. In the CR cases, it would be interesting to
classify all positive solutions to the Euler-Lagrange equation

I�(u) = up�1

for all p � 2Q= (2Q� �) on S2m+1, not merely extremal functions of the corre-
sponding inequality. On Sn, this kind of classi�cation results can be established
by the powerful method of moving planes or moving spheres (cf. [CLO, Li]). On
S2m+1, the classi�cation was known in the critical case p = 2Q= (2Q� �) only when
� = Q� 2 by the work of Jerison-Lee [JL2]. The critical case when � 6= Q� 2 and
all the subcritical cases seem to be largely open on S2m+1 as far as we know (cf.
[W1, W2] for discussions about the signi�cance of such classi�cation problems).
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