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1. The rank-nullity theorem

Definition. Let V and W be vector spaces and T : V −→W a linear function.

(a) The kernel of T is subset of V :

ker(T ) = {v ∈ V |T (v) = 0W } ⊆ V.

(b) The image of W is the subset of W :

im(T ) = {w ∈W | there is an v ∈ V with T (v) = w}.

Remark. ker(T ) is a subspace of V and im(T ) is a subspace of W . Kernel and
image of a linear function are important subspaces which carry a lot of information
about the linear function.

Theorem 3.1. Let V and W be vector spaces and T : V −→W a linear function.

(a) T is one-to-one if and only if ker(T ) = {0V }.
(b) T is onto if and only if im(T ) = W .

Proof. (a) For the forward direction⇒ assume that T is a one-to-one linear function
and v ∈ ker(T ). Then T (v) = 0W = T (0V ) and v = 0V . Conversely, if ker(T ) =
{0V } let u,v ∈ V with T (v) = T (u). Then, since T is linear,

0W = T (v)− T (u) = T (v − u)

and v − u ∈ ker(T ) = {0V }. Hence v − u = 0V and T is one-to-one.
(b) If T is onto, then for every vector w ∈ W there is a v ∈ V with T (v) = w.
Thus, im(T ) = W . Conversely, if im(T ) = W , then for every w ∈ W there is a
v ∈ V with T (v) = w. T is onto.

The following theorem relates the dimensions of kernel and image of a linear
function, provided that the dimension of the vector space V is finite.

Theorem 3.2. Let V and W be vector spaces and T : V −→W a linear function.
Suppose that V is finite dimensional. Then:

dim(ker(T )) + dim(im(T )) = dim(V ).

Proof. Suppose that dim(ker(T )) = r and let {v1, . . . ,vr} be a basis of ker(T ).
Since every linearly independent sequence can be extended to a basis of the vector
space, we can extend v1, . . . ,vr to a basis of V , say, {v1, . . . ,vr,vr+1, . . . ,vn} is a
basis of V . The formula follows if we can show that the set {T (vr+1), . . . , T (vn)}
is a basis of im(T ).
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We first show that {T (vr+1), . . . , T (vn)} is a spanning set. Let w ∈ im(T ).
Then there is a vector v ∈ V with T (v) = w. Since {v1, . . . ,vr,vr+1, . . . ,vn} is a
basis of V , there are scalars ti ∈ R so that

v = t1v1 + . . .+ trvr + tr+1vr+1 + . . .+ tnvn.

This implies

w = T (v)

= T (t1v1 + . . .+ trvr + tr+1vr+1 + . . .+ tnvn)

= t1T (v1) + . . .+ trT (vr) + tr+1T (vr+1) + . . .+ tnT (vn)

= tr+1T (vr+1) + . . .+ tnT (vn)

The last equation follows since by assumption vi ∈ ker(T ) for all 1 ≤ i ≤ r and
therefore T (vi) = 0W for 1 ≤ i ≤ r. This shows that {T (vr+1), . . . , T (vn)} is a
spanning set of im(T ).

In order to show that {T (vr+1), . . . , T (vn)} is linearly independent, suppose that
ti ∈ R with

tr+1T (vr+1) + . . .+ tnT (vn) = 0W .

Since T is linear we have that

tr+1T (vr+1) + . . .+ tnT (vn) = 0W = T (tr+1vr+1 + . . .+ tnvn)

and
tr+1vr+1 + . . .+ tnvn ∈ ker(T ).

Using that {v1, . . . ,vr} is a basis of ker(T ), there are scalars si ∈ R so that

tr+1vr+1 + . . .+ tnvn = s1v1 + . . .+ srvr.

Thus
s1v1, . . . , srvn − tr+1vr+1 − . . .− tnvn = 0V

and si = tj = 0 for all i and j, since {v1, . . . ,vr,vr+1, . . . ,vn} is a basis of V . This
shows that the set {T (vr+1), . . . , T (vn)} is linearly independent.

Let A be an m × n matrix and µA : Rn −→ Rm the linear function defined by
µA(u) = Au for all u ∈ Rn. Let µA(ei) = Ai denote the ith column of A. We
write

A = [A1, . . . ,An]

where Ai ∈ Rm is the ith column of A.

Definition. (a) The column space C(A) of A is the subspace of Rm which is gener-
ated by the columns of A, i.e. C(A) = span{A1, . . . ,An} ⊆ Rm.
(b) The number dim(C(A)) is called the column rank of A and is denoted by Crk(A).

Remark. (a) The column space of A is the image of the linear function µA, that is,

im(µA) = span{A1, . . . ,An} = C(A).

Therefore dim(im(A)) = dim(C(A)) = Crk(A).
(b) Note that the kernel of µA is the solution set of the homogeneous linear system
Ax = 0.

Definition. The number dim(ker(µA)) is called the nullity of A and is denoted by
null(A).

Now Theorem 3.2 yields:
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Theorem 3.3 (Rank-Nullity-Theorem). Let A be an m× n matrix. Then:

Crk(A) + null(A) = n.

Remark. Suppose that

A =


a1
a2
...

am


where ai is the ith row of A. In the previous chapter we defined the row space of
A as the subspace of Rn spanned by the rows of A:

R(A) = span{a1, . . . ,an}.

The row rank of A is the dimension of the row space of A:

Rrk(A) = dim(R(A)) = dim(span{a1, . . . ,an}).

The row rank of a matrix is easy to compute, since it does not change under
elementary row operations. So, if A is an m × n matrix, we bring A into reduced
echelon form D. Then the row rank of A is the number of nonzero rows of D. Since
the row space does not change under elementary row operations, the nonzero rows
of D provide a basis of the row space R(A). Note that the column space changes
under elementary row operations and the linearly independent columns of D are
NOT a bais of C(A). The following statement, however, is true:

Theorem 3.4. If A is an m× n matrix, then

Rrk(A) = Crk(A).

Proof. Suppose that D is the row reduced echelon form of A. The kernel of µA,
that is, the solution set of the linear system Ax = 0, equals the solution set of the
homogeneous system Dx = 0. Thus the dimension of ker(µA) is the number of free
variables of the system Dx = 0 which is the number of columns of D without a
pivot one. On the other hand, the number of rows of D with pivot ones is exactly
the dimension of R(A). This gives:

Rrk(A) = n− dim(ker(A))

= n− null(A).

By Theorem 3.3:

n− null(A) = Crk(A)

and we have shown that Rrk(A) = Crk(A).

Definition. If A is an m × n matrix the rank of A, denoted rk(A), is the row (or
column) rank of A.
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Example. Consider the matrix:

A =


0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15
3 −4 2 1 12 4


with row reduced echelon form

D =


1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4
0 0 0 0 0 0

 .
From D we obtain that

{(1, 0,−2, 3, 0,−24), (0, 1,−22, 0,−7), (0, 0, 0, 0, 1, 4)} ⊆M(1, 6)

is a basis of R(A) and hence rk(A) = 3. Therefore the associated linear function
µA : R6 −→ R4 maps R4 into a 3-dimensional subspace of R4. From the reduced
echelon form D we see that 


2
2
1
0
0
0

 ,

−3
−2
0
1
0
0

 ,


24
7
0
0
−4
1




is a basis of ker(µA) and null(A) = 3. In order to find a basis of C(A) we use a
theorem we have not shown in class:

Theorem. Let A be an m×n matrix and D its reduced echelon form. The columns
of A which correspond to the columns of D with pivot ones form a basis of the
column space of A.

In the example the first, second, and fifth column of D are the columns of D
with pivot ones. Thus the first, second, and fifth column of A form a basis of C(A),
i.e. 


0
3
3
3

 ,


3
−7
−9
−4

 ,


4
8
6
12


 .

is a basis of C(A).

2. Coordinate functions and the matrix of a linear function

Let V be a finite dimensional vector space and B = {v1, . . . ,vn} a basis of V .
Usually in a set it does not matter in which order the elements of the set are listed,
for example, {1, 2} = {2, 1}. In the following we need to fix an order on B. We will
say that B = {v1, . . . ,vn} is an ordered basis of V and mean that now the order
of the basis vectors is fixed, that is, vector v1 comes first, vector v2 is second and
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so on. In particular, we consider the ordered basis B = {v1,v2, . . . ,vn} different
from the ordered basis B′ = {v2,v1, . . . ,vn} although the sets are the same.

We fix the order of the vectors in B and assume that B = {v1, . . . ,vn} is an
ordered basis of V . Then there is a unique linear function

[ ]B : V −→ Rn

defined by [ ]B(vi) = [vi]B = ei where ei is the ith standard basis vector of Rn. If
v ∈ V with v = r1v1 + . . .+ rnvn then

[v]B = [r1v1 + . . .+ rnvn]B =


r1
r2
...
rn

 .
This vector [v]B is called the coordinate vector of the vector v with respect to
the ordered basis B. The linear function [ ]B : V −→ Rn is called the coordinate
function of V with respect to the ordered basis B.

Since [ ]B maps a basis of V onto a basis of Rn, [ ]B is an isomorphism of
vector spaces and has an inverse function LB : Rn −→ V . LB is determined by
LB(ei) = vi for all 1 ≤ i ≤ n and thus is given by:

LB



t1
t2
...
tn


 = t1v1 + t2v2 + . . .+ tnvn.

Suppose now that V and W are finite dimensional vector spaces and that BV =
{v1, . . . ,vn} is an ordered basis of V and BW = {w1, . . . ,wm} an ordered basis of
W . If T : V −→W is a linear function we obtain a diagram:

V
T−−−−→ W

[ ]BV

y y[ ]BW

Rn Rm

The question is if we can complete this diagram in a nice way, this means, if there
is a linear function S : Rn −→ Rm so that we have a diagram

V
T−−−−→ W

[ ]BV

y y[ ]BW

Rn S−−−−→ Rm

with S ◦ [ ]BV
= [ ]BW

◦ T . Actually there is. Since coordinate functions are
isomorphisms, there is a linear function

S = [ ]BW
◦ T ◦ LB : Rn −→ Rm
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with

S ◦ [ ]BV
= [ ]BW

◦ T ◦ LBV
◦ [ ]BV

= [ ]BW
◦ T ◦ idV = [ ]BW

◦ T.

In general we define: A diagram of sets and functions

X
f−−−−→ Y

h

y yg
S

`−−−−→ T

is called a commutative diagram if g ◦ f = ` ◦ h.
We have just proved:

Theorem 3.5. Let V and W are vector spaces with ordered basis BV = {v1, . . . ,vn}
and BW = {w1, . . . ,wm} and T : V −→W a linear function. Then there is a linear
function S = µA : Rn −→ Rm so that the diagram

V
T−−−−→ W

[ ]BV

y y[ ]BW

Rn µA−−−−→ Rm

commutes, that is, µA ◦ [ ]BV
= [ ]BW

◦ T .

Definition. The m×n matrix of Theorem 3.5 is called the matrix of T with respect
to ordered basis BV and BW .

Suppose as above that V and W are vector spaces with ordered basis BV =
{v1, . . . ,vn} and BW = {w1, . . . ,wm} and that T : V −→ W is a linear function.
We want to compute the matrix of T with respect to BV and BW . Remember that
the function S : Rn −→ Rm is defined by:

S = [ ]BW
◦ T ◦ LBV

.

Hence S = µA and the ith column of A equals S(ei) which is given by:

Ai = S(ei)

= ([ ]BW
◦ T ◦ LBV

)(ei)

= ([ ]BW
◦ T )(LBV

(ei)

= ([ ]BW
◦ T )(vi)

= [ ]BW
(T (vi))

= [T (vi)]BW
.

Thus the ith column of A is [T (vi)]BW
and therefore

A = [[T (v1)]BW
, . . . , [T (vn)]BW

].
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Example. Let T : P3 −→ P2 be the linear function defined by T (f(x)) = f ′(x). If
we choose for ordered basis of P3 the set B3 = {1, x, x2, x3} and for P2 the ordered
basis B2 = {1, x, x2}, then we compute

T (1) = 0 and [T (0)]B2 =

 0
0
0


T (x) = 1 and [T (x)]B2

=

 1
0
0


T (x2) = 2x and [T (x2)]B2

=

 0
2
0


T (x3) = 3x2 and [T (x3)]B2 =

 0
0
3


Thus the matrix of T with respect to basis B3 and B2 is:

A =

 0 1 0 0
0 0 2 0
0 0 0 3

 .
If we choose different ordered basis of P3 and P2 say, B′

3 = {1, x+1, (x+1)2, (x+
1)3} for P3 and B′

2 = {(x− 1)2, x− 1, 1} for P2 we have:

T (1) = 0

T (x+ 1) = 1

T ((x+ 1)2) = 2(x− 1) + 4

T ((x+ 1)3) = 3(x− 1)2 + 12(x− 1) + 12

This gives:

[T (0)]B2
=

 0
0
0


[T (x)]B2

=

 0
0
1


[T (x2)]B2 =

 0
2
4


[T (x3)]B2

=

 3
12
12


and the matrix of T with respect to the ordered basis B′

3 and B′
2 is:

A′ =

 0 0 0 3
0 0 2 12
0 1 4 12

 .
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3. Base Change

Suppose that V is a finite dimensional vector space with ordered bases B =
{v1, . . . ,vn} and B′ = {u1, . . . ,un}. Let v ∈ V a vector with coordinates (with
respect to B)

[v]B =


r1
r2
...
rn


that is, v = r1v1+ . . .+rnvn. We want to find a formula to get from the coordinate
vector [v]B with respect to ordered basis B to the coordinate vector [v]B′ with
respect to B′.

The identity function idV : V −→ V is a linear function. According to section 2
there is a linear function µP : Rn −→ Rn so that the following diagram commutes:

V
idV−−−−→ V

[ ]B

y y[ ]B′

Rn µP−−−−→ Rn

We have that

µP ([v]B) = µP ◦ [ ]B(v)

= [ ]B′ ◦ idV (v)

= [v]B′

Thus µP maps the coordinates of a vector with respect to ordered basis B into the
coordinates of the vector with respect to ordered basis B′. This means that there
is an n× n matrix P so that

P [v]B = [v]B′ .

Definition. The n × n matrix P is called the change-of-bases-matrix from ordered
basis B to ordered basis B′.

Remark. Note that the function µP is the composition of isomorphisms:

µP = [ ]B′ ◦ idV ◦ LB = [ ]B′ ◦ LB .

In particular, µP is an isomorphism and P is an invertible matrix.

Suppose now that V and W are finite dimensional vector space and that T :
V −→ W is a linear function. Let BV = {v1, . . . ,vn} and B′

V = {v′
1, . . . ,v

′
n} be

ordered bases of V and BW = {w1, . . . ,wm} and B′
W = {w′

1, . . . ,w
′
m} be ordered

basis of W . If A is the matrix of T with respect to ordered bases BV and BW we
have a commutative diagram:

V
T−−−−→ W

[ ]BV

y y[ ]BW

Rn µA−−−−→ Rm
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We want to compute the matrix B of T with respect to the bases B′
V and B′

W . Let
P denote the change-of-bases-matrix for changing from basis B′

V to basis BV , This
gives a commutative diagram:

V
idV−−−−→ V

[ ]B′
V

y y[ ]BV

Rn µP−−−−→ Rn

If Q is the change-of-bases-matrix from basis BW to basis B′
W we obtain a third

commutative diagram:

W
idW−−−−→ W

[ ]BW

y y[ ]B′
W

Rm
µQ−−−−→ Rm

Using these three commutative diagrams we obtain a big diagram:

V
idV−−−−→ V

T−−−−→ W
idW−−−−→ W

[ ]B′
V

y [ ]BV

y [ ]BW

y y[ ]B′
W

Rn µP−−−−→ Rn µA−−−−→ Rm
µQ−−−−→ Rm

All squares in this diagram commute again. Thus the big (exterior diagram) gives
a commutative diagram:

V
T−−−−→ W

[ ]B′
V

y y[ ]BW

Rn
µQAP−−−−→ Rm

where µQAP = µQ ◦ µA ◦ µP . We have just shown:

Theorem 3.6. Let T : V −→ W be a linear function of finite dimensional vector
spaces. If A is the matrix of T with respect to ordered bases BV and BW , then the
matrix of T with respect to ordered bases B′

V and B′
W is

QAP

where P is the change-of-bases-matrix from B′
V to BV and Q is the change-of-

bases-matrix from BW to B′
W .

Example. In the previous section we studied the differentiation function T : P3 −→
P2. We found that the matrix of T with respect to ordered bases B3 = {1, x, x2, x3}
and B2 = {1, x, x2} is:

A =

 0 1 0 0
0 0 2 0
0 0 0 3

 .
With respect to the ordered bases B′

3 = {1, x + 1, (x + 1)2, (x + 1)3} and B′
2 =

{(x− 1)2, x− 1, 1} the matrix of T is:

A′ =

 0 0 0 3
0 0 2 12
0 1 4 12

 .
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Since

1 = 1

x+ 1 = x+ 1

(x+ 1)2 = x2 + 2x+ 1

(x+ 1)3 = x3 + 3x2 + 3x+ 1

the change-of-bases-matrix from B′
3 to B3 is:

P =


1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

 .
Similarly,

1 = 1

x = (x− 1) + 1

x2 = (x− 1)2 + 2(x− 1) + 1

and

Q =

 0 0 1
0 1 2
1 1 1


is the change-of-bases-matrix from ordered basis B2 to ordered basis B′

2. Then

QAP =

 0 0 1
0 1 2
1 1 1

 0 1 0 0
0 0 2 0
0 0 0 3




1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1


=

 0 0 1
0 1 2
1 1 1

 0 1 2 3
0 0 2 6
0 0 0 3


=

 0 0 0 3
0 0 2 12
0 1 4 12


= A′.


