2: LINEAR FUNCTIONS AND MATRICES II

1. The rank-nullity theorem

Definition. Let V and W be vector spaces and $T: V \longrightarrow W$ a linear function.

(a) The kernel of T is subset of V :

$$
\ker(T) = \{ \mathbf{v} \in V \, | \, T(\mathbf{v}) = \mathbf{0}_W \} \subseteq V.
$$

(b) The *image* of W is the subset of W :

 $\text{im}(T) = \{ \mathbf{w} \in W \mid \text{there is an } \mathbf{v} \in V \text{ with } T(\mathbf{v}) = \mathbf{w} \}.$

Remark. $\ker(T)$ is a subspace of V and $\operatorname{im}(T)$ is a subspace of W. Kernel and image of a linear function are important subspaces which carry a lot of information about the linear function.

Theorem 3.1. Let V and W be vector spaces and $T: V \longrightarrow W$ a linear function.

- (a) T is one-to-one if and only if $\ker(T) = \{0_V\}.$
- (b) T is onto if and only if $im(T) = W$.

Proof. (a) For the forward direction \Rightarrow assume that T is a one-to-one linear function and $\mathbf{v} \in \text{ker}(T)$. Then $T(\mathbf{v}) = \mathbf{0}_W = T(\mathbf{0}_V)$ and $\mathbf{v} = \mathbf{0}_V$. Conversely, if $\text{ker}(T) =$ $\{0_V\}$ let $\mathbf{u}, \mathbf{v} \in V$ with $T(\mathbf{v}) = T(\mathbf{u})$. Then, since T is linear,

$$
\mathbf{0}_W = T(\mathbf{v}) - T(\mathbf{u}) = T(\mathbf{v} - \mathbf{u})
$$

and $\mathbf{v} - \mathbf{u} \in \text{ker}(T) = \{ \mathbf{0}_V \}$. Hence $\mathbf{v} - \mathbf{u} = \mathbf{0}_V$ and T is one-to-one. (b) If T is onto, then for every vector $\mathbf{w} \in W$ there is a $\mathbf{v} \in V$ with $T(\mathbf{v}) = \mathbf{w}$. Thus, $\text{im}(T) = W$. Conversely, if $\text{im}(T) = W$, then for every $\mathbf{w} \in W$ there is a $\mathbf{v} \in V$ with $T(\mathbf{v}) = \mathbf{w}$. T is onto.

The following theorem relates the dimensions of kernel and image of a linear function, provided that the dimension of the vector space V is finite.

Theorem 3.2. Let V and W be vector spaces and $T: V \longrightarrow W$ a linear function. Suppose that V is finite dimensional. Then:

$$
\dim(\ker(T)) + \dim(\text{im}(T)) = \dim(V).
$$

Proof. Suppose that $dim(ker(T)) = r$ and let $\{v_1, \ldots, v_r\}$ be a basis of ker(T). Since every linearly independent sequence can be extended to a basis of the vector space, we can extend $\mathbf{v}_1, \ldots, \mathbf{v}_r$ to a basis of V, say, $\{\mathbf{v}_1, \ldots, \mathbf{v}_r, \mathbf{v}_{r+1}, \ldots, \mathbf{v}_n\}$ is a basis of V. The formula follows if we can show that the set $\{T(\mathbf{v}_{r+1}), \ldots, T(\mathbf{v}_n)\}$ is a basis of $\text{im}(T)$.

Typeset by $A_{\mathcal{M}}S$ -TEX

We first show that $\{T(\mathbf{v}_{r+1}), \ldots, T(\mathbf{v}_n)\}$ is a spanning set. Let $\mathbf{w} \in \text{im}(T)$. Then there is a vector $\mathbf{v} \in V$ with $T(\mathbf{v}) = \mathbf{w}$. Since $\{\mathbf{v}_1, \dots, \mathbf{v}_r, \mathbf{v}_{r+1}, \dots, \mathbf{v}_n\}$ is a basis of V, there are scalars $t_i \in \mathbb{R}$ so that

$$
\mathbf{v}=t_1\mathbf{v}_1+\ldots+t_r\mathbf{v}_r+t_{r+1}\mathbf{v}_{r+1}+\ldots+t_n\mathbf{v}_n.
$$

This implies

$$
\mathbf{w} = T(\mathbf{v})
$$

= $T(t_1\mathbf{v}_1 + \dots + t_r\mathbf{v}_r + t_{r+1}\mathbf{v}_{r+1} + \dots + t_n\mathbf{v}_n)$
= $t_1T(\mathbf{v}_1) + \dots + t_rT(\mathbf{v}_r) + t_{r+1}T(\mathbf{v}_{r+1}) + \dots + t_nT(\mathbf{v}_n)$
= $t_{r+1}T(\mathbf{v}_{r+1}) + \dots + t_nT(\mathbf{v}_n)$

The last equation follows since by assumption $v_i \in \text{ker}(T)$ for all $1 \leq i \leq r$ and therefore $T(\mathbf{v}_i) = \mathbf{0}_W$ for $1 \leq i \leq r$. This shows that $\{T(\mathbf{v}_{r+1}), \ldots, T(\mathbf{v}_n)\}$ is a spanning set of $\text{im}(T)$.

In order to show that $\{T(\mathbf{v}_{r+1}), \ldots, T(\mathbf{v}_n)\}\$ is linearly independent, suppose that $t_i \in \mathbb{R}$ with

$$
t_{r+1}T(\mathbf{v}_{r+1})+\ldots+t_nT(\mathbf{v}_n)=\mathbf{0}_W.
$$

Since T is linear we have that

$$
t_{r+1}T(\mathbf{v}_{r+1})+\ldots+t_nT(\mathbf{v}_n)=\mathbf{0}_W=T(t_{r+1}\mathbf{v}_{r+1}+\ldots+t_n\mathbf{v}_n)
$$

and

$$
t_{r+1}\mathbf{v}_{r+1} + \ldots + t_n\mathbf{v}_n \in \ker(T).
$$

Using that $\{v_1, \ldots, v_r\}$ is a basis of ker(T), there are scalars $s_i \in \mathbb{R}$ so that

$$
t_{r+1}\mathbf{v}_{r+1}+\ldots+t_n\mathbf{v}_n=s_1\mathbf{v}_1+\ldots+s_r\mathbf{v}_r.
$$

Thus

$$
s_1\mathbf{v}_1,\ldots,s_r\mathbf{v}_n-t_{r+1}\mathbf{v}_{r+1}-\ldots-t_n\mathbf{v}_n=\mathbf{0}_V
$$

and $s_i = t_j = 0$ for all i and j, since $\{v_1, \ldots, v_r, v_{r+1}, \ldots, v_n\}$ is a basis of V. This shows that the set $\{T(\mathbf{v}_{r+1}), \ldots, T(\mathbf{v}_n)\}$ is linearly independent.

Let A be an $m \times n$ matrix and $\mu_A : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ the linear function defined by $\mu_A(\mathbf{u}) = A\mathbf{u}$ for all $\mathbf{u} \in \mathbb{R}^n$. Let $\mu_A(\mathbf{e}_i) = \mathbf{A}_i$ denote the *i*th column of A. We write

$$
A=[\mathbf{A}_1,\ldots,\mathbf{A}_n]
$$

where $\mathbf{A}_i \in \mathbb{R}^m$ is the *i*th column of A.

Definition. (a) The column space $C(A)$ of A is the subspace of \mathbb{R}^m which is generated by the columns of A, i.e. $C(A) = \text{span}\{\mathbf{A}_1, \dots, \mathbf{A}_n\} \subseteq \mathbb{R}^m$.

(b) The number $\dim(C(A))$ is called the *column rank* of A and is denoted by $Crk(A)$.

Remark. (a) The column space of A is the image of the linear function μ_A , that is,

$$
\operatorname{im}(\mu_A) = \operatorname{span}\{\mathbf{A}_1, \dots, \mathbf{A}_n\} = C(A).
$$

Therefore $\dim(\text{im}(A)) = \dim(C(A)) = \text{Crk}(A)$.

(b) Note that the kernel of μ_A is the solution set of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$.

Definition. The number dim(ker(μ_A)) is called the *nullity* of A and is denoted by $null(A).$

Now Theorem 3.2 yields:

$$
Crk(A) + null(A) = n.
$$

Remark. Suppose that

$$
A = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \mathbf{a}_m \end{bmatrix}
$$

where a_i is the *i*th row of A. In the previous chapter we defined the row space of A as the subspace of \mathbb{R}^n spanned by the rows of A:

$$
R(A) = \mathrm{span}\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}.
$$

The row rank of A is the dimension of the row space of A:

$$
Rrk(A) = \dim(R(A)) = \dim(\text{span}\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}).
$$

The row rank of a matrix is easy to compute, since it does not change under elementary row operations. So, if A is an $m \times n$ matrix, we bring A into reduced echelon form D . Then the row rank of A is the number of nonzero rows of D . Since the row space does not change under elementary row operations, the nonzero rows of D provide a basis of the row space $R(A)$. Note that the column space changes under elementary row operations and the linearly independent columns of D are NOT a bais of $C(A)$. The following statement, however, is true:

Theorem 3.4. If A is an $m \times n$ matrix, then

$$
Rrk(A) = Crk(A).
$$

Proof. Suppose that D is the row reduced echelon form of A. The kernel of μ_A , that is, the solution set of the linear system $A\mathbf{x} = \mathbf{0}$, equals the solution set of the homogeneous system $Dx = 0$. Thus the dimension of ker(μ_A) is the number of free variables of the system $Dx = 0$ which is the number of columns of D without a pivot one. On the other hand, the number of rows of D with pivot ones is exactly the dimension of $R(A)$. This gives:

$$
Rrk(A) = n - \dim(\ker(A))
$$

= $n - \text{null}(A)$.

By Theorem 3.3:

$$
n - \mathrm{null}(A) = \mathrm{Crk}(A)
$$

and we have shown that $Rrk(A) = Crk(A)$.

Definition. If A is an $m \times n$ matrix the rank of A, denoted rk(A), is the row (or column) rank of A.

Example. Consider the matrix:

$$
A = \begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \\ 3 & -4 & 2 & 1 & 12 & 4 \end{bmatrix}
$$

with row reduced echelon form

$$
D = \begin{bmatrix} 1 & 0 & -2 & 3 & 0 & -24 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.
$$

From D we obtain that

$$
\{(1,0,-2,3,0,-24),(0,1,-22,0,-7),(0,0,0,0,1,4)\}\subseteq \mathbb{M}(1,6)
$$

is a basis of $R(A)$ and hence $\text{rk}(A) = 3$. Therefore the associated linear function $\mu_A : \mathbb{R}^6 \longrightarrow \mathbb{R}^4$ maps \mathbb{R}^4 into a 3-dimensional subspace of \mathbb{R}^4 . From the reduced echelon form D we see that

is a basis of $ker(\mu_A)$ and $null(A) = 3$. In order to find a basis of $C(A)$ we use a theorem we have not shown in class:

Theorem. Let A be an $m \times n$ matrix and D its reduced echelon form. The columns of A which correspond to the columns of D with pivot ones form a basis of the column space of A.

In the example the first, second, and fifth column of D are the columns of D with pivot ones. Thus the first, second, and fifth column of A form a basis of $C(A)$, i.e.

is a basis of $C(A)$.

2. Coordinate functions and the matrix of a linear function

Let V be a finite dimensional vector space and $B = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ a basis of V. Usually in a set it does not matter in which order the elements of the set are listed, for example, $\{1,2\} = \{2,1\}$. In the following we need to fix an order on B. We will say that $B = {\mathbf{v}_1, \ldots, \mathbf{v}_n}$ is an *ordered basis* of V and mean that now the order of the basis vectors is fixed, that is, vector \mathbf{v}_1 comes first, vector \mathbf{v}_2 is second and so on. In particular, we consider the ordered basis $B = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ different from the ordered basis $B' = {\bf{v}_2, v_1, \ldots, v_n}$ although the sets are the same.

We fix the order of the vectors in B and assume that $B = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ is an ordered basis of V . Then there is a unique linear function

$$
[\]_B: V \longrightarrow \mathbb{R}^n
$$

defined by $[\;]_B(\mathbf{v}_i) = [\mathbf{v}_i]_B = \mathbf{e}_i$ where \mathbf{e}_i is the *i*th standard basis vector of \mathbb{R}^n . If $\mathbf{v} \in V$ with $\mathbf{v} = r_1 \mathbf{v}_1 + \ldots + r_n \mathbf{v}_n$ then

$$
[\mathbf{v}]_B = [r_1 \mathbf{v}_1 + \ldots + r_n \mathbf{v}_n]_B = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix}.
$$

This vector $[\mathbf{v}]_B$ is called the *coordinate vector* of the vector **v** with respect to the ordered basis B. The linear function $[\]_B : V \longrightarrow \mathbb{R}^n$ is called the *coordinate* function of V with respect to the ordered basis B .

Since $[\]_B$ maps a basis of V onto a basis of \mathbb{R}^n , $[\]_B$ is an isomorphism of vector spaces and has an inverse function $L_B : \mathbb{R}^n \longrightarrow V$. L_B is determined by $L_B(e_i) = \mathbf{v}_i$ for all $1 \leq i \leq n$ and thus is given by:

$$
L_B\left(\begin{bmatrix}t_1\\t_2\\ \vdots\\t_n\end{bmatrix}\right)=t_1\mathbf{v}_1+t_2\mathbf{v}_2+\ldots+t_n\mathbf{v}_n.
$$

Suppose now that V and W are finite dimensional vector spaces and that $B_V =$ ${\bf v}_1,\ldots,{\bf v}_n$ is an ordered basis of V and $B_W = {\bf w}_1,\ldots,{\bf w}_m$ an ordered basis of W. If $T: V \longrightarrow W$ is a linear function we obtain a diagram:

$$
\begin{array}{ccc}\nV & \xrightarrow{T} & W \\
\Box_{B_V} & & \downarrow \Box_{B_W} \\
\mathbb{R}^n & & \mathbb{R}^m\n\end{array}
$$

The question is if we can complete this diagram in a nice way, this means, if there is a linear function $S : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ so that we have a diagram

$$
V \xrightarrow{T} W
$$

\n
$$
\begin{array}{ccc}\n\downarrow & & \downarrow \\
\downarrow &
$$

with $S \circ []_{B_V} = []_{B_W} \circ T$. Actually there is. Since coordinate functions are isomorphisms, there is a linear function

$$
S = [\]_{B_W} \circ T \circ L_B : \mathbb{R}^n \longrightarrow \mathbb{R}^m
$$

with

$$
S \circ []_{B_V} = []_{B_W} \circ T \circ L_{B_V} \circ []_{B_V} = []_{B_W} \circ T \circ id_V = []_{B_W} \circ T.
$$

In general we define: A diagram of sets and functions

$$
X \xrightarrow{f} Y
$$

\n
$$
h \downarrow \qquad \qquad \downarrow g
$$

\n
$$
S \xrightarrow{\ell} T
$$

is called a *commutative diagram* if $g \circ f = \ell \circ h$.

We have just proved:

Theorem 3.5. Let V and W are vector spaces with ordered basis $B_V = {\bf{v}_1, \ldots, \bf{v}_n}$ and $B_W = \{w_1, \ldots, w_m\}$ and $T : V \longrightarrow W$ a linear function. Then there is a linear function $S = \mu_A : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ so that the diagram

$$
V \xrightarrow{T} W
$$

$$
\begin{array}{ccc}\n\downarrow & \downarrow & \downarrow \\
\downarrow & \
$$

commutes, that is, $\mu_A \circ [\;]_{B_V} = [\;]_{B_W} \circ T$.

Definition. The $m \times n$ matrix of Theorem 3.5 is called the matrix of T with respect to ordered basis B_V and B_W .

Suppose as above that V and W are vector spaces with ordered basis $B_V =$ ${\mathbf v}_1, \ldots, {\mathbf v}_n$ and $B_W = {\mathbf w}_1, \ldots, {\mathbf w}_m$ and that $T: V \longrightarrow W$ is a linear function. We want to compute the matrix of T with respect to B_V and B_W . Remember that the function $S : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is defined by:

$$
S = [\]_{B_W} \circ T \circ L_{B_V}.
$$

Hence $S = \mu_A$ and the *i*th column of A equals $S(e_i)$ which is given by:

$$
\begin{aligned} \mathbf{A}_i &= S(\mathbf{e}_i) \\ &= \left([\begin{array}{c} \end{array}]_{B_W} \circ T \circ L_{B_V} \right)(\mathbf{e}_i) \\ &= \left([\begin{array}{c} \end{array}]_{B_W} \circ T \right)(L_{B_V}(\mathbf{e}_i) \\ &= \left([\begin{array}{c} \end{array}]_{B_W} \circ T \right)(\mathbf{v}_i) \\ &= [\begin{array}{c} \end{array}]_{B_W} (T(\mathbf{v}_i)) \\ &= [T(\mathbf{v}_i)]_{B_W}. \end{aligned}
$$

Thus the *i*th column of A is $[T(\mathbf{v}_i)]_{B_W}$ and therefore

$$
A = [[T(\mathbf{v}_1)]_{B_W}, \dots, [T(\mathbf{v}_n)]_{B_W}].
$$

Example. Let $T : \mathbb{P}_3 \longrightarrow \mathbb{P}_2$ be the linear function defined by $T(f(x)) = f'(x)$. If we choose for ordered basis of \mathbb{P}_3 the set $B_3 = \{1, x, x^2, x^3\}$ and for \mathbb{P}_2 the ordered basis $B_2 = \{1, x, x^2\}$, then we compute

$$
T(1) = 0 \text{ and } [T(0)]_{B_2} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
$$

$$
T(x) = 1 \text{ and } [T(x)]_{B_2} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}
$$

$$
T(x^2) = 2x \text{ and } [T(x^2)]_{B_2} = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}
$$

$$
T(x^3) = 3x^2 \text{ and } [T(x^3)]_{B_2} = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}
$$

Thus the matrix of T with respect to basis B_3 and B_2 is:

$$
A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.
$$

If we choose different ordered basis of \mathbb{P}_3 and \mathbb{P}_2 say, $B'_3 = \{1, x+1, (x+1)^2, (x+1)^2$ 1)³} for \mathbb{P}_3 and $B'_2 = \{(x-1)^2, x-1, 1\}$ for \mathbb{P}_2 we have:

$$
T(1) = 0
$$

\n
$$
T(x + 1) = 1
$$

\n
$$
T((x + 1)^{2}) = 2(x - 1) + 4
$$

\n
$$
T((x + 1)^{3}) = 3(x - 1)^{2} + 12(x - 1) + 12
$$

This gives:

$$
[T(0)]_{B_2} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
$$

$$
[T(x)]_{B_2} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
$$

$$
[T(x^2)]_{B_2} = \begin{bmatrix} 0 \\ 2 \\ 4 \end{bmatrix}
$$

$$
[T(x^3)]_{B_2} = \begin{bmatrix} 3 \\ 12 \\ 12 \end{bmatrix}
$$

and the matrix of T with respect to the ordered basis B'_3 and B'_2 is:

$$
A' = \begin{bmatrix} 0 & 0 & 0 & 3 \\ 0 & 0 & 2 & 12 \\ 0 & 1 & 4 & 12 \end{bmatrix}.
$$

3. Base Change

Suppose that V is a finite dimensional vector space with ordered bases $B =$ $\{v_1,\ldots,v_n\}$ and $B'=\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$. Let $\mathbf{v}\in V$ a vector with coordinates (with respect to B)

$$
[\mathbf{v}]_B = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix}
$$

that is, $\mathbf{v} = r_1 \mathbf{v}_1 + \ldots + r_n \mathbf{v}_n$. We want to find a formula to get from the coordinate vector $[v]_B$ with respect to ordered basis B to the coordinate vector $[v]_{B'}$ with respect to B' .

The identity function $\mathrm{id}_V : V \longrightarrow V$ is a linear function. According to section 2 there is a linear function $\mu_P : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ so that the following diagram commutes:

$$
V \xrightarrow{\text{id}_V} V
$$

\n
$$
[]_B \downarrow \qquad \qquad \downarrow
$$

\n
$$
\mathbb{R}^n \xrightarrow{\mu_P} \mathbb{R}^n
$$

We have that

$$
\mu_P([\mathbf{v}]_B) = \mu_P \circ [\]_B(\mathbf{v})
$$

$$
= [\]_{B'} \circ id_V(\mathbf{v})
$$

$$
= [\mathbf{v}]_{B'}
$$

Thus μ_P maps the coordinates of a vector with respect to ordered basis B into the coordinates of the vector with respect to ordered basis B' . This means that there is an $n \times n$ matrix P so that

$$
P[\mathbf{v}]_B = [\mathbf{v}]_{B'}.
$$

Definition. The $n \times n$ matrix P is called the *change-of-bases-matrix* from ordered basis B to ordered basis B' .

Remark. Note that the function μ *P* is the composition of isomorphisms:

$$
\mu_P = [\;]_{B'} \circ id_V \circ L_B = [\;]_{B'} \circ L_B.
$$

In particular, μ_P is an isomorphism and P is an invertible matrix.

Suppose now that V and W are finite dimensional vector space and that T : $V \longrightarrow W$ is a linear function. Let $B_V = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ and $B'_V = {\mathbf{v}'_1, \dots, \mathbf{v}'_n}$ be ordered bases of V and $B_W = {\mathbf{w}_1, \dots, \mathbf{w}_m}$ and $B'_W = {\mathbf{w}'_1, \dots, \mathbf{w}'_m}$ be ordered basis of W. If A is the matrix of T with respect to ordered bases B_V and B_W we have a commutative diagram:

$$
V \xrightarrow{T} W
$$

$$
\begin{array}{ccc}\n\downarrow & & \downarrow \downarrow \\
\downarrow & &
$$

We want to compute the matrix B of T with respect to the bases B_V' and B_W' . Let P denote the change-of-bases-matrix for changing from basis B_V' to basis B_V , This gives a commutative diagram:

$$
V \xrightarrow{\text{id}_V} V
$$

$$
\begin{array}{ccc}\n\downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow \\
\
$$

If Q is the change-of-bases-matrix from basis B_W to basis B'_W we obtain a third commutative diagram:

$$
W \xrightarrow{\text{id}_W} W
$$

$$
\downarrow \qquad \qquad \downarrow \qquad \downarrow \downarrow \downarrow
$$

$$
\mathbb{R}^m \xrightarrow{\mu_Q} \mathbb{R}^m
$$

Using these three commutative diagrams we obtain a big diagram:

$$
V \xrightarrow{\text{id}_V} V \xrightarrow{T} W \xrightarrow{\text{id}_W} W
$$

$$
\begin{array}{ccc}\n\downarrow & & \downarrow \downarrow & \\
\downarrow & & \downarrow \downarrow & \\
\mathbb{R}^n & \xrightarrow{\mu_P} \mathbb{R}^n \xrightarrow{\mu_A} \mathbb{R}^m \xrightarrow{\mu_Q} \mathbb{R}^m\n\end{array}
$$

All squares in this diagram commute again. Thus the big (exterior diagram) gives a commutative diagram:

$$
V \xrightarrow{T} W
$$

$$
\Box_{B'_V} \downarrow \qquad \qquad \Box_{B_W}
$$

$$
\mathbb{R}^n \xrightarrow{\mu_{QAP}} \mathbb{R}^m
$$

where $\mu_{QAP} = \mu_Q \circ \mu_A \circ \mu_P$. We have just shown:

Theorem 3.6. Let $T: V \longrightarrow W$ be a linear function of finite dimensional vector spaces. If A is the matrix of T with respect to ordered bases B_V and B_W , then the matrix of T with respect to ordered bases B_V' and B_W' is

QAP

where P is the change-of-bases-matrix from B_V' to B_V and Q is the change-ofbases-matrix from B_W to B'_W .

Example. In the previous section we studied the differentiation function $T : \mathbb{P}_3 \longrightarrow$ \mathbb{P}_2 . We found that the matrix of T with respect to ordered bases $B_3 = \{1, x, x^2, x^3\}$ and $B_2 = \{1, x, x^2\}$ is:

$$
A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.
$$

With respect to the ordered bases $B'_3 = \{1, x + 1, (x + 1)^2, (x + 1)^3\}$ and $B'_2 =$ $\{(x-1)^2, x-1, 1\}$ the matrix of T is:

$$
A' = \begin{bmatrix} 0 & 0 & 0 & 3 \\ 0 & 0 & 2 & 12 \\ 0 & 1 & 4 & 12 \end{bmatrix}.
$$

Since

$$
1 = 1
$$

$$
x + 1 = x + 1
$$

$$
(x + 1)2 = x2 + 2x + 1
$$

$$
(x + 1)3 = x3 + 3x2 + 3x + 1
$$

the change-of-bases-matrix from B'_3 to B_3 is:

$$
P = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}.
$$

Similarly,

$$
1 = 1
$$

\n
$$
x = (x - 1) + 1
$$

\n
$$
x2 = (x - 1)2 + 2(x - 1) + 1
$$

and

$$
Q = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}
$$

is the change-of-bases-matrix from ordered basis B_2 to ordered basis B_2' . Then

$$
QAP = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

$$
= \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 3 \end{bmatrix}
$$

$$
= \begin{bmatrix} 0 & 0 & 0 & 3 \\ 0 & 0 & 2 & 12 \\ 0 & 1 & 4 & 12 \end{bmatrix}
$$

$$
= A'.
$$