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Persistent homology is a relatively new tool often used for qualita-

tive analysis of intrinsic topological features in images and data

originated from scientific and engineering applications. In this

article, we report novel quantitative predictions of the energy and

stability of fullerene molecules, the very first attempt in using per-

sistent homology in this context. The ground-state structures of a

series of small fullerene molecules are first investigated with the

standard Vietoris–Rips complex. We decipher all the barcodes,

including both short-lived local bars and long-lived global bars

arising from topological invariants, and associate them with fuller-

ene structural details. Using accumulated bar lengths, we build

quantitative models to correlate local and global Betti-2 bars,

respectively with the heat of formation and total curvature ener-

gies of fullerenes. It is found that the heat of formation energy is

related to the local hexagonal cavities of small fullerenes, while

the total curvature energies of fullerene isomers are associated

with their sphericities, which are measured by the lengths of their

long-lived Betti-2 bars. Excellent correlation coefficients (>0.94)

between persistent homology predictions and those of quantum

or curvature analysis have been observed. A correlation matrix

based filtration is introduced to further verify our findings. VC 2014

Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23816

Introduction

Persistent homology, a method for studying topological fea-

tures over changing scales, has received tremendous attention

in the past decade.[1,2] The basic idea is to measure the life

cycle of topological features within a filtration, that is, a nested

family of abstract simplicial complexes, such as Vietoris–Rips

complexes, �Cech complexes, or alpha complexes.[3] Thus, long-

lived topological characteristics, which are often the intrinsic

invariants of the underlying system, can be extracted; while

short-lived features are filtered out. The essential topological

characteristics of three-dimensional (3D) objects typically

include connected components, tunnels or rings, and cavities

or voids, which are invariant under the nondegenerate defor-

mation of the structure. Homology characterizes such struc-

tures as groups, whose generators can be considered

independent components, tunnels, cavities, and so forth. Their

times of “birth” and “death” can be measured by a function

associated with the filtration, calculated with ever more effi-

cient computational procedures,[4–7] and further visualized

through barcodes,[8] a series of horizontal line segments with

the horizontal x-axis representing the changing scale and the

vertical y-axis representing the index of the homology genera-

tors. Numerous software packages, such as Perseus, Dionysus,

and Javaplex,[9] based on various algorithms have been devel-

oped and made available in the public domain. As an efficient

tool to unveil topological invariants, persistent homology has

been applied to various fields, such as image analysis,[10–12]

chaotic dynamics verification,[13,14] sensor network,[15] complex

network,[16,17] data analysis,[18] geometric processing,[19] and

computational biology.[20–23] Based on persistent homology

analysis, we have proposed molecular topological fingerprints

and used them to reveal the topology-function relationship of

biomolecules.[24] In general, persistent homology is devised as

a robust but qualitative topological tool and has been hardly

used as a precise quantitative predictive tool.[25,26]

To the best of our knowledge, persistent homology has not

been applied to the study of fullerenes, special molecules com-

prised of only carbon atoms. The fullerene family shares the

same closed carbon-cage structure, which contains only pen-

tagonal and hexagonal rings. In 1985, Kroto et al.[27] proposed

the first structure of C60, which was then confirmed in 1990 by

Kratschmer et al.[28] in synthesizing macroscopic quantities of

C60. Enormous interest has been aroused by these interesting

discoveries. However, there are many challenges. Among them,

finding the ground-state structure has been a primary target.

In general, two types of approaches are commonly

used.[29–34] The first method is based on the geometric and

topological symmetries of fullerene.[29–31] In this approach, one

first constructs all possible isomers, and then chooses the best

possible candidate based on the analysis of the highest-

occupied molecular orbital (HOMO) energy and the lowest-

unoccupied molecular orbital (LUMO) energy.[30] In real appli-

cations, to generate all possible isomers for a fullerene with a
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given atom count is nontrivial until the introduction of Cox-

eter’s construction method[29,35] and the ring spiral method.[30]

In Coxeter’s method, the icosahedral triangulations of the

sphere are analyzed to evaluate the possible isomer structures.

This method is mathematically rigorous. However, practical

applications run into issues with low-symmetry structures.

Conversely, based on the spiral conjecture,[31] the ring spiral

method simply lists all possible spiral sequences of pentagons

and hexagons, and then winds them up into fullerenes. When

a consistent structure is found, an isomer is generated; other-

wise, the sequence is skipped. Although the conjecture breaks

down for fullerenes with 380 or more atoms, the spiral

method proves to be quite efficient.[31]

For each isomer, its electronic structure can be modeled

simply by the H€uckel molecular orbital theory,[36] which is

known to work well for planar aromatic hydrocarbons using

standard CAC and CAH r bond energies. Similarly, the bond-

ing connectivities in fullerene structures are used to evaluate

orbital energies. The stability of the isomers, according to

Manolopoulus,[30] can then be directly related to the calcu-

lated HOMO-LUMO energy gap. However, this model falls short

for large fullerene molecules. Even for small structures, its pre-

diction tends to be inaccurate. One possible reason is fuller-

ene’s special cage structures. Instead of a planar shape, the

structure usually has local curvatures, which jeopardizes the r–

p orbital separation.[31,37] To account for curvature contribu-

tions, a strain energy is considered. It is found that the stain

energy reaches its minimum when pentagonal faces are as far

away as possible from each other. This is highly consistent

with the isolated pentagon rule (IPR)—the most stable fuller-

enes are those in which all the pentagons are isolated.[31]

Another approach to obtain ground-state structures for full-

erene molecules is through simulated annealing.[32–34] This

global optimization method works well for some structures.

However, if large energy barriers exist in the potential, the

whole system is prone to be trapped into metastable high-

energy state. This happens as breaking the carbon bonds and

rearranging the structure need a huge amount of energy. A

revised method is to start the system from a special face-dual

network and then use the tight-binding potential model.[34,38]

This modified algorithm manages to generate the C60 struc-

ture of Ih symmetry that has the HOMO-LUMO energy gap of

1.61 eV, in contrast to 1.71 eV obtained using the ab initio

local-density approximation.

In this article, persistent homology is, for the first time, used

to quantitatively predict the stability of the fullerene mole-

cules. The ground-state structures of a few small fullerene mol-

ecules are first studied using a distance based filtration

process. Essentially, we associate each carbon atom of a fuller-

ene with an ever-increasing radius and thus define a Vietoris–

Rips complex. The calculated Betti numbers (i.e., ranks of

homology groups), including b0, b1, and b2, are provided in

the barcode representation. To further exploit the persistent

homology, we carefully discriminate between the local short-

lived and global long-lived bars in the barcodes. We define an

average accumulated bar length as the negative arithmetic

mean of b2 bars. As the local b2 bars represent the number of

cavities of the structure, when b2 becomes larger, intercon-

nectedness (and thus stability) tends to increase, and relative

energy tends to drop. Therefore, the average accumulated bar

length indicates the level of a relative energy. We validate this

hypothesis with a series of ground-state structures of small

fullerenes. It is found that our average accumulated bar length

can capture the energy behavior remarkably well, including an

anomaly in fullerene C60 energy. Additionally, we explore the

relative stability of fullerene isomers. The persistence of the

Betti numbers is calculated and analyzed. Our results are vali-

dated with the total curvature energies of two fullerene fami-

lies. It is observed that the total curvature energies of

fullerene isomers can be well represented with their lengths of

the long-lived Betti-2 bars, which indicates the sphericity of

fullerene isomers. For fullerenes C40 and C44, correlation coeffi-

cients up to 0.956 and 0.948 are attained in the distance

based filtration. Based on the flexibility-rigidity index

(FRI),[39–41] a correlation matrix based filtration process is pro-

posed to validate our findings.

The rest of this article is organized as follows. In Section

Rudiments of Persistent Homology, we discuss the basic persis-

tent homology concepts, including simplices and simplicial

complexes, chains, homology, and filtration. Section Algorithms

for Persistent Homology is devoted to the description of algo-

rithms. The alpha complex and Vietoris–Rips complex are dis-

cussed in some detail, including filtration construction, metric

space design, and persistence evaluation. In Section Applica-

tion to Fullerene Structure Analysis and Stability Prediction,

persistent homology is used in the analysis of fullerene struc-

ture and stability. After a brief discussion of fullerene structural

properties, we elaborate on their barcode representation. The

average accumulated bar length is introduced and applied to

the energy estimate of the small fullerene series. By validating

with total curvature energies, our persistent homology based

quantitative predictions are shown to be accurate. Fullerene

isomer stability is also analyzed using the new correlation

matrix based filtration. This article ends with a conclusion.

Rudiments of Persistent Homology

As representations of topological features, the homology

groups are abstract abelian groups, which may not be robust

or able to provide continuous measurements. Thus, practical

treatments of noisy data require the theory of persistent

homology, which provides continuous measurements for the

persistence of topological structures, allowing both quantita-

tive comparison and noise removal in topological analyses.

The concept was introduced by Frosini and Landi[42] and Rob-

ins,[43] and in the general form by Zomorodian and Carlsson.[2]

Computationally, the first efficient algorithm for Z/2 coefficient

situation was proposed by Edelsbrunner et al.[1] in 2002.

Simplex and simplicial complex

For discrete surfaces, that is, meshes, the commonly used

homology is called simplicial homology. To describe this

notion, we first present a formal description of the meshes,
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the common discrete representation of surfaces and volumes.

Essentially, meshing is a process in which a geometric shape is

decomposed into elementary pieces called cells, the simplest

of which are called simplices.

Simplex. Simplices are the simplest polytopes in a given

dimension, as described below. Let v0; v1; ::vp be p 1 1 affinely

independent points in a linear space. A p-simplex rp is the

convex hull of those p 1 1 vertices, denoted as rp5convex

< v0; v1; . . . ; vp > or shorten as rp5 < v0; v1; . . . ; vp >. A for-

mal definition can be given as,

rp5 vjv5
Xp

i50

kivi;
Xp

i50

ki51; 0 � ki � 1;8i

( )
: (1)

The most commonly used simplices in R3 are 0-simplex (ver-

tex), 1-simplex (edge), 2-simplex (triangle), and 3-simplex (tet-

rahedron) as illustrated in Figure 1.

An m-face of rp is the m-dimensional subset of m 1 1 verti-

ces, where 0 � m � p. For example, an edge has two vertices

as its 0-faces and one edge as its 1-face. As the number of

subsets of a set with p 1 1 vertices is 2p11, there are a total of

2p1121 faces in rp. All the faces are proper except for rp itself.

Note that polytope shapes can be decomposed into cells

other than simplices, such as hexahedron and pyramid. How-

ever, as non-simplicial cells can be further decomposed, we

can, without loss of generality, restrict our discussion to shapes

decomposed to simplices as we describe next.

Simplicial Complex. With simplices as the basic building

blocks, we define a simplicial complex K as a finite collection of

simplices that meet the following two requirements,

� Containment: Any face of a simplex from K also belongs

to K.

� Proper intersection: the intersection of any two simplices

ri and rj from K is either empty or a face of both ri and

rj.

Two p-simplices ri and rj are adjacent to each other if they

share a common face. The boundary of rp, denoted as @rp, is

the union (which can be written as a formal sum) of its ðp21Þ-
faces. Its interior is defined as the set containing all nonboun-

dary points, denoted as r2@rp. We define a boundary opera-

tor for each p-simplex spanned by vertices v0 through vp as

dp < v0; . . . ; vp > 5
Xp

i50

<v0; . . . ; v̂i ; . . . ; vp >; (2)

where v̂i indicates that vi is omitted and Z=2 coefficient set is

used. It is the boundary operator that creates the nested topo-

logical structures and the homomorphism among them as

described in the next section.

If the vertex positions in the ambient linear space can be

ignored or do not exist, the containment relation among the

simplices (as finite point sets) defines an abstract simplicial

complex.

Homology

A powerful tool in topological analysis is homology, which rep-

resents certain structures in the meshes by algebraic groups

to describe their topology. For regular objects in 3D space,

essential topological features are connected components, tun-

nels and handles, and cavities, which are exactly described by

the zeroth, first, and second homology groups, respectively.

Chains. The shapes to be mapped to homology groups are con-

structed from chains defined below. Given a simplicial complex

(e.g., a tetrahedral mesh) K, which, roughly speaking, is a concate-

nation of p-simplices, we define a p-chain c5
X

i

airi as a formal

linear combination of all p-simplices in K, where ai 2 Z=2 is 0 or 1

and ri is a p-simplex. Under such a definition, a 0-chain is a set of

vertices, a 1-chain is a set of line segments which link vertices, a

2-chain is a set of triangles which are enclosed by line segments,

and a 3-chain is a set of tetrahedrons which are enclosed by

triangle surfaces.

We extend the boundary operator @p for each p-simplex to

a linear operator applied to chains, i.e., the extended operator

meet following two conditions for linearity,

@pðkcÞ5k@pðcÞ;

@pðci1cjÞ5@pðciÞ1@pðcjÞ;
(3)

where ci and cj are both chains and k is a constant, and all

arithmetic is for modulo-2 integers, in which 11150.

An important property of the boundary operator is that the

following composite operation is the zero map,

@p � @p1150; (4)

which immediately follows from the definition. Take the 2-

chain c5f11f2 as an example, which represents a membrane

formed by two triangles, f15 < v1; v2; v3 > and

f25 < v3; v2; v4 >. The boundary of c is a 1-chain, which turns

out to be a loop,

Figure 1. Illustration of 0-simplex, 1-simplex, and 2-simplex in the first row.

The second row is simple 0-cycle, 1-cycle, and 2-cycle.
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@2ðcÞ5 < v1; v2 > 1 < v2; v3 > 1 < v3; v1 > 1 < v3; v2 >

1 < v2; v4 > 1 < v4; v3 > 5 < v1; v2 >

1 < v3; v1 > 1 < v2; v4 > 1 < v4; v3 > :

(5)

The boundary of this loop is thus

@1 � @2ðcÞ5@1ð< v1; v2 > 1 < v3; v1 > 1 < v2; v4 > 1 < v4; v3 >Þ
5v11v21v21v41v41v31v31v150:

(6)

Simplicial Homology. Simplicial homology is built on the

chain complex associated to the simplicial complex. A chain

complex is a sequence of abelian groups ðC1; C2; . . . ; CnÞ con-

nected by the homomorphism (linear operators) @p, such that

@p � @p1150 as in eq.(4).

� � � ��!@p11

Cp�!@p

Cp21 ��!@p21

� � � �!@2

C1�!@1

C0 �!@0

1: (7)

The chain complex in the definition of simplicial homology

is formed by Cp, the space of all p-chains, and @p, the bound-

ary operator on p-chains. As @p � @p1150, the kernel of the

boundary operator p-chains is a subset of the image of the

boundary operator of p 1 1-chains. The p-chains in the kernel

of the boundary homomorphisms @p are called p-cycles (p-

chains without boundary) and the p-chains in the image of

the boundary homomorphisms @p11 are called p-boundaries.

The p-cycles form an abelian group (with group operation

being the addition of chains) called cycle group, denoted as

Zp5Ker@p. The p-boundaries form another abelian group called

boundary group, denoted as Bp5Im@p11.

Thus, p-boundaries are also p-cycles as shown in Figure 2.

As p-boundaries form a subgroup of the cycles group, the

quotient group can be constructed through cosets of p-cycles,

that is, by equivalence classes of cycles. The pth homology,

denoted as Hp, is defined as a quotient group,

Hp5Ker @p=Im @p11

5Zp=Bp;
(8)

where Ker @p is the collection of p-chains with empty bound-

ary and Im @p11 is the collection of p-chains that are bounda-

ries of p 1 1-chains.

Noticing that all groups with p> 3 cannot be generated

from meshes in R3, we only need chains, cycles and bounda-

ries of dimension p with 0 � p � 3. See Figure 2 for an

illustration.

We illustrate simplexes and cycles including 0-cycle, 1-cycle,

and 2-cycle in Figure 1. Basically, an element in the pth homol-

ogy group is an equivalence class of p-cycles. One of these

cycles c can represent any other p-cycle that can be “deformed”

through the mesh to c, because any other p-cycle in the same

equivalence class differ with c by a p-boundary

b5@ðr11r21 . . .Þ, where each ri is a p 1 1-simplex. Adding the

boundary of ri has the effect of deforming c to c1@ri by

sweeping through ri. For instance, a 0-cycle vi is equivalent to vj

if there is a path <vi; vk1 > 1 < vk1; vk2 > 1 . . . 1 < vkn; vj >.

Thus each generator of zeroth-homology, (like a basis vector in

a basis of the linear space of zeroth-homology) represents one

connected component. Similarly, 1-cycles are loops, and first-

homology generators represent independent nontrivial loops,

that is, separate tunnels; 2-homology generators are independ-

ent membranes, each enclosing one cavity of the 3D object.

Define bp5rankðHpÞ to be the pth Betti number. For a sim-

plicial complex in 3D, b0 is the number of connected compo-

nents; b1 is the number of tunnels; and b2 is the number of

cavities. As Hp is the quotient group between Zp and Bp, we

can also compute Betti numbers through,

rankðHpÞ5rankðZpÞ2rankðBpÞ: (9)

Note, however, Hp is usually of much lower rank than either

Zp or Bp.

Persistent homology

Homology generators identify the tunnels, cavities, and so

forth, in the shape, but as topological invariants, they omit the

metric measurements by definition. However, in practice, one

often needs to compare the sizes of tunnels, for instance, to

find the narrowest tunnel, or to remove tiny tunnels as topo-

logical noises. Persistent homology is a method of reintroduc-

ing metric measurements to the topological structures.[1,2]

The measurement is introduced as an index i to a sequence

of nested topological spaces fXig. Such a sequence is called a

filtration,

15X0 � X1 � X2 � � � � � Xm5X: (10)

As each inclusion induces a mapping of chains, it induces a

linear map for homology,

Figure 2. Illustration of boundary operators, and chain, cycle and boundary groups in R3. Red dots stand for empty sets.
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15HðX0Þ ! HðX1Þ ! HðX2Þ ! � � � ! HðXmÞ5HðXÞ: (11)

The above sequence describes the evolution of the homol-

ogy generators. We follow the exposition in Ref. [44] and

define by a composition mapping from HðXiÞ to HðXjÞ as

nj
i : HðXiÞ ! HðXjÞ. A new homology class c is created (born)

in Xi if it is not in the image of ni
i21. It dies in Xj if it becomes

trivial or is merged to an “older” (born before i) homology

class, i.e., its image in HðXjÞ is in the image of nj
i21, unlike its

image under nj21
i .

As shown in Figure 3, if we associate with each space Xi a

value hi denoting “time” or “length,” we can define the duration,

or the persistence length of the each homology generator c as

persistðcÞ5hj2hi: (12)

This measurement hi is usually readily available when analyz-

ing the topological feature changes. For instance, when the fil-

tration arises from the level sets of a height function.

Algorithms for Persistent Homology

In computational topology, intrinsic features of point cloud

data, that is, a point set S � Rn without additional structure,

are common subjects of investigation. For such data, a stand-

ard way to construct the filtration is to grow a solid ball cen-

tered at each point with an ever-increasing radius. If the

differences between points can generally be ignored, as is the

case for fullerenes, a common radius r can be used for all

points. In this setting, the radius r is used as the parameter for

the family of spaces in the filtration. As the value of r

increases, the solid balls will grow and simplices can be

defined through the overlaps among the set of balls. In Figure

4, fullerene C60 is used to demonstrate this process. There are

various ways of constructing abstract simplicial complexes

from the intersection patterns of the set of expanding balls,

such as �Cech complex, Vietoris–Rips complex and alpha com-

plex. The corresponding topological invariants, for example,

the Betti numbers, are in general different due to different

Figure 3. Illustration of the birth and death of a homology generator c. [Color figure can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]

Figure 4. Illustration of filtrations built on fullerene C60. Each point or atom in the point cloud data (i.e., coordinates) of the C60 is associated with a com-

mon radius r which increases gradually. As the value of r increases, the solid balls centered at given coordinates grow. These balls eventually overlap with

their neighbors at certain r values. Simplices indicating such neighborhood information can be defined through abstract r-dependent simplicial complexes,

e.g., alpha complexes and Rips complexes. Note that in the last chart, we have removed some atoms to reveal the central void. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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definitions of simplicial complexes. In this section, we discuss

computational algorithms for the design of filtrations, the con-

struction of abstract simplicial complexes, and the calculation

of Betti numbers.

Alpha complex

One possible filtration that can be derived from the unions of

the balls with a given radius around the data points (as shown

in Fig. 4) is the family of d-dependent �Cech complexes, each

of them is defined to be a simplicial complex, whose k-simpli-

ces are determined by (k 1 1)-tuples of points, such that the

corresponding d=2-balls have a nonempty intersection. How-

ever, it may contain many simplices for a large d. A variant

called the alpha complex can be defined by replacing the d=2-

ball in the above definition by the intersection of the d=2-ball

with the Voronoi cells for these data points. In both cases,

they are homotopic to the simple unions of balls, and thus

produce the same persistent homology. Interested readers are

referred to the nerve theorem for details.[45]

Vietoris–Rips complex

The Vietoris–Rips complex, which is also known as Vietoris

complex or Rips complex, is another type of abstract simplicial

complex derived from the union of balls. In this case, for a k-

simplex to be included, instead of requiring that the (k 1 1)

d=2-balls to have a common intersection, one only needs

them to intersect pairwise. The �Cech complex is a subcomplex

of the Rips complex for any given d, however, the latter is

much easier to compute and is also a subcomplex of the for-

mer at the filtration parameter of
ffiffiffi
2
p

d.

Euclidean-distance based filtration

It is straightforward to use the metric defined by the Euclidean

space in which the data points are embedded. The pairwise

distance can be stored in a symmetric distance matrix dij

� �
,

with each entry dij denoting the distance between point i and

point j. Each diagonal term of the matrix is the distance from

a certain point to itself, and thus is always 0. The family of

Rips complexes is parameterized by d, a threshold on the dis-

tance. For a certain value of d, the Vietoris–Rips complex can

be calculated. In 3D, more specifically, for a pair of points

whose distance is below the threshold d, they form a 1-

simplex in the Rips complex; for a triplet of points, if the dis-

tance between every pair is smaller than d, the 2-simplex

formed by the triplet is in the Rips complex; whether a 3-

simplex is in the Rips complex can be similarly determined.

The Euclidean-distance based Vietoris–Rips complexes are

widely used in persistent homology due to their simplicity and

efficiency.

Correlation matrix based filtration

Another way to construct the metric space is through a cer-

tain correlation matrix, which can be built, for example, from

theoretical predictions and experimental observations. From a

previous study on protein stability, flexibility-rigidity index (FRI)

theory has been proven accurate and efficient.[39] The reason

for its success is that the geometric information is harnessed

properly through the special transformation to a correlation

matrix. The key to this transformation is the geometric to topo-

logical mapping. Instead of direct geometric information of the

embedding in the Euclidean space, a mapping through certain

kernel functions is able to interpret spatial locations of atoms in

a particular way that reveals the atom stability quantitatively.

We believe that this functional characterization is of importance

to the study of not only proteins, but also other molecules.

Here, we present a special correlation matrix based Vietoris

complex on the FRI method. To define the metric used, we

briefly review the concepts of the FRI theory. First, we intro-

duce the geometry to topology mapping.[39–41] We denote the

coordinates of atoms in the molecule we study as

r1; r2; � � � ; rj; � � � ; rN, where rj 2 R3 is the position vector of the

jth atom. The Euclidean distance between ith and jth atoms rij

can then be calculated. Based on these distances, topological

connectivity matrix can be constructed with monotonically

decreasing radial basis functions. A general form for a connec-

tivity matrix is,

Cij5wjUðrij; gjÞ; (13)

where wj is associated with atomic types, parameter gj > 0 is

the atom-type related characteristic distance, and Uðrij; gjÞ is a

radial basis correlation kernel.

The choice of kernel is of significance to the FRI model. It

has been shown that highly predictive results can be obtained

by the exponential type and Lorentz type of kernels.[39–41]

Exponential type of kernels is

Uðr; gÞ5e2 r=gð Þj ; g > 0; j > 0 (14)

and the Lorentz type of kernels is

Uðr; gÞ5 1

11ðr=gÞt : g > 0; t > 0 (15)

The parameters j and t are adjustable.

We define the atomic rigidity index li for ith atom as

li5
XN

j51

wjUðrij; gjÞ; 8i51; 2; � � � ;N: (16)

A related atomic flexibility index can be defined as the

inverse of the atomic rigidity index.

fi5
1

li

; 8i51; 2; � � � ;N: (17)

The FRI theory has been intensively validated by comparing

with the experimental data, especially the Debye-Waller factor

(commonly known as the B-factor).[39] While simple to evalu-

ate, their applications in B-factor prediction yield decent

results. The predicted results are proved to be highly accurate

while the procedure remains efficient. FRI is also used to ana-

lyze the protein folding behavior.[41]
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To construct an FRI-based metric space, we need to design

a special distance matrix, in which the functional correlation is

measured. If we directly use the correlation matrix in eq. (13)

for the filtration, atoms with less functional relation form more

simplices, resulting in a counter-intuitive persistent homology.

However, this problem can be easily remedied by defining a

new correlation matrix as Mij512Cij , that is,

Mij512wjUðrij; gjÞ: (18)

Thus a kernel function induces a metric space under this

definition. Figure 5a demonstrates such a metric space based

filtration of fullerene C60, in which we assume wj 5 1 as only

one type of atom exists in this system. The generalized expo-

nential kernel in eq. (14) is used with parameters j 5 2.0 and

g 5 6.0Å.

With the correlation matrix based filtration, the correspond-

ing Vietoris–Rips complexes can be straightforwardly con-

structed. Specifically, given a certain filtration parameter h0, if

the matrix entry Mij � h0, an edge formed between ith and jth

atoms, and a simplex is formed if all of its edges are present.

The complexes are built incrementally as the filtration parame-

ter grows. Figures 5b–5d illustrate this process with three fil-

tration threshold values h 5 0.1, 0.3, and 0.5 Å, respectively.

We use the blue color to indicate formed edges. It can be

seen that simplicial complexes keep growing with the increase

of filtration parameter h. The diagonal terms are always equal

to zero, which means that N atom centers (0-simplices) form

the first complex in the filtration.

Application to Fullerene Structure Analysis
and Stability Prediction

In this section, the theory and algorithms of persistent homol-

ogy are used to study the structure and stability of fullerene

molecules. The ground-state structural data of fullerene mole-

cules used in our tests are downloaded from the CCL webpage

and fullerene isomer data and corresponding total curvature

energies[46] are adopted from David Tomanek’s carbon

Figure 5. Correlation matrix based filtration of fullerene C60 (labels on both axes are atomic numbers). A correlation matrix is constructed from the FRI

theory. As the filtration parameter increases, the Rips complex based on this matrix expands accordingly. a) The correlation based matrix for fullerene C60;

b)–d) demonstrate the connectivity between atoms at the filtration threshold d 5 0.1, 0.3, and 0.5 Å, respectively. The blue color entries represent the pairs

already forming simplices. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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fullerene webpage. In these structural data, coordinates of fuller-

ene carbon atoms are given. The collection of atom center loca-

tions of each molecule forms a point cloud in R3. With only one

type of atom, the minor heterogeneity of atoms due to their

chemical environments in these point clouds can be ignored in

general. We examined both distance based and correlation

matrix based metric spaces in our study. The filtration based on

the FRI theory is shown to predict the stability very well.

Before we discuss the more informative persistent homology

of fullerenes, we discuss the basic structural properties simply

based on their Euler characteristics (vertex number minus edge

number plus polygon number). The Euler characteristic, as a top-

ological property, is invariant under nondegenerate shape defor-

mation. For a fullerene cage composed of only pentagons and

hexagons, the exact numbers of these two types of polygons can

be derived from the Euler characteristic. For instance, if we have

np pentagon and nh hexagons in a CN fullerene cage, the corre-

sponding numbers of vertices, edges and faces are ð5np16nhÞ=3;

ð5np16nhÞ=2 and np1nh, respectively, as each vertex is shared

by three faces, and each edge is shared by two faces. As the full-

erene cage is treated as a two dimensional surface, we have the

Euler characteristic ð5np16nhÞ=32ð5np16nhÞ=21ðnp1nhÞ52,

according to Euler’s polyhedron formula, as it is a topological

sphere. Thus, we have np 5 12, which means a fullerene cage

structure must have 12 pentagons and correspondingly N=2210

hexagons. Therefore, for a CN fullerene cage, we have N vertices,

3N=2 edges and N=212 faces.

Barcode representation of fullerene structures and nanotube

Barcodes for Fullerene Molecule. In Figure 6, we demonstrate

the persistent homology analysis of fullerene C20 and C60

using the barcode representation generated by Javaplex.[9]

The x-axis represents the filtration parameter h. If the distance

between two vertices is below or equal to certain h0, they will

form an edge (1-simplex) at h0. Stated differently, the simplical

complex generated is equivalent to the raidus filtration with

radius parameter h=2. In the barcode, the persistence of a cer-

tain Betti number is represented by an interval (also known as

bar), denoted as L
bj

i ; j50; 1; 2; i51; 2; � � �. Here, j 2 f0; 1; 2g as

we only consider the first three Betti numbers in this work.

From top to bottom, the behaviors of b0, b1, and b2 are

depicted in three individual panels. It is seen that as h grows,

isolated atoms initialized as points will gradually grow into

solid spheres with an ever-increasing radius. This phenomenon

is represented by the bars in the b0 panel. Once two spheres

overlap with each other, one b0 bar is terminated. Therefore,

the bar length for the independent 0-th homology generator

(connected component) c0
i , denoted as L

b0

i 5persistðc0
i Þ, indi-

cates the bond length information of the molecule. As can be

seen from Figure 6, for fullerene C20, all b0 bar lengths are

around 1.45Å and the total number of components equals

exactly to 20. Conversely, fullerene C60 has two different kinds

of bars with lengths around 1.37 and 1.45 Å, respectively, indi-

cating its two types of bond lengths.

More structure information is revealed as b1 bars, which repre-

sent independent noncontractible 1-cycles (loops), emerge. It is

seen in the fullerene C20 figure, that there are 11 equal-length b1

bars persisting from 1.45 to 2.34 Å. As fullerene C20 has 12 pen-

tagonal rings, the Euler characteristics for a 1D simplicial sub-

complex (1-skeleton) can be evaluated from the Betti numbers,

nvertice2nedge5b02b1: (19)

Here, b0, nvertice, and nedge are 1, 20, and 30, respectively.

Therefore, it is easy to obtain that b1511 for fullerene C20, as

demonstrated in Figure 6. It should be noticed that all b1 bars

end at filtration value h 5 2.34 Å, when five balls in each pen-

tagon with their ever-increasing radii begin to overlap to form

a pentagon surface.

Figure 6. Illustration of the barcodes for fullerene C20(left chart) and C60 (right chart) filtration on associated Rips complexes. Each chart contains three pan-

els corresponding to the Betti number sequences b0; b1, and b2, from top to bottom. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Even more structural information can be derived from fuller-

ene C60’s b1 barcodes. First, there are 31 bars for b1. This is

consistent with the Euler characteristics in eq. (19), as we have

12 pentagons and 20 hexagons. Second, two kinds of bars cor-

respond to the coexistence of pentagonal rings and hexagonal

rings. They persist from 1.45 to 2.35 Å and from 1.45 to 2.44

Å, respectively.

As the filtration progresses, b2 bars (membranes enclosing

cavities) tend to appear. In fullerene C20, there is only one b2 bar,

which corresponds to the void structure in the center of the

cage. For fullerene C60, we have 20 b2 bars persisting from 2.44

to 2.82 Å, which corresponds to hexagonal cavities as indicated

in the last chart of Figure 1. Basically, as the filtration goes, each

node in the hexagon ring joins its four nearest neighbors, and

fills in the relevant 2-simplices, yielding a simplical complex

whose geometric realization is exactly the octahedron. There is

another b2 bar due to the center void as indicated in the last

chart of Figure 6, which persists until the complex forms a solid

block. Note that two kinds of b2 bars represent entirely different

physical properties. The short-lived bars are related to local

behaviors and fine structure details, while the long-lived bar is

associated with the global feature, namely, the large cavity.

Barcodes for nanotube

Another example is a nanotube as demonstrated in Figure 7.

The nanotube structure is constructed using the software

TubeApplet webpage. We set tube indices to (6,6), the number

of unit cell to 10, tube radius to 4.05888 Å, and lattice con-

stant to 2.454 Å. We extract a segment of three unit cells from

the nanotube and use the persistent homology analysis to

generate its barcodes. Our results are demonstrated in Figure

7. Different from fullerene molecules, the nanotube has a long

b1 bar representing the tube circle. It should also be noticed

that b2 barcodes are concentrated in two different regions.

The first region is when x is around 2.5–2.7 Å. The b2 barcodes

in this domain are generated by hexagonal rings on the nano-

tube. The other region appears when x is slightly larger than

7.0 Å. The corresponding b2 barcodes are representation of

the void formed between different layer of carbons.

Unlike commonly used topological methods,[31] persistent

homology is able to provide a multiscale representation of the

topological features. Usually, global behavior is of major con-

cern. Therefore, the importance of the topological features is

typically measured by their persistence length. In our analysis,

we have observed that except for discretization errors, topo-

logical invariants of all scales can be equally important in

revealing various structural features of the system of interest.

In this work, we demonstrate that both local and global topo-

logical invariants play important roles in quantitative physical

modeling.

Stability analysis of small fullerene molecules

From the above analysis, it can be seen that detailed structural

information has been incorporated into the corresponding

Figure 7. Illustration of persistent homology analysis for a nanotube. a) The generated nanotube structure with 10 unit layers. b) and c) A 3 unit layer seg-

ment extracted from the nanotube molecule in a). d) Barcodes representation of the topology of the nanotube segment. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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barcodes. Conversely, molecular structures determine molecu-

lar functions.[39–41] Therefore, persistent homology can be

used to predict molecular functions of fullerenes. To this end,

we analyze the barcode information. For each Betti number bj,

we define an accumulated bar length Aj as the summation of

barcode lengths,

Aj5
X
i51

Lj
i; j50; 1; 2; (20)

where Lj
i is the length of the ith bar in the jth-homology bar-

code. Sometimes, we may only sum over certain types of barc-

odes. We define an average accumulated bar length as

Bj52
X
i51

Lj
i=N, where N is the total number of atoms in the

molecule.

Zhang et al.[34,38] found that for small fullerene molecule

series C20–C70, their ground-state heat of formation energies

gradually decrease with the increase of the number of atoms,

except for C60 and C70. The decreasing rate, however, slows

down with the increase of the number of atoms. With data

adopted from Ref. [34], Figure 8 demonstrates this phenom-

enon. This type of behavior is also found in the total energy

(STO-3G/SCF at MM3) per atom,[47] and in average binding

energy of fullerene C2n which can be broken down to n

dimmers (C2).[48]

To understand this behavior, many theories have been pro-

posed. Zhang et al.[38] postulate that the fullerene stability is

related to the ratio between the number of pentagons and

the number of atoms for a fullerene molecule. Higher percent-

age of pentagon structures results in relatively higher levels of

the heat of formation. Conversely, a rather straightforward iso-

lated pentagon rule (IPR) states that the most stable fullerenes

are those in which all the pentagons are isolated. The IPR

explains why C60 and C70 are relatively stable as both have

only isolated pentagons. Raghavachari’s neighbour index[49]

provides another approach to quantitatively characterize the

relative stability. For example, in C60 of In symmetry, all 12 pen-

tagons have neighbour index 0, thus the In C60 structure is

very stable.

In this work, we hypothesize that fullerene stability depends

on the average number of hexagons per atom. The larger

number of hexagons is in a given fullerene structure, the more

stable it is. We utilize persistent homology to verify our

hypothesis. As stated in Section Barcode representation of full-

erene structures and nanotube, there are two types of b2 bars,

namely, the one due to hexagon-structure-related holes and

that due to the central void. Their contributions to the heat of

formation energy are dramatically different. Based on our

hypothesis, we only need to include those b2 bars that are

due to hexagon-structure-related holes in our calculation of

the average accumulated bar length B2. As depicted in the

right chart of Figure 8, the profile of the average accumulated

bar length closely resembles that of the heat of formation

energy. Instead of a linear decrease, both profiles exhibit a

quick drop at first, then the decreasing rate slows down grad-

ually. Although our predictions for C30 and C32 fullerenes do

not match the corresponding energy profile precisely, which

may be due to the fact that the data used in our calculation

may not be exactly the same ground-state data as those in

the literature,[38] the basic characteristics and the relative rela-

tions in the energy profile are still well preserved. In fact, the

jump at the C60 fullerene is captured and stands out more

obviously than the energy profile. This may be due to the fact

that our method distinguishes not only pentagon and hexa-

gon structures, but also the size differences within each of

them. We are not able to present the full set of energy data in

Ref. [34] because we are limited by the availability of the

ground-state structure data.

To quantitatively validate our prediction, the least squares

method is used to fit our prediction with the heat of forma-

tion energy, and a correlation coefficient is defined,[39]

Figure 8. Comparison between the heat of formation energies computed using a quantum theory[34] (left chart) and average accumulated bar length (right

chart) for fullerenes. The units for the heat of formation energy and average accumulated bar length are eV/atom and Å/atom, respectively. Although the

profile of average accumulated bar length of fullerenes does not perfectly match the fullerene energy profile, they bear a close resemblance in their basic

characteristics.
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XN

i51

ðBe
i 2

�B
eÞ2
XN

i51

ðBt
i 2

�B
tÞ2

" #1=2
; (21)

where Be
i represents the heat of formation energy of the ith

fullerene molecule, and Be
t is our theoretical prediction. The

parameter �B
e

and �B
t

are the corresponding mean values. The

fitting result is demonstrated in Figure 9. The correlation coef-

ficient is close to unity (0.985), which indicates the soundness

of our model and the power of persistent homology for quan-

titative predictions.

Total curvature energy analysis of fullerene isomers

Having demonstrated the ability of persistent homology for

the prediction of the relative stability of fullerene molecules,

we further illustrate the effectiveness of persistent homology

for analyzing the total curvature energies of fullerene isomers.

Fullerene molecules CN are well known to admit various iso-

mers,[50] especially when the number (N) of atoms is large. To

identify all of the possible isomers for a given N, many elegant

mathematical algorithms have been proposed. Coxeter’s con-

struction method[29,35] and the ring spiral method[30] are two

popular choices. Before discussing the details of these two

methods, we need to introduce the concept of fullerene dual.

Mathematically, a dual means dimension-reversing dual. From

Euler’s polyhedron theorem, if a spherical polyhedron is com-

posed of nvertice vertices, nedge edges and nface faces, we have

the relation nvertice2nedges1nface52. Keeping the nedge

unchanged while swapping the other two counts, we have its

dual, which has nvertice faces and nface vertices. For example,

the cube and the octahedron form a dual pair, the dodecahe-

dron and the icosahedron form another dual pair, and the tet-

rahedron is its self-dual. This duality is akin to the duality

between the Delaunay triangulation and the corresponding

Voronoi diagram in computational geometry.

In fullerenes, each vertex is shared by three faces (each of

them is either a pentagon or a hexagon). Therefore, fullerene

dual can be represented as a triangulation of the topological

sphere. Based on this fact, Coxeter is able to analyze the icosa-

hedral triangulations of the sphere and predict the associated

isomers. This method, although mathematically rigorous, is dif-

ficult to implement for structures with low symmetry, thus is

inefficient in practical applications.[31] Conversely, in the Schle-

gel diagram,[51] each fullerene structure can be projected into

a planar graph made of pentagons and hexagons. The ring

spiral method is developed based on the spiral conjecture,[31]

which states “The surface of a fullerene polyhedron may be

unwound in a continuous spiral strip of edge-sharing penta-

gons and hexagons such that each new face in the spiral after

the second shares an edge with both (a) its immediate prede-

cessor in the spiral and (b) the first face in the preceding spiral

that still has an open edge.” Basically, for fullerenes of N

atoms, one can list all possible spiral sequences of pentagons

and hexagons, and then wind them up into fullerenes. If no

conflict happens during the process, an isomer is generated.

Otherwise, we neglect the spiral sequence. Table 1 lists the

numbers of isomers for different fullerenes,[31] when enantiom-

ers are regarded as equivalent 1. It is seen that the number of

isomers increases dramatically as N increases. Total curvature

energies of many fullerene isomers are available at the carbon

fullerene webpage.

In 1935, Hakon defined sphericity as a measure of how

spherical (round) an object is.[52] By assuming particles having

the same volume but differing in surface areas, Hakon came

up with a sphericity function,[52]

W5
p1=3ð6VpÞ2=3

Ap
; (22)

where Vp and Ap are the volume and the surface area of the

particle. Obviously, a sphere has sphericity 1, while the spheric-

ity of nonspherical particles is less than 1. Let us assume that

fullerene isomers have the same surface area as the perfect

sphere Ap54pR2, we define a sphericity measure as

Wc5
Vp

Vs
5

6p1=2Vp

A
3=2
p

; (23)

where Vs is the volume of a sphere with radius R. By the iso-

perimetric inequality, among all simple closed surfaces with

given surface area Ap, the sphere encloses a region of maximal

volume. Thus, the sphericity of nonspherical fullerene isomers

is less than 1. Consequently, in a distance based filtration

Figure 9. The comparison between quantum mechanical simulation

results[34] and persistent homology prediction of the heat of formation

energy (eV/atom). Only local b2 bars that are due to hexagon structures

are included in our average accumulated bar length B2. The correlation

coefficient from the least-squares fitting is near perfect (Cc50:985). [Color

figure can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]

Table 1. Numbers of isomers for small fullerenes.

Natom 20 24 26 28 30 32 34 36 38 40 50 60

Nisomer 1 1 1 2 3 6 6 15 17 40 271 1812
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process, the smaller sphericity a fullerene isomer is, the shorter

its global b2 bar will be.

On fullerene surface, the local curvature characterizes the

bond bending away from the plane structure required by the

sp[2] hybrid orbitals.[53] Therefore, the relation between fuller-

ene curvature and stability can be established and confirmed

using ab initio density functional calculations.[46] However,

such an analysis favors fullerenes with infinitely many atoms.

Let us keep the assumption that for a given fullerene CN, all its

isomers have the same surface area. We also assume that the

most stable fullerene isomer CN is the one that has a near per-

fect spherical shape. Therefore, each fullerene isomer is subject

to a (relative) total curvature energy Ec per unit area due to its

accumulated deviations from a perfect sphere,

Ec5

ð
C
l ðj12j0Þ21ðj22j0Þ2
h i

dS (24)

5

ð
C

2l
1

2
ð2H2j0Þ21K

� 	
dS; (25)

where C is the surface, l is bending rigidity, j1 and j2 are the two

principal curvatures, and j051=R is the constant curvature of the

sphere with radius R. Here, H and K are the mean and Gaussian

curvature of the fullerene surface, respectively. Therefore, a fuller-

ene isomer with a smaller sphericity will have a higher total curva-

ture energy. Based on the above discussions, we establish the

inverse correlation between fullerene isomer global b2 bar lengths

and fullerene isomer total curvature energies.

Obviously, the present fullerene curvature energy (24) is a

special case of the Helfrich energy functional for elasticity of

cell membranes[54]

Ec5

ð
C

1

2
KCð2H2C0Þ21KGK

� 	
dS; (26)

where, C0 is the spontaneous curvature, and KC and KG are

the bending modulus and Gaussian saddle-splay modulus,

respectively. The Gauss–Bonnet theorem states that for a com-

pact two-dimensional Riemannian manifold without boundary,

the surface integral of the Gaussian curvature is 2pv, where v
is the Euler characteristic. Therefore, the curvature energy

admits a jump whenever there is a change in topology which

leads to a change in the Euler characteristic. A problem with

this discontinuity in the curvature energy is that the topologi-

cal change may be induced by an infinitesimal change in the

geometry associated with just an infinitesimal physical energy,

which implies that the Gaussian curvature energy functional is

unphysical. Similarly, Hadwiger type of energy functionals,

which make use of a linear combination of the surface area,

surfaced enclosed volume, and surface integral of mean curva-

ture and surface integral of Gaussian curvature,[55] may be

unphysical as well for systems involving topological changes.

However, this is not a problem for differential geometry based

multiscale models which utilize only surface area and surface

enclosed volume terms,[56–59] as we use the Eulerian represen-

tation and the proposed generalized mean curvature terms

but not Gaussian curvature terms. Moreover, in the present

model for fullerene isomers, there is no topological change.

To verify our assumptions, we consider a family of isomers

for fullerene C40. It has a total of 40 isomers. We compute the

global b2 bar lengths of all isomers by Euclidean distance fil-

tration and fit their values with their total curvature energies

with a negative sign. Figure 10 (right chart) shows an excellent

correlation between the fullerene total curvature energies and

our persistent homology based predictions. The correlation

coefficient is 0.956, which indicates that the proposed persis-

tent homology analysis of nonsphericity and our assumption

of a constant surface area for all fullerene isomers are sound.

In reality, fullerene isomers may not have an exactly constant

surface area because some distorted bonds may have a longer

bond length. However, the high correlation coefficient found

in our persistent homology analysis implies that either the

average bond lengths for all isomers are similar or the error

due to nonconstant surface area is offset by other errors.

Figure 10. Comparison between the distance filtration (left chart) and the correlation matrix filtration (right chart) in fullerene C40 stability analysis. Fuller-

ene C40 has 40 isomers. Each of them has an associated total curvature energy (eV). We calculate our average accumulated bar lengths from both distance

filtration and the correlation matrix based filtration, and further fit them with total curvature energies. The correlation coefficients for our fitting are 0.956

and 0.959, respectively. It should be noticed that only the central void related b2 bars (i.e., the long-lived bars) are considered. The exponential kernel is

used in matrix filtration with parameter g 5 4 and j 5 2. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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To further validate our persistent homology based method

for the prediction of fullerene total curvature energies, we

consider a case with significantly more isomers, namely, fuller-

ene C44, which has 89 isomers. In this study, we have again

found an excellent correlation between the fullerene total cur-

vature energies and our persistent homology based predic-

tions as depicted in the right chart of Figure 11. The

correlation coefficient for this case is 0.948. In fact, we have

checked more fullerene isomer systems and obtained similar

predictions.

Finally, we explore the utility of our correlation matrix based

filtration process for analysis of fullerene total curvature ener-

gies. In place of Euclidean distance based filtration, the correla-

tion matrix based filtration is used. To demonstrate the basic

principle, eq. (18) with the generalized exponential kernel in

eq. (14) is used in the filtration. We assume wj 5 1 as fullerene

molecules have only carbon atoms. To understand the correla-

tion matrix based filtration method, the fullerene C60 is used

again. We fixed the power j 5 2, and adjust the value of char-

acteristic distance g. Figure 12 gives the calculated barcodes

with g 5 2 and g 5 20. It can be seen that these barcodes

share a great similarity with the Euclidean distance based fil-

tration results depicted in the right chart of Figure 6. All of

topological features, namely, two kinds of bonds in b0, the

pentagonal rings and the hexagonal rings in b1, and also the

hexagonal cavities and the central void in b2 are clearly

Figure 11. Further validation of our method with 89 isomers for fullerene C44. The correlation coefficients for distance filtration (left chart) and correlation

matrix based filtration (right chart) are 0.948 and 0.952, respectively. In the latter method, the exponential kernel is used with parameter g 5 4 and j 5 2.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 12. Illustration of the persistent barcodes generated using correlation matrix based filtrations with different characteristic distances. The exponential

kernel model with power j 5 2 is used. The characteristic distances in the left and right charts are respectively g 5 2 and g 5 20. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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demonstrated. However, it should be noticed that, unlike the

distance based filtration, the matrix filtration does not gener-

ate linear Euclidean distance relations. However, relative corre-

spondences within the structure are kept. For instances, in b2

bars, the bar length ratio between the central void part and

the hexagonal hole part in Figure 12 is drastically different

from its counterpart in Figure 6. From our previous experience

in flexibility and rigidity analysis,[39–41] these rescaled distance

relations have a great potential in capturing the essential

physical properties, such as, flexibility, rigidity, stability, and

compressibility of the underlying system.

Similarly, the global b2 bar lengths obtained from the corre-

lation matrix based filtration are utilized to fit with the total

curvature energies of fullerene isomers. The correlation coeffi-

cients for the correlation distance matrix filtration are 0.959

and 0.952, respectively for C40 and C44 fullerene isomers. The

corresponding results are demonstrated in the right charts of

Figures 10 and 11, respectively. It can be seen that the correla-

tion matrix filtration is able to capture the essential stability

behavior of fullerene isomers. In fact, results from correlation

matrix based filtrations are slightly better than those of Euclid-

ean distance based filtrations. In correlation matrix based filtra-

tions, the generalized exponential kernel is used with

parameter g 5 4 and j 5 2. These parameters are chosen

based on our previous flexibility and rigidity analysis of protein

molecules. Overall, best prediction is obtained when the char-

acteristic distance is about 2–3 times of the bond length and

power index j is around 2–3. Fine tuning of the parameters

for each single case may yield even better result. However, this

aspect is beyond the scope of the present work.

Conclusion

Persistent homology is an efficient tool for the qualitative anal-

ysis of topological features that last over scales. In the present

work, for the first time, persistent homology is introduced for

the quantitative prediction of fullerene energy and stability.

We briefly review the principal concepts and algorithms in per-

sistent homology, including simplex, simplicial complex, chain,

filtration, persistence, and paring algorithms. Euler characteris-

tics analysis is used to decipher the barcode representation of

fullerene C20 and C60. A thorough understanding of fullerene

barcode origins enables us to construct physical models based

on local and/or global topological invariants and their accumu-

lated persistent lengths. By means of an average accumulated

bar length of the second Betti number that corresponds to

fullerene hexagons, we are able to accurately predict the rela-

tive energies of a series of small fullerenes. To analyze the total

curvature energies of fullerene isomers, we propose to use

sphericity to quantify the nonspherical fullerene isomers and

correlate the sphericity with fullerene isomer total curvature

energies, which are defined as a special case of the Helfrich

energy functional for elasticity. Topologically, the sphericity of

a fullerene isomer is measured by its global second homology

bar length in the barcode, which in turn gives rise to the pre-

diction of fullerene isomer total curvature energies. We dem-

onstrate an excellent agreement between total curvature

energies and our persistent homology predictions for the iso-

mers of fullerene C4 and C44. Finally, a new filtration based on

the correlation matrix of the flexibility and rigidity index is pro-

posed and found to provide even more accurate predictions

of fullerene isomer total curvature energies.
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