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a b s t r a c t

Elasticity theory is an important component of continuum mechanics and has had widely
spread applications in science and engineering.Material interfaces are ubiquitous in nature
and man-made devices, and often give rise to discontinuous coefficients in the governing
elasticity equations. In this work, the matched interface and boundary (MIB) method
is developed to address elasticity interface problems. Linear elasticity theory for both
isotropic homogeneous and inhomogeneous media is employed. In our approach, Lamé’s
parameters canhave jumps across the interface and are allowed to bepositiondependent in
modeling isotropic inhomogeneous material. Both strong discontinuity, i.e., discontinuous
solution, and weak discontinuity, namely, discontinuous derivatives of the solution, are
considered in the present study. In the proposed method, fictitious values are utilized
so that the standard central finite different schemes can be employed regardless of the
interface. Interface jump conditions are enforced on the interface, which in turn, accurately
determines fictitious values.We design newMIB schemes to account for complex interface
geometries. In particular, the cross derivatives in the elasticity equations are difficult
to handle for complex interface geometries. We propose secondary fictitious values and
construct geometry based interpolation schemes to overcome this difficulty. Numerous
analytical examples are used to validate the accuracy, convergence and robustness of the
presentMIBmethod for elasticity interface problemswith both small and large curvatures,
strong and weak discontinuities, and constant and variable coefficients. Numerical tests
indicate second order accuracy in both L∞ and L2 norms.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Elasticity interface problems play significant roles in continuum mechanics in which elasticity theory and related gov-
erning partial differential equations (PDEs) are commonly employed to describe various material behaviors. For this class of
problems, an interface description in the elasticity theory is indispensable whenever there are voids, pores, inclusions, dis-
locations, cracks or composite structures inmaterials [1–4]. Elasticity interface problems are particularly important in tissue
engineering, biomedical science and biophysics [5–7]. In many situations, the interface is not static such as fluid–structure
interfacial boundaries [8]. Discontinuities in material properties often occur over the interface. Mathematically, there are
two types of discontinuities, namely, strong discontinuities and weak discontinuities. Strong discontinuities are referred
to situations where the displacement has jumps across the interface. In contrast, weak discontinuities are concerned with
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jumps in the gradient of the displacement, whereas the displacement is still continuous. In the linear elasticity theory, the
stress–strain relation is governed by the constitutive equations. For isotropic homogeneousmaterial, constitutive equations
can be determined with any two terms of bulk modulus, Young’s modulus, Lamé’s first parameter, shear modulus, Poisson’s
ratio, and P-wave modulus [9]. If these moduli are position dependent functions, related constitutive equations can be used
to describe elasticity property of isotropic inhomogeneous media. In seismic wave equations, inhomogeneity is accounted
by assuming Lamé’s parameters to be a position dependent function [10]. This model is also used in the elasticity analysis
of biomolecules [5–7].

The study of the analytical solution for elasticity interface problems dated back to Eshelby in 1950s [11,12]. Working on
inclusion and inhomogeneity problems, Eshelby found that for an infinite and elastically isotropic systemwith an ellipsoidal
inhomogeneity, the eigenstrain distribution is uniform inside the inhomogeneity when it is subjected to a uniformly applied
stress [11,12]. Much progress has been made on this area in the past few decades. Recently, semianalytic approaches for
finding stress tensors have been proposed for arbitrarily shaped inhomogeneity [13].

Computationally, elasticity interface problems are more difficult than the corresponding Poisson interface problems
because of the vector equation and cross derivatives. However, many numerical methods have been designed for elasticity
interface problems. Based on meshes used, these methods can be classified into two types, i.e., algorithms relied on
body-fitting meshes and algorithms based on special interface schemes. For the first type, meshes are generated to fit to
the geometry of the interface without cutting through the interface. Therefore, adaptive meshes with local refinement
techniques are frequently employed [14]. In the second type of algorithms, meshes are allowed to cut through the
interface and particular schemes are designed to incorporate the interface information into the element shape function
or discretization scheme. Immersed interface method (IIM) [15] has been used to solve elasticity interface problems for
isotropic homogeneous media [16,17]. In this finite difference based algorithm, a local optimization scheme is designed
for irregular grid points and the final linear equation with a non-symmetric matrix is solved by special solvers like BICG
or GRMES. Second order accuracy is obtained [16]. A second-order sharp numerical method has been developed for linear
elasticity equations [18]. Finite element based methods are also proposed for elasticity interface problems. Among them,
the partition of unity method (PUM), the generalized finite element method (GFEM) and extended finite element method
(XFEM) are developed to capture the non-smooth property of the solution over the interface by adding enrichment functions
to the approximation [3,4,2]. Through the weak enforcement of the continuity, discontinuous Galerkin based methods have
been employed to simulate strong and weak discontinuities [19–21]. Recently, immerse finite element (IFM) method has
been proposed to solve elasticity problems with inhomogeneous jump conditions [22–24]. In this approach, finite element
basis functions are adjusted locally to satisfy the jump conditions across the interface. Sharp-edged interface is considered
for a special elasticity interface problem [25]. Lin, Sheen and Zhang have proposed a bilinear IFM and further modified it to
a locking-free version [26,27]. For both compressible and nearly incompressible media, this method works well and offers
second order accuracy. Recently, immersed meshfree Galerkin method has also been proposed for composite solids [28].
Most recently, a Nitsche type method has been proposed for elasticity interface problems [29]. Given the importance
of elasticity interface problems in science and engineering, it is expected that more efficient numerical methods will be
developed for this class of problems in the near future.

The matched interface and boundary (MIB) method was originally developed for solving Maxwell’s equations [30] and
elliptic interface problems [31–35]. A unique feature of the MIB method is that it provides a systematic procedure to
achieve arbitrarily high order convergence for simple interfaces [30,33] and second order accuracy for arbitrarily complex
interface geometry [31,32]. The essential idea is to introduce fictitious values at irregular mesh points which form fictitious
domains [36] so that standard finite difference schemes can still be used across the interface. The lowest order interface
jump conditions are iteratively enforced at the interface which determines fictitious values on fictitious domains. Typically,
whenever possible, a high-dimensional interface problem is split into simple one-dimensional (1D) interface problems,
similar to our earlier discrete singular convolution algorithm [36]. Due to the great flexibility in the construction of fictitious
approximations, the MIB method has been shown to deliver up to 16th order accuracy for simple interfaces [30,33] and
robust second order accuracy for arbitrarily complex interface geometry with geometric singularities (i.e., non-smooth
interfaceswith Lipschitz continuity) [31,32] and singular sources [35]. In the past decades,MIBmethod has been applied to a
variety of problems. In computational biophysics, anMIB based Poisson–Boltzmann solver,MIBPB [37], has been constructed
for the analysis of the electrostatic potential of biomolecules [31,35,38], molecular dynamics [39] and charge transport
phenomenon [40,41]. Zhao has developed robust MIB schemes for the Helmholtz problems [42,43]. A second order accurate
MIB method is constructed by Zhou and coworkers to solve the Navier–Stokes equations with discontinuous viscosity and
density [44]. Recently, the MIB method has been used to solve elliptic equations with multi-material interfaces [45].

The objective of the present paper is to introduce the MIB method for solving elasticity interface problems. We consider
both strong and weak discontinuities for isotropic homogeneous and inhomogeneous media. Computationally, the cross
derivative terms in the elasticity model give rise to a new challenge for the MIB method when the interface geometry is
complex. To overcome this difficulty, we modify the traditional fictitious definition and redefine fictitious values. With
the MIB dimension splitting technique, a new fictitious representation is generated for each irregular mesh point based on
elastic jumpconditions and local geometry. Secondary fictitious values are constructed by the interpolation of these fictitious
values and function values. We have designed schemes to deal with both small curvature and large curvature for complex
interface geometries. To validate our method, analytical tests for different types of discontinuities and interface geometries
are constructed. We demonstrate the second order accuracy of our MIB schemes for elasticity interface problems.
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Fig. 1. Deformation in the continuum where two points P1 and P2 are deformed to P∗

1 and P∗

2 respectively.

The rest of this paper is organized as follows. The basic setting of elasticity interface problems is presented in Section 2.
The linear elasticity equations, interface jump conditions and constitutive laws are discussed in detail to facilitate further
consideration. Section 3 is devoted to the construction of MIB algorithms. General fictitious schemes are proposed for
elasticity interface problems. Secondary fictitious values are introduced for cross derivative terms. Ourmethod is extensively
validated by analytical tests with complex interface geometries in Section 4. This paper ends with a conclusion.

2. Formulation of the elasticity interface problem

In this section, the elasticity problem with material interfaces is formulated. First, the governing equations of the linear
elasticity interface problem are derived. Then the weak solution to the governing equation is defined. Based on the weak
solution, the interface conditions are derived for the linear elasticity interface problem. Finally, the Dirichlet boundary
condition is employed to make the linear elasticity interface problem computationally well-posed.

2.1. Linear elasticity equations

When solid objects are subjected to external or internal loads, they deform and led to stress. If the deformation of the
solid is relatively small, linear relationships between the components of stress and strain are maintained. Consequently,
linear elasticity theory is valid. In practice, linear elasticity theory is applicable to a wide range of natural and engineering
materials, and thus extensively used in structural analysis and engineering design.

Fig. 1 illustrates the displacement in a two-dimensional (2D) elastic motion. The displacement under an infinitesimal
perturbation in position δx can be approximated by the linear term

ui(x + δx) ≈ ui(x)+

2
j=1

∂ui(x)
∂xj

δxj := ui(x)+ δui, i = 1, 2, (1)

where x = (x1, x2) is the position of a point of the un-deformed elastic body, ui is the ith component of the displacement
vector and δui is the relative displacement

δui =

2
j=1

∂ui(x)
∂xj

δxj, i = 1, 2. (2)

The Cauchy’s infinitesimal strain tensor, or the strain tensor σ for simplicity, is defined as

σij =
1
2


∂uj

∂xi
+
∂ui

∂xj


, i, j = 1, 2, (3)

where σij is the ijth element of σ . In a compact notation, the linear strain tensor is given by

σ =
1
2


∇u + (∇u)T


, (4)

where u = (u1(x1, x2), u2(x1, x2))T is the position of the point (x1, x2) of the deformed elastic body. Obviously, the strain
tensor describes the total displacement. Physically, theHooke’s law states that the strainmust lead to stress.Mathematically,
the constitutive equation between strain and stress tensors is given by

Tij = cijklσkl, (5)
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Fig. 2. Illustration of a two-phase elasticity interface problem. The interface Γ separates the whole computational domain into two partsΩ+ andΩ− .

where Tij is the ijth element of stress tensor T and cijkl is the ijklth element of elastic moduli or stiffness tensor C, which is a
fourth order tensor describing properties of thematerial. In the constitutive equation, the stress tensor is expressed through
the contraction between the strain tensor and the stiffness tensor.

For isotropic homogeneous media, there is no preferred direction in the stiffness tensor. Therefore, the stress–strain
relation can be dramatically simplified. We utilize Lamé’s parameter λ and shear modulus µ to simplify the constitutive
equation as

Tij = λtr(σ )δij + 2µσij, (6)

where δij is the Kronecher function, tr(σ ) is the trace of the strain tensor. In a compact notation, the stress tensor is

T = λtr(σ )I + 2µσ, (7)

where I is the identity tensor.
In practical applications, one is often interested in the description of elasticity motion. By the Newton’s second law, the

motion of elasticity body is governed by

∇ · T + F = ρ
∂2u
∂t2

, (8)

where F = (F1, F2)T is the external force on the elastic body. This equation can bemore rigorously derived from the variation
principle [5]. The static state of the elastic motion is then governed by:

∇ · T + F = 0. (9)

In many applications, Eq. (9) is solved to obtain the deformation under a given force.

2.2. Interface jump conditions

Consider the static state of two-phase elastic body motions in domain Ω ⊂ R2. Let us suppose that the two-phase
elastic motions are separated by interface Γ , which separates the whole domainΩ into two sub-domainsΩ+ andΩ−, i.e.,
Ω = Ω+

∪Ω−
∪ Γ , as shown in Fig. 2.

2.2.1. Weak solution of homogeneous elasticity equations
In this section, we define the weak solution to homogeneous linear elasticity equations without the body force

∇ · T = 0. (10)

For simplicity, we temporally consider the first equation in homogeneous elasticity equations (10), i.e.,

∇ · T(1, :) = 0,

where T(1, :) denotes the first row of the matrix of the stress tensor T, and let T̃ := T(1, :), thus the first component of the
homogeneous elasticity equation can be written as

∇ · T̃ = 0. (11)

To define the weak solution of the homogeneous elasticity equations, we choose the test function space to be H1
0 (Ω).

Multiplying Eq. (11) by ∀φ ∈ H1
0 (Ω) and integrating the obtained equation over the whole domainΩ yield

Ω

φ∇ · T̃dV = 0.
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Applying the integration by parts to the above equation, and note that φ is of compact support, one has
Ω

∇φ · T̃dV = 0. (12)

Similarly, a form similar to Eq. (12) can be derived for the other equation in Eq. (10).

Definition 2.1 (Weak solution). T̃ is said to be the weak solution of the equation ∇ · T̃ = 0 provided Eq. (12) holds for all
φ ∈ H1

0 (Ω).

2.2.2. Interface jump conditions
In this part, interface jump conditions are formulated for linear elasticity equation (9).

Lemma 2.1. For 2D inhomogeneous linear elasticity equation (9), if the force term F has a potential function U, i.e., ∇U = F,
then it can be expressed in a conservative form, i.e., homogeneous form.

Proof. Without loss of generality, we only prove the statement for the first equation in Eq. (9), which is:

∇ · T(1, :)+ Ux = 0, (13)

where T(1, :) is the first row of the tonsorial matrix T.
For convenient, we denote T(1, :) := (T11, T21)T , then Eq. (13) becomes:

∂(T11 + U)
∂x

+
∂T21
∂y

= 0,

thus, there exists another 2 by 2 tensor T̂, where T̂ − T only depends on potential function U , such that

∇ · T̂ = 0. (14)

Furthermore, Eq. (9) is equivalent to Eq. (14). �

Theorem 2.1. For 2D linear elasticity equations (9), if the source term F has a potential function U, i.e., ∇U = F, then across the
interface, the weak solution should satisfy following interface conditions

[T · n] = T, (15)

where T is a vector-valued function, [∗] is the difference of quantity ‘‘*’’ across the interface and n is the normal direction of the
interface.

Proof. By the above lemma, there exists another second order tensor T̂, such that ∇ · T̂ = 0. Without loss of generality, we
only prove the interface condition for the first equation in equations ∇ · T̂ = 0, and denote it as ∇ · T̂1 = 0.

SinceΩ = Ω+
∪ Γ ∪Ω−, and the interface is of measure zero, hence ∀φ ∈ H1

0 (Ω), the following equation holds

0 =


Ω

∇φ · T̂1dV =


Ω+

∇φ · T̂1dV +


Ω−

∇φ · T̂1dV . (16)

Integrating by part applied to the first term in the right hand side of Eq. (16) yields
Ω+

∇φ · T̂1dV =


Ω+

∇ · (φT̂1)dV −


Ω+

φ∇ · T̂1dV

=


Γ

φT̂1 · ndS −


Ω+

φ∇ · T̂1dV .

In regionΩ+, note ∇ · T̂1 = 0, therefore:
Ω+

∇φ · T̂1dV =


Γ

φT̂+

1 · ndS, (17)

where T̂+

1 means that the value was evaluated by taking the limit from the regionΩ+.
Similarly, we have

Ω−

∇φ · T̂1dV = −


Γ

φT̂−

1 · ndS,

where the minus sign occurs because the outward normal n forΩ+ is the inward normal forΩ−. Therefore, we have
Γ

φT̂+

1 · ndS =


Γ

φT̂−

1 · ndS,
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i.e., 
Γ

φ(T̂+

1 − T̂−

1 ) · ndS = 0.

Since test functionφ is arbitrary, we have [T̂1 ·n] = 0. In the samemannerwe can show that [T̂2 ·n] = 0,where T̂2 = T(2, :).
Therefore we have ∇ · T̂ = 0. According to the above lemma, we also have:

[T · n] = [(T̂ + T − T̂) · n] = [(T − T̂) · n] := T. �

Similarly, we can prove the following result.

Theorem 2.2. Let T be a 2nd order tensor in Rn, for elasticity equations

∇ · T + F = 0, (18)

where F is an n-dimensional vector-valued function, and 0 ∈ Rn.
If the force termhas a potential functionU, i.e.,∇U = F, then across the interface, theweak solution should satisfy the following

interface conditions

[T · n] = T, (19)

where T is an n-dimensional vector-valued function and n is the normal direction of the interface.

Remark 1. In interface condition [T · n] = T, T is a given vector-valued function on the interface Γ , which measures the
jump of the traction T · n across the interface Γ .

Moreover, physically, we usually enforce jump conditions to ensure that the material has no fracture in the weak
discontinuity setting, i.e., it is continuous across the interface

[u] = 0.

However, fractures commonly occur for many materials which is known as the strong discontinuity in the elasticity
mechanic literature. Therefore, a known fracture is often applied

[u] = (ϕ1, ϕ2)
T ,

where ϕ1 and ϕ2 are fracture components for u1 and u2, respectively.

2.3. Elasticity interface problem

Based on the above discussion, two dimensional static interface problems can be formulated as:

∇ · T + F = 0, inΩ+
∪Ω−, (20)

[u] = b, on Γ , (21)
[T · n] = T, on Γ , (22)

u = u0, on ∂Ω (23)

where u(x) = (u1(x), u2(x))T : Ω → R2 with x = (x, y) is the displacement field. Generally, if vector b does not equal 0,
it is called the strong discontinuity. Otherwise, we arrived at the weak discontinuity. Vector n = (n1, n2)

T is the unit outer
normal vector of the interface Γ , and T = (φ, ψ)T is a given vector valued function on the interface Γ which measures the
jump of the traction T · n across the interface Γ . Here F is a 2D vector-valued function which denotes the body force on the
elastic object, and u0

= (u0
1, u

0
2) is also a 2D vector-valued function to determine the Dirichlet boundary condition.

For isotropic elasticity problems, the stress–strain relation is given by

T = λtr(σ )I + 2µσ, (24)

where

σ =
1
2


∇u + (∇u)T


,

is the linear strain, and λ andµ are two Lamé’s parameters, which can be constants or spatially dependent functions. These
two situations are discussed below.
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2.3.1. General formulation for homogeneous media
A special case is that, all the material parameters are constants or piecewise constants, i.e., Lamé’s parameters λ and µ,

Young modulus E, and Poisson’s ratio ν are all constants or piecewise constants. In this case, the above parameters satisfies
the following relationships

µ =
E

2(1 + ν)
, λ =

Eν
(1 + ν)(1 − 2ν)

.

Particularly, we assume that shear modulus and Poisson’s ratio are given, respectively, by:

µ =


µ+, inΩ+,

µ−, inΩ−.
ν =


ν+, inΩ+,

ν−, inΩ−.
(25)

Usually, Poisson’s ratios satisfy constraints ν+ and ν−
∈ (0, 0.5). When they are close to 0.5, the material is near incom-

pressible. Otherwise, the material is compressible.
The governing equations for the linear elasticity motion in the homogeneous media is given by:

2(1 − ν)
∂2u1

∂x2
+ (1 − 2ν)

∂2u1

∂y2
+
∂2u2

∂x∂y
= −

F1
µ+ λ

, onΩ+
∪Ω−, (26)

(1 − 2ν)
∂2u2

∂x2
+ 2(1 − ν)

∂2u2

∂y2
+
∂2u1

∂x∂y
= −

F2
µ+ λ

, onΩ+
∪Ω−, (27)

with the interface jump condition defined on Γ

[u1]|Γ = 0, (28)
[u2]|Γ = 0, (29)

2µ
1 − 2ν


(1 − ν)

∂u1

∂x
+ ν

∂u2

∂y


n1 + µ


∂u1

∂y
+
∂u2

∂x


n2


Γ

= φ, (30)
µ


∂u1

∂y
+
∂u2

∂x


n1 +

2µ
1 − 2ν


ν
∂u1

∂x
+ (1 − ν)

∂u2

∂y


n2


Γ

= ψ. (31)

2.3.2. General formulation for inhomogeneous media
Spatially dependent Lamé’s parameters frequently occur in many practical applications. The spatial dependence can be

described as

µ =


µ+(x), inΩ+,

µ−(x), inΩ−.
λ =


λ+(x), inΩ+,

λ−(x), inΩ−.
(32)

Linear elasticity motion in inhomogeneous media is governed by:

(λ+ 2µ)
∂2u1

∂x2
+ µ

∂2u1

∂y2
+ (λ+ µ)

∂2u2

∂x∂y
+ (λx + 2µx)

∂u1

∂x
+ λx

∂u2

∂y
+ µy

∂u1

∂y
+ µy

∂u2

∂x
= −F1, (33)

µ
∂u2

∂x2
+ (λ+ 2µ)

∂u2

∂2y2
+ (λ+ µ)

∂2u1

∂x∂y
+ µx

∂u1

∂y
+ µx

∂u2

∂x
+ (λy + 2µy)

∂u2

∂y
+ λy

∂u1

∂x
= −F2. (34)

Here these two equations are defined in the domainΩ+
∪Ω−.

Remark 2. As discussed earlier, the non-fracture conditions can be relaxed in both theoretical modeling and numerical
analysis

[u1]|Γ = ϕ1, on Γ , (35)

and

[u2]|Γ = ϕ2, on Γ . (36)

3. Methods and algorithms

In this section we develop the second order MIB method for the elasticity interface problemwith irregular interface. We
consider a rectangular domainΩ = [a, b] × [c, d]. Let h be the grid size in griding the rectangular domain and suppose the
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Fig. 3. Illustration of a regular interface. The interface (red line) is vertical to the horizontal mesh line. In the standard second order MIB finite difference
scheme, fictitious values are required at grid points (i, j) and (i + 1, j). To determine the fictitious value at (i, j) and (i + 1, j), one needs to compute
u+


o1


u−


o1


∂u+

∂x


o1

and

∂u−

∂x


o1
. To this end,


u+


o1

and

∂u+

∂x


o1

are interpolated by the function values at (i − 1, j), (i, j) and fictitious values at

(i+1, j);

u−


o1

and

∂u−

∂x


o1

are interpolated by the function values at (i+1, j), (i+2, j) and fictitious values at (i, j). (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)

grid points to be:

xi = a + (i − 1)h, yj = c + (j − 1)h, i = 1, 2, . . . , nx; j = 1, 2, . . . , ny.

Here nx and ny are the total numbers of grid points in the x- and y-directions, respectively. In the standard central finite
difference (CFD) discretization schemes, due to the existence of interface and possibly discontinuous solution, the direct
use of the CFD scheme may decrease the numerical accuracy, which cannot guarantee the second order convergence of the
numerical solution. The main idea of the MIB method, is to replace the referred function values from the different side of
the interface in the CFD discretization schemes by the fictitious values, which are the combinations of function values and
interface conditions for capturing the interface conditions and discontinuity of the solutions.

In order to handle the interface in the elasticity interface problem, the regular and irregular grid points in the finite
difference scheme of the elasticity equation should be distinguished.

Definition 3.1. A grid point (i, j) is said to be a regular grid point provided all the grid points referred in the discretization
of the elasticity equations are at the same sub-domain as grid point (i, j); otherwise the grid point is called an irregular grid
point.

For the irregular grid point (i, j), if the function values at the different side of the interface applied to the finite difference
scheme, the accuracy of the numerical solution will be reduced. In the MIB finite difference scheme, we replace function
values which are referred in the different side of the interface with fictitious values.

In the following part of this section we discuss how to extend the solution across the interface such that the second
order MIB discretization works. To clarify, we call the discretizations of ordinary derivatives (u1)xx, (u1)yy, (u2)xx and (u2)yy
as a five-point stencil, and the discretization of the cross derivatives as a nine-point stencil. We discuss how to determine
fictitious values in these two stencils separately.

3.1. General algorithms for fictitious value

In this section, we develop the MIB method for the discretization of the ordinary derivatives in elasticity equations via
fictitious values. Here ordinary derivatives refer to first or second order derivatives along a single direction. In contrast, a
cross derivative involves at least two directions and requires special treatments near the interface. For simplicity, we only
construct the scheme for the constant material parameter case, while the case of spatially dependent parameters can be
treated in the same manner.

3.1.1. Fictitious scheme for regular interface
The interface is said to be regular at the grid point (i, j) if the interface is locally parallel or vertical to the mesh lines that

passing through the grid point (i, j). For the regular interface, we can determine fictitious values via an iteratively approach,
which ensures that the MIB method can be made into arbitrarily high order. A detail description of the MIB procedure has
been given for iteratively finding fictitious values for regular interface [33].

In this section, we focus on the method for estimating fictitious values for a five-point stencil in the second order finite
difference scheme of elasticity equations.

As is shown in Fig. 3, the interface is locally vertical to the x-mesh at point o1. Here we only discuss the case of a vertical
regular interface, while the case of a horizontal regular interface can be handled in the same manner.
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Fig. 4. Illustration of determining fictitious values along the x-direction. Fictitious values at two yellow grid point are to be found. To this end, derivatives
at o1 need to be calculated. Two red points ((i, j) and (i + 1, j)) are the points referred along the main direction. Six cyan points are auxiliary points used
to approximate values at o2 and o3 . Values at o1 can be computed from the fictitious value at (i, j) and function values at (i + 1, j) and (i + 2, j). Then
interpolated values at o1, o2 and o3 are employed to estimate derivatives at o1 . (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

We employ the second order accurate interpolation scheme to interpolate one-sided values at point o1. Four fictitious
values are involved, i.e., f c1 (i, j), f

c
2 (i, j), f

c
1 (i+1, j) and f c2 (i+1, j), here f c1 (i, j) represents the fictitious value for u1 at the grid

point (i, j), similar for others. In the following, we present the method to represent fictitious values by interface conditions
and function values.

First, the outer normal direction n = (1, 0)T , when the interface is locally orthogonal to the x-mesh, the interface
conditions (28)–(31) become

u+

1 − u−

1 = 0, (37)

u+

2 − u−

2 = 0, (38)
2µ+(1 − ν+)

1 − 2ν+

∂u+

1

∂y
+

2µ+ν+

1 − 2ν+

∂u+

2

∂y


−


2µ−(1 − ν−)

1 − 2ν−

∂u−

1

∂y
+

2µ−ν−

1 − 2ν−

∂u−

2

∂y


= φ, (39)

µ+
∂u+

1

∂y
+ µ+

∂u+

2

∂x


−


µ−

∂u−

1

∂y
+ µ−

∂u−

2

∂x


= ψ. (40)

The second order interpolation approximation of (u+

1 )o1 , (u
−

1 )o1 , (
∂u+

1
∂x )o1 and ( ∂u

−

1
∂x )o1 can be done by using the function

and fictitious values at the grid points (i − 1, j), (i, j) and (i + 1, j)
u+

1


o1

= w+

0,1u1(i − 1, j)+ w+

0,2u1(i, j)+ w+

0,3f
c
1 (i + 1, j), (41)

u−

1


o1

= w−

0,1f
c
1 (i, j)+ w−

0,2u1(i + 1, j)+ w−

0,3u1(i + 2, j), (42)
∂u+

1

∂x


o1

= w+

1,1u1(i − 1, j)+ w+

1,2u1(i, j)+ w+

1,3f
c
1 (i + 1, j), (43)


∂u−

1

∂x


o1

= w−

1,1f
c
1 (i, j)+ w−

1,2u1(i + 1, j)+ w−

1,3u1(i + 2, j), (44)

where {w+
m,n | m = 0, 1; n = 1, 2, 3} are the coefficients in the Lagrangian interpolation and can be obtained by an

appropriate algorithm in the literature [46]. The interpolation approximation of (u+

2 )o1 , (u
−

2 )o1 , (
∂u+

2
∂x )o1 and (

∂u−

2
∂x )o1 can be

handled in the same manner.
Plugging the above finite difference approximation into interface conditions (37)–(40) and solving the resulting

approximation of interface conditions, one can represent fictitious values at grid points (i, j) and (i+1, j) by function values
at grid points (i − 1, j), (i, j), (i + 1, j) and (i + 2, j), and interface conditions at o1.

3.1.2. Fictitious scheme for interface with small curvature
We describe the MIB method for the C1 extension of the function values across the interface which is irregular but with

relatively small curvatures in this subsection. Interface conditions are given by Eqs. (28)–(31).
Fig. 4 illustrates the situation where fictitious values along the x-direction are to be found. The case for determining

fictitious values along the y-direction is similar.
When the interface is locally not aligned to an x-mesh line or y-mesh line, a two-step tactic in the MIB approach can be

used. First, one takes the derivative along the tangential direction of the interface to introduce one more set of interface
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conditions. Then one can eliminate some derivatives at the interface that are difficult to compute. This flexibility directly
leads to the efficiency in handling versatile and difficult interface geometries. Finally, one obtains the representation of
fictitious values according to interface conditions after the aforementioned two steps.

Lemma 3.1. For a given function u defined on the domainΩ = Ω+
∪Γ∪Ω−, i.e., the domain is separated by the interfaceΓ ∈ C1

into two parts. If the function u is piecewise C1 continuous along the interface Γ , then its tangential derivative is continuous along
the interface.

Let the tangential direction be τ = (τ1, τ2). By taking a derivative along the tangential direction, the obtained new set of
interface jump conditions along the tangential direction are:

∂u1

∂x
τ1 +

∂u1

∂y
τ2


Γ

= 0, (45)

and 
∂u2

∂x
τ1 +

∂u2

∂y
τ2


Γ

= 0. (46)

As shown in Fig. 4, let the angle between the normal direction and x-mesh be θ , in this case, the normal direction is
n = (cos θ, sin θ), and the tangential direction is τ = (− sin θ, cos θ), where 0 ≤ θ ≤ 2π . For the irregular interface, one
has θ ≠ 0, 0.5π, 1.0π, 1.5π and 2π .

If we define a vector C as,

C =


∂u+

1

∂x
,
∂u−

1

∂x
,
∂u+

1

∂y
,
∂u−

1

∂y
,
∂u+

2

∂x
,
∂u−

2

∂x
,
∂u+

2

∂y
,
∂u−

2

∂y

T

. (47)

The interface condition along the tangential direction (45)–(46) can be represented as,

(− sin θ, sin θ, cos θ,− cos θ, 0, 0, 0, 0) · C = 0, (48)
(0, 0, 0, 0,− sin θ, sin θ, cos θ,− cos θ) · C = 0. (49)

Furthermore, additional interface conditions along the normal direction can be written as

(M+ cos θ,−M− cos θ, µ+ sin θ,−µ− sin θ, µ+ sin θ,−µ− sin θ, λ+ cos θ,−λ− cos θ) · C = φ, (50)

(λ+ sin θ,−λ− sin θ, µ+ cos θ,−µ− cos θ, µ+ cos θ,−µ− cos θ,M+ sin θ,−M− sin θ) · C = ψ (51)

where M =
2µ(1−ν)
1−2ν is the p-wave modulus.

In the standard second-order MIB finite difference scheme, two fictitious values occur for each of elasticity equations
near the interface. A total of four fictitious values are to be estimated. Since there are six interface conditions (28)–(31) and
(45)–(46), one can use them to eliminate two of eight derivatives. The selection of the derivatives should be based on the
local geometry of the interface. A main principle is to eliminate the derivatives that are most difficult to compute due to the
local geometric constraint.

Lemma 3.2. The following matrix is of full rank, − sin θ sin θ cos θ − cos θ 0 0 0 0
0 0 0 0 − sin θ sin θ cos θ − cos θ

M+ cos θ −M− cos θ µ+ sin θ −µ− sin θ µ+ sin θ −µ− sin θ λ+ cos θ −λ− cos θ
λ+ sin θ −λ− sin θ µ+ cos θ −µ− cos θ µ+ cos θ −µ− cos θ M+ sin θ −M− sin θ


provided that θ ≠ 0, 0.5π, π, 1.5π and 2π , i.e., the local interface does not parallel or vertical to the local mesh directions.

According to the above lemma, when the local interface is irregular, the third and fourth rows of the abovematrix should
be used to minus the linear combinations of the first and second rows so as to replace two interface conditions and leave
two interface conditions to compute the fictitious values.

There are four ways to eliminate derivatives at the interface as discussed below.

• The elimination of the derivatives ∂u−

1
∂y and ∂u−

2
∂y generates the following combined interface conditions:

−φ cos θ =

−M+ cos2 θ − µ− sin2 θ,M− cos2 θ + µ− sin2 θ, (µ−

− µ+) sin θ cos θ, 0
− (λ−

+ µ+) sin θ cos θ, (λ−
+ µ−) cos θ sin θ, (λ−

− λ+) sin θ cos θ, 0

· C, (52)

−ψ cos θ =

−(λ+

+ µ−) sin θ cos θ, (λ−
+ µ−) cos θ sin θ, (µ−

− µ+) cos2 θ, 0
−µ+ cos2 θ − M− sin2 θ, µ− cos2 θ + M− sin2 θ, (M−

− M+) sin θ cos θ, 0

· C . (53)



B. Wang et al. / Journal of Computational and Applied Mathematics 285 (2015) 203–225 213

• The elimination of the derivatives ∂u+

1
∂y and ∂u+

2
∂y generates the following combined interface conditions:

φ cos θ =

M+ cos2 θ + µ+ sin2 θ,−(M− cos2 θ + µ+ sin2 θ), 0, (µ+

− µ−) sin θ cos θ,
(µ+

+ λ+) sin θ cos θ,−(µ−
+ λ+) sin θ cos θ, 0, (λ+

− λ−) cos2 θ

· C, (54)

ψ cos θ =

(λ+

+ µ+) sin θ cos θ,−λ− sin2 θ − µ+ sin θ cos θ, 0,−(µ+
− µ−) cos2 θ,

µ+ cos2 θ + M+ sin2 θ,−µ− cos2 θ − M+ sin2 θ, 0, (M+
− M−) sin θ cos θ


· C . (55)

• The elimination of the derivatives ∂u−

1
∂x and ∂u−

2
∂x generates the following combined interface conditions:

φ sin θ =

(M+

− M−) sin θ cos θ, 0, µ+ sin2 θ + M− cos2 θ,−µ− sin2 θ − M− cos2 θ,
(µ+

− µ−) sin2 θ, 0, (λ+
+ µ−) sin θ cos θ,−(λ−

+ µ−) sin θ cos θ

· C, (56)

ψ sin θ =

(λ+

− λ−) sin2 θ, 0, (µ+
+ λ−) sin θ cos θ,−(µ−

+ λ−) sin θ cos θ,
(µ+

− µ−) sin θ cos θ, 0,M+ sin2 θ + µ− cos2 θ,−M− sin2 θ − µ− cos2 θ

· C . (57)

• The elimination of the derivatives ∂u+

1
∂x and ∂u+

2
∂x generates the following combined interface conditions:

−φ sin θ =

0, (M−

− M+) sin θ cos θ,−(µ+ sin2 θ + M+ cos2 θ), µ− sin2 θ + M+ sin2 θ,

0, (µ−
− µ+) sin2 θ,−(λ+

+ µ+) sin θ cos θ, (λ−
+ µ+) sin θ cos θ


· C, (58)

−ψ sin θ =

0, (λ+

+ λ−) sin2 θ,−µ+ sin θ cos θ − λ+ sin2 θ, (µ−
− λ+) sin θ cos θ,

0, (µ−
+ µ+) sin θ cos θ,−M+ sin2 θ − µ+ cos2 θ,M− sin2 θ + µ+ cos2 θ


· C . (59)

For a given irregular grid point, according to the local interface geometry, one of the replaced interface conditions from
above should be chosen to represent fictitious values. Here, we discuss the interface shown in Fig. 4. In this case, one-sided

derivatives ∂u+

1
∂y and ∂u+

2
∂y are to be eliminated. Therefore, the first set of interface conditions is employed. Note that the

interpolation approximation of one-sided function values and derivatives referred in the first set of interface conditions for
u1 is given as:

u−

1 = (f c1 (i, j), u1(i + 1, j), u1(i + 2, j)) · (w0,0, w0,1, w0,2)
T ,

u+

1 = (u1(i − 1, j), u1(i, j), f c1 (i + 1, j)) · (w̃0,0, w̃0,1, w̃0,2)
T ,

∂u−

1

∂x
= (f c1 (i, j), u1(i + 1, j), u1(i + 2, j)) · (w1,0, w1,1, w1,2)

T ,

∂u+

1

∂x
= (u1(i − 1, j), u1(i, j), f c1 (i + 1, j)) · (w̃1,0, w̃1,1, w̃1,2)

T ,

∂u−

1

∂y
= (u1(o, j), u1(o, j + 1), u1(o, j + 2)) · (w∗

1,0, w
∗

1,1, w
∗

1,2)
T ,

wherewi,j, w̃i,j andw∗(1, j), i = 0, 1, j = 0, 1, 2 are the Lagrangian interpolation coefficients.

Three off-grid points are referred in the approximation of ∂u
−

1
∂y . Here

u1(o, j) := u+

1 (o, j) = u−

1 (o, j)+ [u1].

Additionally, we regard the value at the on-interface grid point as the inside one

u1(o, j + 1) = (u1(i, j + 1), u1(i + 1, j + 1), u1(i + 2, j + 1)) · (p0,0, p0,1, p0,2)T ,

u2(o, j + 2) = (u2(i, j + 2), u2(i + 1, j + 2), u2(i + 2, j + 2)) · (p∗

0,0, p
∗

0,1, p
∗

0,2)
T ,

where p0,j, p∗

0,j, j = 0, 1, 2 are the Lagrangian interpolation coefficients.
The value of u2 can be approximated similarly.
Replacing the values in the first set of interface conditions by the above approximated values, and solving the generated

equations give the representation of the fictitious values that needed in the second order central finite difference schemes.

3.1.3. Fictitious scheme for interface with large curvature
The numerical schemes proposed in the previous part only works for the interface with relatively small curvature. Here

the criterion to quantity the local small or large curvature is according to the number of local inside and outside grids around
a given inside irregular grid point, if the grid points are enough to find all the fictitious values along both x and y directions,
then it is said to be local small curvature interface; otherwise it is said to be local large curvature interface.
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Fig. 5. Illustration of an interface with large curvature. In this case, the fictitious value at grid point (i, j) cannot be calculated from the horizontal direction
due to the lack of any inside grid point. However, it can be obtained from the vertical direction. In the discretization scheme, the fictitious value at (i, j)
found from the vertical direction is utilized for both vertical and horizontal discretizations of the derivatives in the governing equation.

For the interface that with large curvature, the above procedure for finding fictitious values may fail at some irregular
grid points. As shown in Fig. 5, the method proposed above does not work in finding fictitious values for irregular grid
point (i, j) along the x-direction. However, the method works for finding fictitious values at (i, j) in the y-direction. In this
case, a disassociation scheme was proposed in the MIB scheme to use fictitious values obtained along the y-direction to
replace fictitious values along the x-direction. For more detail on the disassociation scheme, reader is referred to our earlier
work [34]. The disassociation technique retains the second-order numerical accuracy.

3.2. Special algorithms for fictitious value for cross derivatives

Unlike the Poisson equation which does not admit any cross derivative, elasticity equations involve cross derivatives
which give rise to additional numerical difficulties when the interface geometry is complex. In this section, we propose new
schemes to determine fictitious values for the discretization of cross derivatives.

First, one notes that in the discretization of the cross derivative at a given grid point (i, j), in addition to original five points,
i.e., (i, j), (i, j−1), (i, j+1), (i−1, j), and (i+1, j), fourmore adjacent points, namely, (i−1, j−1), (i−1, j+1), (i+1, j−1)
and (i + 1, j + 1) are involved in the standard central finite difference scheme. Therefore, more irregular points are created
near the interface due to the discretization of cross derivatives. As a result, the MIB schemes are to be extended for cross
derivatives. Difficulties raise in the determination of fictitious values as the interface is complex or has large curvatures. We
propose two methods, i.e., disassociation scheme and extrapolation scheme, for the determination of fictitious values used
in discretizing cross derivatives.

3.2.1. Disassociation scheme
To facilitate our further discussion, we classify irregular grid points into disassociation type and extrapolation type.

Definition 3.2. An irregular grid point in the discretization of the cross derivatives is called disassociation type if it is also
irregular in the discretization of the central derivatives.

The fictitious values on the disassociation type of irregular grid points can be determined by the disassociation technique
proposed in our earlier work [34].

As illustrated in Fig. 5, grid point (i, j) is not only irregular in central derivatives but also irregular in cross derivatives. In
this circumstance, fictitious value on (i, j) can be determined by methods presented in Section 3.1. The obtained fictitious
value can be directly utilized for the discretization of cross derivatives as well.

3.2.2. Extrapolation scheme
If a grid point is irregular in the 9-point stencil while is regular in the 5-point stencil, the disassociation scheme may

not work. In this case, there are two other options can be adopted to determine its fictitious values (note that one irregular
grid point has two fictitious values because of two elasticity equations). One approach is extrapolation, which is easy to
implement and its numerical accuracy can also be maintained as shown by extensive numerical tests. The other approach is
based on an iteratively matched interface method proposed in our earlier work [33]. In the present work, the extrapolation
scheme is developed to determine fictitious values for the approximation of cross derivatives.

In order to determine fictitious values at irregular grid point (i, j) for cross derivatives, we classify them into three types
according to whether the function values or fictitious values are used in the extrapolation. As shown in Fig. 6, there are three
types of extrapolation schemes.
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Fig. 6. Extrapolation type of irregular grid points in cross derivatives. In the left case, fictitious value at the bottom red point and function values at other
two red points are employed to approximate fictitious value at (i, j). For the middle case, function values at the right-most red point and fictitious values
at other two red points are utilized to extrapolate fictitious value at (i, j). For the right case, fictitious values at three red points are used to approximate
fictitious value at (i, j). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

• Scheme I. Two function values and one fictitious value are used for the extrapolation. For example, function values at
(i, j + 2) and (i, j + 3), fictitious values at (i, j + 1) are used to extrapolate fictitious values at (i, j), see the left chart of
Fig. 6.

• Scheme II. One function value and two fictitious values are used for an extrapolation. For example, function values at
(i + 3, j), fictitious values at (i + 1, j) and (i + 2, j) are used to extrapolate fictitious values at (i, j), see the middle chart
of Fig. 6.

• Scheme III. Three fictitious values are used for an extrapolation. For example, fictitious values at grid points (i, j+1), (i, j+
2) and (i, j + 3) are used to extrapolate fictitious values at (i, j), see the right chart of Fig. 6.

In all of these schemes, extrapolations are carried out with the Lagrange polynomial.

3.3. Governing equation discretization

With the fictitious value represented by the function values at grid nodes and the interface conditions, we can construct
the second order MIB schemes for the governing equations. The basic idea is to use fictitious values to replace the function
values from the other subdomain. Since the three points interpolation or extrapolation schemes employed in matching the
interface conditions, the obtained fictitious values guarantee the MIB scheme is of second order convergence. For instance,
if we need to discretize the ∂2u1

∂x∂y term at a regular grid point (i, j) in subdomainΩ+, the standard second order CFD schemes
can be directly employed,

∂2u1

∂x∂y


(i,j)

=
1

4h2
(u1(i + 1, j + 1)+ u1(i − 1, j − 1)− u1(i − 1, j + 1)− u1(i + 1, j − 1)). (60)

However, if grid (i, j) is irregular, and the nodes (i− 1, j− 1) and (i+ 1, j− 1) are located on the other domain as depicted
in Fig. 5, then the above scheme can be modified by the inclusion of the fictitious values,

∂2u1

∂x∂y


(i,j)

=
1

4h2
(u1(i + 1, j + 1)+ f c1 (i − 1, j − 1)− f c1 (i − 1, j + 1)− u1(i + 1, j − 1)). (61)

Similar MIB schemes can be applied for the discretization of other referred derivatives terms in the governing equations
of the elasticity interface problems (26)–(27) and (33)–(34).

4. Numerical experiments

In this section, the numerical accuracy, convergence and robustness of the proposed second order MIB schemes for
elasticity interface problems are validated by four kinds of complex interfaces, namely, circle, ellipse, flower-like, and
jigsaw-like interfaces, on rectangular domains. The first two interfaces involve small curvatures, while the other two have
large curvatures. The proposed numerical schemes are tested for the piecewise constant material parameters and spatially
dependent material parameters. Furthermore, to test the robustness of the present MIBmethod, we consider both large and
small contrasts in the Poisson’s ratio and shear modulus.

A standard bi-conjugate gradient (BICG) solver is used to solve the linear algebraic equations generated by the present
MIB discretization. Due to the introduction of the fictitious values, the structure of resulting matrix is not as banded as the
standard CFD matrix, which usually need more iterations to yield the same level of numerical convergence.
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Table 1
Numerical error and order for Example 1a.

nx × ny L∞(u1) Order L2(u1) Order L∞(u2) Order L2(u2) Order

20 × 20 4.40 × 10−4 2.44 × 10−4 2.15 × 10−4 1.13 × 10−4

40 × 40 1.10 × 10−4 2.00 6.06 × 10−5 2.01 8.90 × 10−5 1.37 4.14 × 10−5 1.45
80 × 80 2.42 × 10−5 2.18 1.31 × 10−5 2.21 2.03 × 10−5 2.13 9.31 × 10−6 1.89
160 × 160 5.88 × 10−6 2.04 3.19 × 10−6 2.04 4.83 × 10−6 2.07 2.28 × 10−6 2.03
160 × 160 1.38 × 10−6 2.09 7.80 × 10−7 2.03 1.07 × 10−6 2.17 5.20 × 10−7 2.13

Numerical solutions are compared with the designed exact solutions. Both L∞ and L2 norm error measurements are
employed in our tests and are defined as

L∞(uk) = max |uk(i, j)− ũk(i, j)|, k = 1, 2; i = 1, 2, . . . , nx; j = 1, 2, . . . , ny

and

L2(uk) =

 1
nx ∗ ny

ny
j=1

nx
i=1

(uk(i, j)− ũk(i, j))2, k = 1, 2,

where uk(i, j) are exact solutions and ũk(i, j) are numerical solutions.

4.1. Homogeneous media

4.1.1. Weak discontinuity
In this section, various numerical tests are performed for cases where both Poisson’s ratio and shear modulus are piece-

wise constant.

Example 1. We first consider an ellipse interface defined by x2 + 4y2 = 0.352. In this example, the computational domain
is set toΩ = [−0.5, 0.5]× [−0.5, 0.5]. The Dirichlet boundary condition and interface conditions are determined from the
following exact solution

u1(x, y) =


xy + sin(1 + x2 + y2)− 3x2 + y2, inΩ+,

xy + sin(1 + x2 + y2)− 2x2 + 5y2 − 0.352, inΩ−

and

u2(x, y) =


cos(1 + x2 − y2)+ 5x2y + x2 − y2 + 2, inΩ+,

cos(1 + x2 − y2)+ 5x2y + 3x2 + 7y2 + 2(1 − 0.352), inΩ−.

We consider three cases with different Poisson’s ratios and shear moduli.

Example 1a. First, let us consider an example used in the literature [16]. The Poisson’s ratio and the shear modulus are,
respectively,

ν =


ν+

= 0.20, inΩ+,

ν−
= 0.24, inΩ−

and

µ =


µ+

= 1 500 000, inΩ+,

µ−
= 2 000 000, inΩ−.

Table 1 gives the grid refinement analysis and Fig. 7 depicts our results. Obviously, the designed second order convergence
is achieved for this elasticity interface problem. In the following, we further test the robustness of our method for handling
large contrast between Poisson’s ratio and shear modulus.

Example 1b. We first increase the contrast between Poisson’s ratios in different subdomains to test the robustness of the
present MIB scheme. To this end, we keep shear modulus of the last case unchanged, while set the Poisson’s ratio to be

ν =


ν+

= 0.00024, inΩ+,

ν−
= 0.24, inΩ−.

Table 2 displays the grid refinement analysis of the present numerical scheme. Obviously, the large contrast in the
Poisson’s ratios does not reduce the accuracy and convergent order of the present MIB method.



B. Wang et al. / Journal of Computational and Applied Mathematics 285 (2015) 203–225 217

(a) Numerical solution u1 . (b) Error u1 .

(c) Numerical solution u2 . (d) Error u2 .

Fig. 7. Numerical results for Example 1a on mesh 80 × 80.

Table 2
Numerical error and order for Example 1b with large contrast in Poisson’s ratios.

nx × ny L∞(u1) Order L2(u1) Order L∞(u2) Order L2(u2) Order

20 × 20 3.84 × 10−4 2.19 × 10−4 1.89 × 10−4 1.04 × 10−4

40 × 40 1.06 × 10−4 1.86 5.70 × 10−5 1.94 8.10 × 10−5 1.24 3.75 × 10−5 1.48
80 × 80 2.34 × 10−5 2.18 1.24 × 10−5 2.20 1.85 × 10−5 2.13 8.48 × 10−6 2.15
160 × 160 5.66 × 10−6 2.05 3.01 × 10−6 2.04 4.39 × 10−6 2.18 2.08 × 10−6 2.03
320 × 320 1.33 × 10−6 2.09 7.40 × 10−7 2.02 9.70 × 10−7 2.24 4.80 × 10−7 2.12

Table 3
Numerical error and order for Example 1c with large shear modulus contrast.

nx × ny L∞(u1) Order L2(u1) Order L∞(u2) Order L2(u2) Order

20 × 20 2.87 × 10−4 1.55 × 10−4 2.51 × 10−4 8.83 × 10−5

40 × 40 8.29 × 10−4 1.79 4.12 × 10−5 1.92 7.12 × 10−5 1.82 3.06 × 10−5 1.63
80 × 80 2.01 × 10−5 2.04 9.50 × 10−6 2.12 1.65 × 10−5 2.11 7.38 × 10−6 2.05
160 × 160 6.92 × 10−6 1.55 2.89 × 10−6 1.72 4.59 × 10−6 1.85 1.83 × 10−6 2.01
320 × 320 1.72 × 10−6 2.01 6.10 × 10−7 2.24 1.04 × 10−7 2.14 4.20 × 10−7 2.12

Example 1c. We also analyze the performance of the proposedMIBmethod for large shear modulus contrast. The Poisson’s
ratio is the same as that of Example 1a, while the shear modulus is set to

µ =


µ+

= 2000, inΩ+,

µ−
= 2 000 000, inΩ−.

The grid refinement analysis for numerical error and order is shown in Table 3. It is seen that the proposed MIB method is
very robust with respect to the large contrast shear moduli.

Example 2. In this example, the computational domain is set to Ω = [−1, 1] × [−1, 1]. The interface is defined as circle
x2 + y2 = 0.25.
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(a) Numerical solution u1 . (b) Error u1 .

(c) Numerical solution u2 . (d) Error u2 .

Fig. 8. Numerical results for Example 2a on mesh 80 × 80.

Table 4
Numerical error and order for Example 2a.

nx × ny L∞(u1) Order L2(u1) Order L∞(u2) Order L2(u2) Order

20 × 20 3.10 × 10−3 1.23 × 10−3 8.97 × 10−2 3.51 × 10−3

40 × 40 8.62 × 10−4 1.85 2.98 × 10−4 2.04 1.04 × 10−3 3.09 3.68 × 10−4 3.10
80 × 80 1.90 × 10−4 2.18 7.61 × 10−5 1.97 2.27 × 10−4 2.20 8.27 × 10−4 2.15
160 × 160 4.39 × 10−5 2.11 1.91 × 10−5 1.95 6.04 × 10−5 1.91 2.01 × 10−5 2.03
320 × 320 1.26 × 10−5 1.80 4.96 × 10−6 1.95 2.04 × 10−5 1.57 7.10 × 10−6 1.53

The Dirichlet boundary condition and the interface conditions are determined from the following designed exact solution

u1(x, y) =


−r2, inΩ+,

−(r4 + c0 log(2r))/10 − r20 + (r40 + c0 log(2r0))/10, inΩ−

and

u2(x, y) =


log(1 + x2 + 3y2)+ sin(xy), inΩ+,

log(1 + x2 + 3y2)+ sin(xy)− 4r2 + 4r20 , inΩ−.

where r0 = 0.5, c0 = −0.1.

Example 2a. We first consider a standard test case used in the field [16]. The Poisson’s ratio and the shear modulus are,
respectively,

ν =


ν+

= 0.20, inΩ+,

ν−
= 0.24, inΩ−

and

µ =


µ+

= 2 500 000, inΩ+,

µ−
= 3 000 000, inΩ−.

Table 4 gives the grid refinement analysis. Fig. 8 plots our numerical results. Essentially, the designed order and accuracy
are obtained.
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Table 5
Numerical error and order for Example 2b with large Poisson’s ratio contrast.

nx × ny L∞(u1) Order L2(u1) Order L∞(u2) Order L2(u2) Order

20 × 20 3.39 × 10−3 1.35 × 10−3 9.53 × 10−2 3.78 × 10−3

40 × 40 8.92 × 10−4 1.92 3.04 × 10−4 2.15 9.37 × 10−3 3.35 2.91 × 10−4 3.70
80 × 80 1.99 × 10−4 2.16 7.61 × 10−5 2.00 2.22 × 10−4 2.08 7.59 × 10−4 1.94
160 × 160 4.79 × 10−5 2.00 1.96 × 10−5 1.96 6.95 × 10−5 1.68 2.36 × 10−5 1.69
320 × 320 1.34 × 10−5 1.89 4.88 × 10−6 2.01 1.73 × 10−5 2.01 5.93 × 10−6 1.99

Table 6
Numerical error and order for Example 2c with large shear modulus contrast.

nx × ny L∞(u1) Order L2(u1) Order L∞(u2) Order L2(u2) Order

20 × 20 5.99 × 10−3 1.60 × 10−3 9.90 × 10−3 3.21 × 10−3

40 × 40 1.45 × 10−3 2.05 4.77 × 10−4 1.75 2.04−3 2.28 4.37 × 10−4 2.88
80 × 80 3.66 × 10−4 1.97 1.42 × 10−5 1.75 5.41 × 10−4 1.91 1.12 × 10−4 1.96
160 × 160 1.04 × 10−4 1.99 2.83 × 10−5 2.32 1.48 × 10−5 1.87 4.26 × 10−5 1.40
320 × 320 2.50 × 10−5 2.06 7.61 × 10−6 1.89 3.15 × 10−5 2.23 5.40 × 10−6 2.98

Example 2b. It is important to know whether the proposed method is robust for large contrast in Poisson’s ratio and shear
modulus. We consider a change in the Poisson’s ratio while keep the shear modulus given in Example 2a

ν =


ν+

= 0.00024, inΩ+,

ν−
= 0.24, inΩ−.

Table 5 gives the grid refinement analysis of the numerical scheme. It is seen that theMIBmethod is robust for large contrast
in Poisson’s ratios.

Example 2c. Finally, we consider a large shear modulus contrast. The Poisson’s ratio is the same as Example 2a, while shear
modulus is given by

µ =


µ+

= 3000, inΩ+,

µ−
= 3 000 000, inΩ−.

The grid refinement analysis for the error and order is shown in Table 6. The second order convergence is maintained.

Example 3. In this case, we consider a more complex interface to demonstrate the performance of the MIB method. The
interface is of a flower shape and is defined in the polar coordinate

r = 0.5 +
sin 5θ

7
.

We set the computational domain Ω = [−1, 1] × [−1, 1]. The Dirichlet boundary condition and the interface conditions
are determined from the following exact solution

u1(x, y) =


exp(−3.52(x2 + y2)5), inΩ+,

exp(−(7(x2 + y2)3 − 5x4y + 10x2y3 − y5)2), inΩ−

and

u2(x, y) =


exp(−3.52(x2 + y2)5)+ xy, inΩ+,

exp(−(7(x2 + y2)3 − 5x4y + 10x2y3 − y5)2)+ xy, inΩ−.

We consider two cases for this problem below.

Example 3a. We first set the Poisson’s ratio and the shear modulus as follows

ν =


ν+

= 0.20, inΩ+,

ν−
= 0.24, inΩ−

and

µ =


µ+

= 1 500 000, inΩ+,

µ−
= 2 000 000, inΩ−.

The grid refinement analysis is listed in Table 7. Fig. 9 demonstrates our numerical results. Clearly, the second order
convergence is obtained for this irregular interface.
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(a) Numerical solution u1 . (b) Error u1 .

(c) Numerical solution u2 . (d) Error u2 .

Fig. 9. Numerical results for Example 3a on mesh 80 × 80.

Table 7
Numerical error and order for Example 3a.

nx × ny L∞(u1) Order L2(u1) Order L∞(u2) Order L2(u2) Order

20 × 20 2.83 × 10−2 8.92 × 10−3 2.66 × 10−2 5.86 × 10−3

40 × 40 5.10 × 10−3 2.47 1.71 × 10−3 2.38 5.58 × 10−3 2.25 1.76 × 10−3 1.74
80 × 80 2.08 × 10−3 1.30 6.54 × 10−4 1.39 2.29 × 10−3 1.29 6.83 × 10−4 1.37
160 × 160 5.09 × 10−4 2.00 1.72 × 10−4 1.93 4.99 × 10−4 2.20 1.66 × 10−4 2.04
320 × 320 1.26 × 10−4 2.01 4.21 × 10−5 2.03 1.08 × 10−4 2.18 3.62 × 10−5 2.20

Table 8
Numerical error and order for Example 3b with large contrast in Poisson’s ratios.

nx × ny L∞(u1) Order L2(u1) Order L∞(u2) Order L2(u2) Order

20 × 20 3.22 × 10−2 1.04 × 10−2 2.46 × 10−2 7.17 × 10−3

40 × 40 6.48 × 10−3 2.31 2.15 × 10−3 2.27 6.22 × 10−3 1.98 2.20 × 10−3 1.71
80 × 80 2.48 × 10−3 1.39 7.70 × 10−4 1.48 2.60 × 10−3 1.26 7.92 × 10−4 1.48
160 × 160 6.01 × 10−4 2.04 1.97 × 10−4 1.97 5.75 × 10−4 2.18 1.90 × 10−4 2.06
320 × 320 1.40 × 10−4 2.10 4.78 × 10−5 2.04 1.26 × 10−4 2.19 4.27 × 10−5 2.15

Example 3b. We next test the robustness of the present method for large Poisson’s ratios. We keep the shear modulus the
same as that in Example 3a, while change Poisson’s ratios to

ν =


ν+

= 0.00024, inΩ+,

ν−
= 0.24, inΩ−.

Table 8 presents the grid refinement analysis of the numerical scheme. Again, we see the designed second order conver-
gence in both L∞ and L2 errors.

4.1.2. Strong discontinuity

Remark 3. The above numerical examples verify that the proposed MIB scheme is essentially of second order convergence
for the weak discontinuity case. Now we turn to verify the efficiency and robustness for the strong discontinuity scenario.
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(a) Numerical solution u1 . (b) Error u1 .

(c) Numerical solution u2 . (d) Error u2 .

Fig. 10. Numerical results for Example 4 on mesh 80 × 80.

Table 9
Numerical error and order for Example 4.

nx × ny L∞(u1) Order L2(u1) Order L∞(u2) Order L2(u2) Order

20 × 20 1.38 × 10−3 6.42 × 10−4 1.55 × 10−3 7.17 × 10−4

40 × 40 3.20 × 10−4 2.11 1.67 × 10−4 2.01 2.64 × 10−4 2.55 1.32 × 10−4 2.44
80 × 80 6.35 × 10−5 2.33 3.06 × 10−5 1.94 5.89 × 10−5 2.16 3.00 × 10−5 2.14
160 × 160 1.50 × 10−5 2.08 7.15 × 10−6 2.10 1.51 × 10−6 1.96 7.69 × 10−6 1.96
320 × 320 3.53 × 10−6 2.09 1.82 × 10−6 1.92 4.00 × 10−7 1.92 2.08 × 10−6 1.89

Example 4. To further examine our method for complicated interface geometry, we reconsider the exact solution defined
in Example 1, while change the interface to the flower-like pattern as defined in Example 3.

Table 9 gives the grid refinement analysis. Results are also depicted in 10. Essentially, the designed order of convergence
is maintained.

Example 5. To further test our method for strong discontinuity with complex geometric interface, we consider the exact
solution given in Example 1 again, and change the interface to the benchmark jigsaw-like pattern

x(θ) = 0.6 cos(θ)− 0.3 cos(3θ), inΩ+,

y(θ) = 1.5 + 0.7 sin(θ)− 0.07 sin(3θ)+ 0.2 sin(7θ), inΩ−.

The computational domain is set toΩ = [−1, 1] × [0, 3]. In this case, the interface geometry is very complex.

Table 10 shows the grid refinement analysis. Fig. 11 illustrates our results. The designed order of accuracy and conver-
gence is achieved.

4.2. Inhomogeneous media

Having validated the MIB method for complex geometry and large contrast in Poisson’s ratio and shear modulus, we
consider another class of elasticity interface problems. In many practical elasticity applications, the shear and bulk moduli
may not be constants [10,7]. Therefore it is important to develop numerical methods for function bulk and shear moduli. In
this subsection, we test our MIB method for handling position dependent bulk and shear moduli.
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(a) Numerical solution u1 . (b) Error u1 .

(c) Numerical solution u2 . (d) Error u2 .

Fig. 11. Numerical results for Example 5 on mesh 80 × 120.

Table 10
Numerical error and order for Example 5.

nx × ny L∞(u1) Order L2(u1) Order L∞(u2) Order L2(u2) Order

40 × 30 9.07 × 10−3 2.53 × 10−3 8.42 × 10−3 2.23 × 10−3

80 × 60 2.48 × 10−3 1.87 6.87 × 10−4 1.88 2.20 × 10−3 1.94 6.11 × 10−4 1.87
160 × 120 6.04 × 10−4 2.04 1.71 × 10−4 2.01 5.40 × 10−4 2.03 1.60 × 10−4 1.93
320 × 240 1.58 × 10−4 1.93 4.20 × 10−5 2.03 1.30 × 10−4 2.05 3.69 × 10−5 2.12

Table 11
Numerical error and order for Example 6.

nx × ny L∞(u1) Order L2(u1) Order L∞(u2) Order L2(u2) Order

20 × 20 5.27 × 10−4 2.48 × 10−4 2.38 × 10−4 1.17 × 10−4

40 × 40 1.17 × 10−4 2.17 6.17 × 10−5 2.01 9.25 × 10−5 1.37 4.27 × 10−5 1.46
80 × 80 2.55 × 10−5 2.20 1.33 × 10−5 2.21 2.12 × 10−5 2.13 9.68 × 10−6 2.14
160 × 160 6.23 × 10−6 2.03 3.26 × 10−6 2.03 5.06 × 10−6 2.07 2.38 × 10−6 2.03
320 × 320 1.46 × 10−6 2.09 8.00 × 10−7 2.03 1.11 × 10−6 2.19 5.50 × 10−7 2.11

Example 6. In our first example, let the domain and interface be the same as those in Example 1. The exact solution is also
designed the same as that in Example 1. However, we design the shear modulus to be position dependent function

µ =


µ+

= 1 500 000 + 2 000 000(x + y), inΩ+,

µ−
= 2 000 000 + 1 500 000xy, inΩ−.

We also set the bulk modulus to

λ =


λ+

= 1 000 000 + 4 000 000(x + y)/3, inΩ+,

λ−
= 2 000 000 + 1 500 000xy, inΩ−.

The grid refinement analysis is shown in Table 11. The designed second order accuracy is achieved.
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Table 12
Numerical error and order for Example 7.

nx × ny L∞(u1) Order L2(u1) Order L∞(u2) Order L2(u2) Order

20 × 20 4.08 × 10−3 1.82 × 10−3 1.01 × 10−2 3.61 × 10−3

40 × 40 1.01 × 10−4 2.01 3.25 × 10−4 2.49 1.97 × 10−3 2.36 5.54 × 10−3 1.45
80 × 80 2.23 × 10−4 2.18 8.59 × 10−5 2.21 3.47 × 10−4 2.51 1.15 × 10−4 2.15
160 × 160 5.17 × 10−5 2.11 2.36 × 10−5 1.92 8.07 × 10−5 2.10 2.27 × 10−5 2.03
320 × 320 1.40 × 10−6 1.88 5.26 × 10−6 2.17 2.81 × 10−5 1.52 6.63 × 10−6 1.78

Table 13
Numerical error and order for Example 8.

nx × ny L∞(u1) Order L2(u1) Order L∞(u2) Order L2(u2) Order

40 × 40 1.69 × 10−3 7.18 × 10−4 1.80 × 10−3 8.20 × 10−4

80 × 80 3.94 × 10−4 2.28 1.88 × 10−4 1.93 3.09 × 10−4 2.54 1.50 × 10−4 2.45
160 × 160 8.45 × 10−5 2.22 3.58 × 10−5 2.39 7.13 × 10−5 2.16 3.49 × 10−5 2.09
320 × 320 1.87 × 10−5 2.18 1.03 × 10−5 1.80 1.89 × 10−5 1.92 1.01 × 10−5 1.79

Example 7. In this example, let the domain and interface be the same as those in Example 2.We also adopt the exact solution
in Example 2. We set the shear modulus to be a position dependent function

µ =


µ+

= 2 500 000 + 3 000 000(x + y), inΩ+,

µ−
= 3 000 000 + 2 500 000xy, inΩ−.

Additionally, we design the following bulk modulus

λ =


λ+

= 5 000 000 + 2 000 000(x + y), inΩ+,

λ−
= 3 000 000 + 2 500 000xy, inΩ−.

Table 12 presents the grid refinement analysis of this case. Our numerical results are similar to those of Example 2a,
which means that the variable shear and bulk moduli do not affect the performance of our method.

Example 8. Finally,we consider another example to validate ourmethod for the combination of complex interface geometry
and variable material coefficients. To this end, we adopt the domain and interface used in Example 4. The exact solution is
also designed as that in Example 4. However, the shear modulus is set to be position dependent

µ =


µ+

= 2 500 000 + 3 000 000(x + y), inΩ+,

µ−
= 3 000 000 + 2 500 000xy, inΩ−.

The bulk modulus is also a variable function

λ =


λ+

= 5 000 000 + 2 000 000(x + y), inΩ+,

λ−
= 3 000 000 + 2 500 000xy, inΩ−.

Table 13 gives the grid refinement analysis of this example. We observe the second order accuracy.

5. Conclusion

In this work, elasticity interface problems governed by the linear elasticity theory is investigated by the matched
interface and boundary (MIB)method for the first time. Both isotropic homogeneousmaterial and isotropic inhomogeneous
material are considered in the theoretical modeling. In particular, the isotropic inhomogeneous material is described by
a strain–stress constitutive law with a function-type of modulus. We analyze both strongly discontinuous and weakly
discontinuous solutions to the governing elasticity equations. A new MIB scheme is developed for this class of elasticity
interface problems in 2D scenario, the essence of theMIB scheme is the utilization of the fictitious values in the discretization
of the governing equations, one can observe that in our MIB algorithm, the problem in finding fictitious values are reduced
to a locally 1D-like problem, this dimension reduction technique is easily extended to the 3D elasticity interface problems.
The extension of the current MIB scheme to the 3D elasticity interface problem is in our future plans.

Unlike elliptic interface problems, the elasticity interface problems involve more governing equations and more
complicated interface jump conditions. As such, we need to extend the original MIB method designed for elliptic interface
problems [47,32,30,33,34] to multiple equations and interface conditions. Additionally, the MIB method developed in the
present study has to take a particular care for cross derivatives in the governing elasticity equations. Such cross derivatives
can be very difficult to deal withwhen the interface geometry is very complex. To account for these terms and local interface
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geometry, we have modified the common fictitious definition, designed the new fictitious schemes, and made use of the
secondary fictitious values.

Numerous analytical tests are designed to examine the accuracy, investigate the convergence and explore the robustness
of the presentMIBmethod. Four types of complex interface geometries, namely, circle, ellipse, flower-liked and jigsaw-liked
interfaces, are employed in our study. Additionally, both weakly discontinuous and strongly discontinuous solutions are
considered in our tests. Moreover, we have also examined our method for both small and large contrasts in Poisson’s ratios
and shearmoduli. Finally, both constantmaterial parameters and variablematerial parameters are utilized in our validation.
An essentially second-order accuracy in both L∞ and L2 norms is observed in all tests.
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