2: LINEAR FUNCTIONS AND MATRICES II

1. THE RANK-NULLITY THEOREM

Definition. Let V and W be vector spaces and T : V. — W a linear function.
(a) The kernel of T is subset of V:

ker(T) ={veV|T(v)=0w}CV.
(b) The image of W is the subset of W:

im(7T) = {w € W |there is an v € V with T(v) = w}.

Remark. ker(T') is a subspace of V' and im(7') is a subspace of W. Kernel and
image of a linear function are important subspaces which carry a lot of information
about the linear function.

Theorem 3.1. Let V and W be vector spaces and T : V — W a linear function.
(a) T is one-to-one if and only if ker(T) = {0y }.
(b) T is onto if and only if im(T) = W.

Proof. (a) For the forward direction = assume that 7" is a one-to-one linear function
and v € ker(T'). Then T'(v) = Oy = T(0y) and v = Oy. Conversely, if ker(T') =
{0y} let u,v € V with T'(v) = T'(u). Then, since T is linear,

Ow =T(v)—T(u)=T(v—u)

and v —u € ker(7') = {0y }. Hence v —u = 0y and T is one-to-one.

(b) If T' is onto, then for every vector w € W there is a v € V with T(v) = w.
Thus, im(7") = W. Conversely, if im(7") = W, then for every w € W there is a
v € V with T(v) = w. T is onto.

The following theorem relates the dimensions of kernel and image of a linear
function, provided that the dimension of the vector space V is finite.

Theorem 3.2. Let V and W be vector spaces and T : V. — W a linear function.
Suppose that V is finite dimensional. Then:

dim(ker(7T")) + dim(im(7")) = dim(V).

Proof. Suppose that dim(ker(7")) = r and let {vy,...,v,} be a basis of ker(T).
Since every linearly independent sequence can be extended to a basis of the vector
space, we can extend vy, ..., Vv, to a basis of V, say, {vi,..., V., Vsj1,...,V,}isa
basis of V. The formula follows if we can show that the set {T'(v,41),...,T(vp)}
is a basis of im(7).
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2 2: LINEAR FUNCTIONS AND MATRICES II

We first show that {T'(v,41),...,T(v,)} is a spanning set. Let w € im(7).
Then there is a vector v € V with T'(v) = w. Since {vy,...,Vv,,V,41,...,V,} is a
basis of V, there are scalars t; € R so that

V=Uivi+...+ 6V, +tp1Vep1 + ... F T Va.
This implies
w="T(v)

=Ttvi+ ...+ tve +trg1Veg1 + ..o+ 1avy)

=t7(vi)+ ...+t T(vy) + to1T(Veg1) + ..+, T (V)

= tr+1T(V7~+1) 4+ ...+ tnT(Vn)
The last equation follows since by assumption v; € ker(7') for all 1 < i < r and
therefore T'(v;) = Oy for 1 < ¢ < r. This shows that {T(v,41),...,T(v,)} is a
spanning set of im(7").

In order to show that {T'(v,41),...,T(vy)} is linearly independent, suppose that

t; € R with
tr+1T(VT+1) + ...+ tnT(Vn) = 0w .
Since T is linear we have that
tr+1T(VT+1) + ...+ tnT(Vn) == OW == T(tr+1v,,+1 + ...+ tnvn)
and
trs1Ver1 + .- F tpvy € ker(T).
Using that {v1,...,v,} is a basis of ker(7T'), there are scalars s; € R so that
tr41Vetl + oo F TV =81V + ..+ SV,

Thus

S1Vi, .oy 8¢V — b1 Veg1 — ... — vy, = Oy
and s; = t; = 0 for all ¢ and j, since {v1,...,V,,Voy1,...,V,} is a basis of V. This
shows that the set {T'(v,+1),...,T(v,)} is linearly independent.

Let A be an m x n matrix and g4 : R” — R™ the linear function defined by
pa(u) = Au for all u € R*. Let pa(e;) = A; denote the ith column of A. We
write

A=[Aq,...,A,]
where A; € R™ is the ith column of A.

Definition. (a) The column space C(A) of A is the subspace of R™ which is gener-
ated by the columns of A4, i.e. C(A) =span{Ai,...,A,} CR™.
(b) The number dim(C(A)) is called the column rank of A and is denoted by Crk(A).

Remark. (a) The column space of A is the image of the linear function p 4, that is,
lm(NA) = Spa‘n{A17 v 7A7l} = C(A)

Therefore dim(im(A)) = dim(C(A)) = Crk(A).
(b) Note that the kernel of 114 is the solution set of the homogeneous linear system
Ax = 0.

Definition. The number dim(ker(u4)) is called the nullity of A and is denoted by
null(A).

Now Theorem 3.2 yields:
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Theorem 3.3 (Rank-Nullity-Theorem). Let A be an m x n matriz. Then:

Crk(A) + null(4) = n.

Remark. Suppose that
aj

A= |

Am

where a; is the ith row of A. In the previous chapter we defined the row space of
A as the subspace of R™ spanned by the rows of A:

R(A) =span{ay,...,a,}.
The row rank of A is the dimension of the row space of A:
Rrk(A) = dim(R(A)) = dim(span{ay,...,a,}).

The row rank of a matrix is easy to compute, since it does not change under
elementary row operations. So, if A is an m X n matrix, we bring A into reduced
echelon form D. Then the row rank of A is the number of nonzero rows of D. Since
the row space does not change under elementary row operations, the nonzero rows
of D provide a basis of the row space R(A). Note that the column space changes
under elementary row operations and the linearly independent columns of D are
NOT a bais of C(A). The following statement, however, is true:

Theorem 3.4. If A is an m X n matriz, then

Rrk(A) = Crk(A).

Proof. Suppose that D is the row reduced echelon form of A. The kernel of pa,
that is, the solution set of the linear system Ax = 0, equals the solution set of the
homogeneous system Dx = 0. Thus the dimension of ker(z4) is the number of free
variables of the system Dx = 0 which is the number of columns of D without a
pivot one. On the other hand, the number of rows of D with pivot ones is exactly
the dimension of R(A). This gives:

Rrk(A) = n — dim(ker(A))
=n —null(A).

By Theorem 3.3:
n —null(A4) = Crk(A)
and we have shown that Rrk(A) = Crk(A).

Definition. If A is an m X n matrix the rank of A, denoted rk(A), is the row (or
column) rank of A.
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Ezxzample. Consider the matrix:
3 -6 6 4 =5

-9 12 -9 6 15
-4 2 1 12 4

o
Il
w W w o

with row reduced echelon form

1 0 -2 3 0 —-24

01 -2 2 0 =7
b= 00 0 01 4

00 0 0O0 O

From D we obtain that
{(1,0,-2,3,0,—24),(0,1,-22,0,-7),(0,0,0,0,1,4)} € M(1,6)

is a basis of R(A) and hence rk(A) = 3. Therefore the associated linear function
pa : RS — R* maps R* into a 3-dimensional subspace of R*. From the reduced
echelon form D we see that

27 [—37 1247
2 | -2 7
1 0 0
o[’ 1|]o0
0 0 —4
Lol Lol L1l

is a basis of ker(pa) and null(A) = 3. In order to find a basis of C'(A) we use a
theorem we have not shown in class:

Theorem. Let A be an m xn matriz and D its reduced echelon form. The columns
of A which correspond to the columns of D with pivot ones form a basis of the
column space of A.

In the example the first, second, and fifth column of D are the columns of D
with pivot ones. Thus the first, second, and fifth column of A form a basis of C(A),
i.e.

0 3 4
3 -7 8
3171-9]71]6
3 —4 12

is a basis of C'(A).

2. COORDINATE FUNCTIONS AND THE MATRIX OF A LINEAR FUNCTION

Let V' be a finite dimensional vector space and B = {v1,...,v,} a basis of V.
Usually in a set it does not matter in which order the elements of the set are listed,
for example, {1,2} = {2,1}. In the following we need to fix an order on B. We will
say that B = {vy,...,v,} is an ordered basis of V and mean that now the order
of the basis vectors is fixed, that is, vector vy comes first, vector vy is second and
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so on. In particular, we consider the ordered basis B = {v1,va,...,v,} different
from the ordered basis B’ = {va,vy,...,v,} although the sets are the same.

We fix the order of the vectors in B and assume that B = {vy,...,v,} is an
ordered basis of V. Then there is a unique linear function

HBZV—>Rn

defined by [ |5(v;) = [vi]s = e; where e; is the ith standard basis vector of R™. If
veVwithv=rvy+...+r,v, then

1
T2
[Vl =[rivi+...+rmvae =

Tn
This vector [v]p is called the coordinate vector of the vector v with respect to
the ordered basis B. The linear function [ |p : V' — R™ is called the coordinate
function of V with respect to the ordered basis B.
Since []p maps a basis of V' onto a basis of R", []p is an isomorphism of

vector spaces and has an inverse function Lp : R® — V. Lp is determined by
Lp(e;) =v; for all 1 <i <n and thus is given by:

12
Ly . =t1vy +tove +...+t,Vv,.
ln
Suppose now that V and W are finite dimensional vector spaces and that By =

{v1,...,v,} is an ordered basis of V' and By = {w,...,w,,} an ordered basis of
W. IfT:V — W is a linear function we obtain a diagram:

v L w
[]Bvl l[]BW
R" R™

The question is if we can complete this diagram in a nice way, this means, if there
is a linear function S : R® — R™ so that we have a diagram

vV L w
[}Bvl lHBW
R —5 , gm

with So[]|p, = []lBw ©7T. Actually there is. Since coordinate functions are
isomorphisms, there is a linear function

S=[]p, oToLp:R" — R™
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with
So[lgy =[lwoToLp, o[, =[]y oToidy =[]py oT.

In general we define: A diagram of sets and functions

x 1,y

") E
N
is called a commutative diagram if go f = £ o h.

We have just proved:

Theorem 3.5. Let V and W are vector spaces with ordered basis By = {v1,...,v,}
and By = {w1,...,wp,} andT : V — W a linear function. Then there is a linear
function S = pa : R® — R™ so that the diagram

v L s w

[]Bvl lHBW

R® —£45 R™
commutes, that is, pao||p, =[]y o T.

Definition. The m x n matrix of Theorem 3.5 is called the matriz of T' with respect
to ordered basis By and By .

Suppose as above that V and W are vector spaces with ordered basis By =
{vi,...,vy,} and By = {wy,...,w,,} and that T : V. — W is a linear function.
We want to compute the matrix of T' with respect to By and By,. Remember that
the function S : R® — R"™ is defined by:

S: [ ]BW OTOLBV.
Hence S = 4 and the ith column of A equals S(e;) which is given by:

A, = S5(e)

([lBw 0T oLp,)(ei)
= ([IBw o T)(Lp, (&)
([ 1By o T)(vs)

[ 1w (T'(v4))
[T (vi)| By -

Thus the ith column of A is [T'(v;)]B,, and therefore

A=[Tv)]Bw, - [T(vn)]lBw].
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Ezample. Let T : P35 — Py be the linear function defined by T'(f(x)) = f'(x). If
we choose for ordered basis of P3 the set By = {1,z, 2%, 23} and for Py the ordered
basis By = {1,z, 2%}, then we compute

0
T(1) =0 and [T(0)]g, = |0
—0—
1
T(x)=1 and [T(x)]p, = |0
—0—
0]
T(2?) =2z and [T(2%)]p, = | 2
_O_
0]
T(2*) = 32% and [T(2*)]p, = |0
_3_
Thus the matrix of T" with respect to basis B3 and By is:
01 00
A=10 0 2 0
0 0 0 3

If we choose different ordered basis of P3 and Py say, B, = {1,z +1, (z+1)?, (z+
1)3} for Ps and B) = {(z — 1)?,2 — 1,1} for P, we have:

T(1)=0
Tx+1)=1
T((x+1)*) =2(x—1)+4
T((x+1)%) =3z — 1) +12(x — 1) + 12
This gives:
0]
[T()], = |0
_O_
e
[T(@)]B, = | O
_1_
e
[T(*)]5, = | 2
—4—
[ 3
[T(2*)]s, = | 12
| 12
and the matrix of 7" with respect to the ordered basis B; and Bj is:
00 0 3

A=10 0 2 12
0 1 4 12
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3. BASE CHANGE

Suppose that V is a finite dimensional vector space with ordered bases B =
{vi,...,vp} and B" = {uy,...,u,}. Let v € V a vector with coordinates (with
respect to B)

T'n

that is, v =r1vi+...+7r,v,. We want to find a formula to get from the coordinate
vector [v]p with respect to ordered basis B to the coordinate vector [v]p/ with
respect to B’.

The identity function idy : V' — V is a linear function. According to section 2
there is a linear function pp : R® — R so that the following diagram commutes:

y v,y

s | luy

R £ Rn

We have that

pp([vle) = ppo[lp(v)
=[]p oidv(v)
= [vlp
Thus pup maps the coordinates of a vector with respect to ordered basis B into the
coordinates of the vector with respect to ordered basis B’. This means that there

is an n X n matrix P so that
Plv]p = [v]p.

Definition. The n x n matrix P is called the change-of-bases-matriz from ordered
basis B to ordered basis B’.

Remark. Note that the function pp is the composition of isomorphisms:
pp =[]p oidvoLp=[]p oLp.

In particular, up is an isomorphism and P is an invertible matrix.

Suppose now that V' and W are finite dimensional vector space and that T :
V — W is a linear function. Let By = {vi,...,v,} and By, = {v],...,v]} be
ordered bases of V' and By = {w1,...,w,,} and B}, = {wi,...,w/ } be ordered
basis of W. If A is the matrix of T" with respect to ordered bases By and By we
have a commutative diagram:

v L . w

Hsvl lHBW

R —H4  Rm
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We want to compute the matrix B of T with respect to the bases B{, and By;,. Let
P denote the change-of-bases-matrix for changing from basis B{, to basis By, This
gives a commutative diagram:

vy vy

HB@l lHBV
R* £ R®
If @ is the change-of-bases-matrix from basis By to basis Bj;, we obtain a third
commutative diagram:

w oy

qul lHBw

R™ L2 R™
Using these three commutative diagrams we obtain a big diagram:

v idy v T W idw W

s, | oy | low | |1ty
R™ up R A R™ HQ R™
All squares in this diagram commute again. Thus the big (exterior diagram) gives
a commutative diagram:

v L. w

sy, | [

R HQAP R™
where pgap = g o ppa © pp. We have just shown:

Theorem 3.6. Let T : V — W be a linear function of finite dimensional vector
spaces. If A is the matriz of T with respect to ordered bases By and By, then the
matriz of T with respect to ordered bases Bi, and By, is

QAP

where P is the change-of-bases-matriz from By, to By and @ is the change-of-
bases-matriz from By to By, .

Ezxample. In the previous section we studied the differentiation function 7" : P3 —
Py. We found that the matrix of 7' with respect to ordered bases Bs = {1, z, 2%, 2®}
and By = {1,z, 2%} is:

A:

o O O

1 0 0
0 2 0].
0 0 3
With respect to the ordered bases B} = {1,z + 1,(z + 1)%,(z + 1)3} and B} =

{(x —1)%,2 — 1,1} the matrix of T is:

000 3
A=10 0 2 12
0 1 4 12
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Since

1=1
r+l=x+1
(z+1)2=2422+1

(x+1)% =2 +32°+ 32+ 1

the change-of-bases-matrix from Bj to Bs is:

1 1 11
01 2 3
P= 0 01 3
0 0 01
Similarly,
1=1
r=(x—-1)+1
= -1)2+2x-1)+1
and
0 0 1
Q=10 1 2
1 11

QAP=10 1 2| |0

—_ =
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\]
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