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1. Introduction

The following is a well known consequence of the Wirtinger inequality:
a compact complex submanifold of a Kähler manifold is a volume mini-
mizer in its homology class and any other volume minimizer in that class
is, necessarily, complex. In particular, in a Kähler surface a holomorphic
curve is an area minimizer in its homology class. In light of this result it
is natural, given a Kähler surface, to investigate the relation between area
minimizers and complex curves. When the ambient manifold is a flat four-
dimensional torus it was shown in [M], using second variation arguments,
that a two-dimensional area minimizer is holomorphic for one of the com-
plex structures compatible with the metric. In [MW] the authors attempted
to prove an analogous result for a Ricci flat (Calabi-Yau) metric g on a
K3 surface X. Such a metric is hyperkähler in the sense that there is a
two-sphere of complex structures, called the hyperkähler line, each of which
is compatible with g. We obtained partial positive results which are ex-
tended in section 5 of this paper. We also showed that there is a strictly
stable minimal two-sphere in a (non-compact) hyperkähler surface that is
not holomorphic for any compatible complex structure. This shows that
second variation arguments cannot be used to answer this question.

However there is compelling evidence for a result on K3 surfaces analo-
gous to that for the flat torus. It can be shown that if a cohomology class
α ∈ H1,1(X; R) ∩H2(X; Z) satisfies α · α ≥ −2 then its Poincaré dual can
be represented by a curve that is holomorphic. Moreover, there is a set of
generators of H2(X; Z) each of which can be represented by a curve holo-
morphic for some complex structure on the hyperkähler line. Thus every
class γ ∈ H2(X; Z) can be represented by a sum of curves each of which is
holomorphic for some complex structure on the hyperkähler line. A mini-
mizer of area among surfaces representing γ consists of a sum of branched
immersed surfaces

Σ1 ∪ · · · ∪ Σk,

and it is then reasonable to ask whether each Σi is holomorphic for some
complex structure on the hyperkähler line determined by g. Though this
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is true for many homology classes we show, in this paper, that there is an
integral homology class γ and a hyperkähler metric g such that no area
minimizer of γ has this property. Thus the result for flat four-tori does not
carry over to K3 surfaces. For recent work on similar problems in Kähler-
Einstein manifolds see [AN].

For lagrangian area minimizers and lagrangian homology classes there
are analogous questions. Given a lagrangian homology class γ ∈ H2(X; Z) a
minimizer of area among lagrangian two-spheres representing γ consists of
a sum of lagrangian two-spheres

(S2)1 ∪ · · · ∪ (S2)k,

that may have isolated singularities, as well as branch points. If each sur-
face is a branched immersion then it can be shown [SW] that each surface is
special lagrangian and, therefore, holomorphic for some complex structure
on the hyperkähler line determined by g. However using techniques simi-
lar to those used in the previous problem it can be shown that there is an
integral lagrangian homology class and a hyperkähler metric such that no
minimizer of area among lagrangian two-spheres consists solely of branched
immersions. In particular, there is a lagrangian two-sphere which is a mini-
mizer of area among lagrangians that is not regular (i. e., is not a branched
immersion). We will briefly describe this argument. A simpler proof of this
result, using different techniques, has been given in [W]. Finally we give a
new proof, along the lines of the arguments in [MW], of a theorem of Don-
aldson [D] relating stability, holomorphicity and the normal Euler number
of a surface in a K3 surface. This result suggests that the class we use in
the construction of our main result is optimal in a certain sense. The work
on this paper began at the IPAM workshop: The Geometry of Lagrangian
Submanifolds held at IPAM in April, 2003. The authors are indebted to
IPAM for the hospitality they extended to us during this workshop. The
first author would also like to thank Mark Gross for many useful conversa-
tions about K3 surfaces.

2. Preliminaries

In this section we review basic results in Kähler geometry and the geom-
etry of K3 surfaces that will be used in the proof of our result. For proofs
see [B-P-V] and [G-H].

Let X be a K3 surface, that is, X is a compact, complex, simply connected
surface with trivial canonical bundle. Let

L = −E8 ⊕−E8 ⊕H ⊕H ⊕H,

define the intersection form on a vector space of real dimension 22. Set
LC = L⊗ C with the intersection form extended complex linearly. For any
Ω ∈ LC we denote [Ω] ∈ P(LC) the corresponding line. It is known that
H2(X, Z) is free of rank 22 and the intersection form on H2(X, Z) is given
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by L. In particular, b2
+ = 3 and b2

− = 19. A marking of X is a choice of
basis,

{α0, . . . , α7, β0, . . . , β7, ξ1, ξ2, ξ3, η1, η2, η3}
of H2(X, Z) that induces the intersection form L. Equivalently a marking
of X is the choice of an isometry φ : H2(X, Z) → L. The period domain D
of X is the projectivization of the set:

{Ω ∈ LC : Ω · Ω = 0, Ω · Ω > 0}.
The complex dimension of D equals 20. If Ω is a holomorphic (2, 0)-form
on X then the identities Ω · Ω = 0 and Ω · Ω > 0 show that a marking of
X determines a point [Ω] ∈ D, called the period point of X. The first main
theorem we require is the weak Torelli theorem:

Theorem 2.1. Two K3 surfaces are isomorphic (as complex surfaces) if
and only if there are markings for them such that the corresponding period
points are the same.

The second main theorem we require is:

Theorem 2.2. All points of the period domain D occur as period points of
marked K3 surfaces.

A class ω ∈ H1,1(X, R) that can be represented by a Kähler form is called
a Kähler class. Clearly a Kähler class satisfies ω ·ω > 0 and ω ·Ω = 0. Note
that the set {x ∈ H1,1(X, R) : x · x > 0} consists of two disjoint connected
cones and that the Kähler classes, if they exist, all belong to one of these two
cones. This cone is called the positive cone. Additional conditions on the
Kähler classes arise from the Picard lattice. Let j : H2(X, Z) → H2(X, R)
and define the Picard lattice SX = H1,1(X, R)∩Imj(H2(X, Z)). An element
σ ∈ SX is called divisorial if there exists a divisor D whose associated line
bundle has Chern class σ. Then σ is called effective if, in addition, D can
be chosen effective. The Kähler cone is defined to be the convex subcone of
the positive cone consisting of those classes that have positive inner product
with any effective class in SX . The Kähler cone contains all Kähler classes.
When X is a K3 surface the characterization of the Kähler cone becomes
particularly simple. A nonsingular curve γ in X is called nodal if γ ·γ = −2.

Theorem 2.3. For a K3 surface the Kähler cone consists of the classes
ω ∈ H1,1(X, R) that satisfy: (i) ω · ω > 0, (ii) ω · Ω = 0 and (iii) ω · γ > 0,
for all nodal curves γ in X.

It is a consequence of the surjectivity of the refined period map that every
class in the Kähler cone is a Kähler class. Consequently, Yau’s theorem on
the existence of Kähler Ricci flat metrics on K3 surfaces can be stated as:

Theorem 2.4. Let (X, ω) be a K3 surface where ω ∈ H1,1(X, R) lies in the
Kähler cone. Then there is a unique hyperkähler metric on X whose Kähler
form represents the class ω.
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If X is a Kähler surface and Σ is a possibly singular holomorphic curve
of genus g in X the adjunction formula is:

Σ · Σ ≥ c1(X) · Σ + 2g − 2,

with equality when Σ is nonsingular. When X is a K3 surface this becomes:

Σ · Σ ≥ 2g − 2 ≥ −2.

If X is a K3 surface, we say a (singular) holomorphic curve Σ is a (−2)-
curve if Σ ·Σ = −2 (equivalently, if its Poincaré dual α satisfies α ·α = −2).
From the adjunction formula it follows that if Σ is a (−2)-curve then Σ is a
nonsingular rational curve.

We conclude this section with some results on lagrangian stationary sur-
faces in Kähler-Einstein surfaces (see [S-W 1]). Let N be a Kähler-Einstein
surface and Σ be a lagrangian submanifold. We say Σ is lagrangian station-
ary if the volume is stationary for arbitrary smooth variations preserving
the lagrangian constraint.

Theorem 2.5. A closed, branched immersed, lagrangian surface in a Kähler-
Einstein surface is a classical minimal surface if and only if it is lagrangian
stationary.

Consequently,

Corollary 2.6. A closed, branched immersed, lagrangian stationary sur-
face in a K3 surface, with a hyperkähler metric g, is special lagrangian.
In particular, a closed, branched immersed, lagrangian stationary surface
Σ is a J-holomorphic curve with respect to a complex structure J on the
hyperkähler line of g.

Note that these results require regularity of the lagrangian stationary
submanifold.

3. The Results

In one of the E8’s in the intersection form of the K3 surface label the
four classes α0, α1, α2, α3 ∈ H2(X, Z) that satisfy: α0 · αi = 1, i = 1, 2, 3,
αi · αj = 0 for i 6= j, i, j = 1, 2, 3, α0 · α0 = −2, and αi · αi = −2.

Lemma 3.1. There is a complex structure [Ω] on the marked K3 surface
X, determined by the complex 2-form Ω, that satisfies:

(1) spanZ{α0, α1, α2, α3} ⊂ H1,1(X, C) ∩H2(X, Z).
(2) For each t, 0 < t < 1 there is a Kähler class ωt in the Kähler cone

determined by Ω such that ωt · α0 = t, ωt · αi = 1 for i = 1, 2, 3 and
otherwise ωt is fixed in t.

(3) For all t ∈ (0, 1), there exists λt > 0 such that ωt · ωt = 1
2Ωt · Ωt,

where Ωt := λtΩ. Note that [Ωt] = [Ω], i. e., the complex structure
determined by Ωt is the same as that determined by Ω.
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(4)
√

(ωt · γ)2 + |Ωt · γ|2 ≥ 1, for all γ ∈ H2(X, Z) such that γ · γ ≥ −2
except when γ = ±α0. Equality holds if and only if γ = ±αi for
i = 1, 2, 3.

Proof. Let a marking of X be given by,

{α0, . . . , α7, β0, . . . , β7, ξ1, ξ2, ξ3, η1, η2, η3},
where the classes α0, α1, α2, α3 are as described above. Recall that ξi ·ξj = 0,
ηi · ηj = 0, for all i, j, that ξi · ηj = 0 for i 6= j and that ξi · ηi = 1 for all i.
Therefore, (ξi−ηi) ·(ξj +ηj) = 0 for all i, j and (ξi−ηi)2 = −2, (ξi +ηi)2 = 2
for all i.

Define the period point Ω as follows:

Ω · αk = Ω · βk = 0, for k = 0, . . . , 7,

Ω · (ξj − ηj) = 0, for j = 1, 2, 3,

Ω · (ξj + ηj) = σj + iτj , for j = 1, 2, 3,

where the vectors

σ = (σ1, σ2, σ3), τ = (τ1, τ2, τ3)

satisfy |σ| = |τ | > 0 and σ · τ = 0. Choose σ so that no rational linear com-
bination of its components vanishes. It follows that Ω satisfies Ω ·Ω = 0 and
Ω · Ω̄ > 0 and therefore, by the Torelli theorem, Ω defines a complex struc-
ture. By the choice of σ no integral homology class containing a multiple of
ξj + ηj for j = 1, 2, 3 can be represented by a holomorphic curve.

Define the Kähler class ωt for 0 < t < 1 as follows:

ωt · α0 = t, ωt · αj = 1, for j = 1, 2, 3,

ωt · αj = 2, for j = 4, . . . , 7,

ωt · βj = 2, for j = 0, . . . , 7,

ωt · (ξj − ηj) = 2, for j = 1, 2, 3,

ωt · (ξj + ηj) = ρj , for j = 1, 2, 3,

where the vector
ρ = (ρ1, ρ2, ρ3)

satisfies ρ · σ = ρ · τ = 0. By choosing |ρ| sufficiently large we can ensure
that ωt ·ωt > 0. The classes of nodal curves are integral linear combinations
of {α0, . . . , α7, β0, . . . , β7, (ξ1− η1), (ξ2− η2), (ξ3− η3)} with coefficients that
are non-negative. Therefore ωt · γ > 0 for all nodal curves. It follows that
ωt lies in the Kähler cone determined by Ω.

Item (3) is established simply by multiplying σ and τ by an appropriate
choice of λt > 0.

For the fourth item, suppose that γ ·γ ≥ −2 and
√

(ωt · γ)2 + |Ωt · γ|2 ≤ 1.
We will show that, by taking |ρ| (and therefore |σt| and |τt|) sufficiently large,
γ then has to be one of ±α0, ±α1, ±α2, ±α3.

Decompose γ into its self-dual and anti self-dual parts γ+ and γ−. Thus
γ+ =

∑3
i=1 ni(ξi+ηi), ni ∈ 1

2Z and γ− ∈ spanZ{α0, . . . , α7, β0, . . . , β7,
1
2(ξ1−
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η1), 1
2(ξ2 − η2), 1

2(ξ3 − η3)}. As a first step, we shall show that γ+ has to
vanish when |ρ| is sufficiently large. Let 〈·, ·〉 and | · | denote the Euclidean
inner product and norm on R3. Then, letting n := (n1, n2, n3) we get:

− 2 ≤ γ · γ = 2|n|2 + (γ− · γ−), (3.1)

where

|n|2 =
|〈n, σt〉|2

|σt|2
+
|〈n, τt〉|2

|τt|2
+
|〈n, ρ〉|2

|ρ|2
. (3.2)

We need to show that n = (0, 0, 0). If not, then |n|2 ≥ 1/4. Furthermore, by
assumption, |Ωt · γ| ≤ 1 and so, |〈n, σt〉| ≤ 1/2 and |〈n, τt〉| ≤ 1/2. Putting
these inequalities in (3.2) yields

|〈n, ρ〉|2 ≥ |n|2|ρ|2
(

1− 2
|σt|2

− 2
|τt|2

)
.

It will be useful to observe that |σt|2 = |τt|2 = ωt · ωt for all t ∈ (0, 1) and
that there exists C > 0 such that for all t ∈ (0, 1),

1
2 |ρ|

2 ≥ ωt · ωt ≥ 1
2 |ρ|

2 − C. (3.3)

It follows that, for sufficiently large |ρ|,

|〈n, ρ〉|2 ≥ 1
2 |n|

2|ρ|2. (3.4)

Now ωt · γ = 2〈n, ρ〉 + ωt · γ−. By our assumption |ωt · γ| ≤ 1. Therefore
|ωt · γ−| ≥ 2|〈n, ρ〉| − 1. From this we deduce

(ωt · ωt)(−γ− · γ−) ≥ (ωt · γ−)2 ≥ (2|〈n, ρ〉| − 1)2 ≥ 3(|〈n, ρ〉|2 − 1).

Substituting into (3.1) and making use of (3.4) and (3.3) yields:

(|n|2 + 1)|ρ|2 ≥ 2(|n|2 + 1)(ωt · ωt) ≥ (−γ− · γ−)(ωt · ωt) ≥ 3
2 |n|

2|ρ|2 − 3.

Clearly this cannot hold for arbitrarily large |ρ| unless n = (0, 0, 0).
Now that we have shown that γ+ = 0, we see that −2 ≤ γ · γ = γ− · γ− ≤

−2. It follows that γ · γ = −2 and that γ ∈ spanZ{α0, . . . , α7} or γ ∈
spanZ{β0, . . . , β7}. (γ cannot be one of ±(ξi−ηi), i = 1, 2, 3 because ωt ·(ξi−
ηi) = 2 by construction and |ωt · γ| ≤ 1 by assumption.) Suppose that γ ∈
spanZ{α0, . . . , α7}. A tedious calculation shows that if γ =

∑7
i=0 miαi, mi ∈

Z and γ · γ = −2 then m0, . . . ,m7 must all have the same sign. Actually,
there is a theoretical reason for this. The set {γ ∈ spanZ{α0, . . . , α7} : γ ·γ =
−2} is the root system of type −E8; there are 240 such roots. (See, for
example, [H], pages 472 and 473.) {α0, . . . , α7} is a basis of this root system
and therefore, if γ is a root, then γ =

∑7
i=0 miαi, mi ∈ Z and m0, . . . , n7

all have the same sign. The same applies if γ ∈ spanZ{β0, . . . , β7}. Item (4)
now follows easily. �

Remark: The class α4 − α5 shows that (4) does not hold if γ · γ ≤ −4.
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By Yau’s theorem for each 0 < t < 1 there is a unique hyperkähler metric
gt with Kähler form in the class of ωt. Note that the complex structure [Ω]
is fixed.

Using the Riemann-Roch theorem it follows that the indecomposable
classes α0, α1, α2, α3 can be represented by embedded holomorphic−2 curves
that we denote, respectively S0, S1, S2, S3, [B-P-V, VIII 3.6]. These curves
do not change with t.

The sequence of Ricci flat Kähler metrics {gt} on X, as t → 0, has
been studied by R. Kobayashi [K]. Denote the orbifold obtained from X by
blowing down S0 by X0. Then X0 has one orbifold point p and an orbifold
Kähler Ricci flat metric g0 which is singular only at p. (The existence of
g0 was established in [KT], Theorem 1, p.348.) Furthermore, according to
Theorem 21 in [K], the metrics gt converge smoothly on compact subsets of
X \ S0 to the metric g0 on X0 \ {p}.

Let N be a tubular neighborhood of S0 in X and let S̄i := π(Si ∩ N )
where π : X → X0 is the blow down projection. Of course, S̄1, S̄2 and
S̄3 all meet at p in X0. In order to understand this intersection fully, we
shall recall the explicit description of π. The tubular neighborhood N is
biholomorphic to a neighborhood of the zero section of T ∗CP1; we shall
therefore identify this zero section with S0. The blow down of T ∗CP1 along
S0 is the quadratic cone C2/Z2, where Z2 acts on (z1, z2) by (z1, z2) 7→
(−z1,−z2). Let σ : C2 → C2/Z2 be the natural projection. We shall exhibit
a holomorphic double covering ρ : C2 \ {(0, 0)} → T ∗CP1 \ S0 such that
π ◦ ρ = σ. For this purpose, cover T ∗CP1 by two coordinate charts U ∼=
U ′ ∼= C2 with coordinates (u, ξ), (u′, ξ′) respectively; here u and u′ denote
Euclidean coordinates on the base CP1, and ξ and ξ′ parametrize the fibers
of the bundle T ∗CP1 → CP1. This means that

U ∩ U ′ = C∗ × C and, if (u′, ξ′) ∈ U ∩ U ′ then (u′, ξ′) ∼ (1/u, u2ξ).

Define ρ : C2 \ {(0, 0)} → T ∗CP1 \ S0 by

ρ(z1, z2) =

{
(z1/z2, z

2
2) ∈ U \ {U ∩ S0}, if z2 6= 0,

(z2/z1, z
2
1) ∈ U ′ \ {U ′ ∩ S0}, if z1 6= 0.

Note that ρ(z1, z2) = ρ(−z1,−z2) and therefore, ρ descends to a biholomor-
phic map ρ̄ : C2 \ {(0, 0)}/Z2 → T ∗CP1 \ S0. It follows that π(q) = ρ̄−1(q) if
q /∈ S0 and π(q) = [(0, 0)] if q ∈ S0; this establishes T ∗CP1 as the minimal
resolution of the cone C2/Z2.

Let Ŝi := σ−1(S̄i) ⊂ C2. We shall show that Ŝ1, Ŝ2 and Ŝ3 intersect
pairwise transversally at (0, 0). Let pi := Si ∩ S0. We may as well assume
that pi = (ui, 0) ∈ U . Since Si intersects S0 transversely at pi, there exist
holomorphic functions fi : Bε → C, Bε := {w ∈ C : |w| < ε}, such that
Si∩N = {(fi(w), w) : w ∈ Bε}. It follows that Ŝi = {(ζfi(ζ2), ζ) : |ζ2| < ε}.
But fi(0) = ui and u1, u2, u3 are all distinct. Therefore, Ŝ1, Ŝ2 and Ŝ3 are
all nonsingular and intersect pairwise transversally at (0, 0).
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To say that g0 is a Kähler Ricci flat orbifold metric on X0 means that
ĝ0 := σ∗(g0|V), V := π(N ), is a smooth Z2 invariant metric on σ−1(V), which
is a neighbourhood of (0, 0) ∈ C2. Two of Ŝ1, Ŝ2 and Ŝ3 must intersect non-
orthogonally with respect to ĝ0. Renumbering we can suppose that this pair
is Ŝ1, Ŝ2. Reverse the orientation on Ŝ2. Then the two tangent planes of Ŝ1

and Ŝ2 at (0, 0) intersect non-orthogonally at (0, 0) and define an orientation
on C2 which is opposite to the canonical one. Hence they do not form an
area minimizing configuration in T(0,0)(V) [L], [Mo]. It follows that in V,
there are discs Di ⊂ Ŝi centered at (0, 0) ∈ Ŝ1 ∩ Ŝ2 and an annulus A in V
(a “Lawlor neck”) with boundary ∂A = ∂D1 ∪ ∂D2 such that,

areaĝ0(A) < areaĝ0(D1 ∪D2).

Note that the annulus can be chosen so that A is disjoint from (0, 0). Then
for ε > 0 sufficiently small it remains true that,

areaĝ0(A) < areaĝ0((D1 ∪D2) \ (D1 ∪D2) ∩Bε).

Since σ restricted to V \Bε is a local isometry, it follows that in X0 \ {p}:

areag0(σ(A)) < areag0(σ((D1 ∪D2) \ (D1 ∪D2) ∩Bε))
< areag0(σ(D1 ∪D2)).

The annulus σ(A) can then be used to glue S̄1 \ σ(D1) to −(S̄2 \ σ(D2))
forming a piecewise C1 two-sphere S̄ ⊂ X0 \ {p}. Clearly S̄ has g0-area
strictly less than areag0(S̄1) + areag0(S̄2) = 2. Since the metrics gt converge
in C∞ uniformly on compact subsets of X0 \ {p} to g0, for t sufficiently
small, the two-sphere S := ρ̄(S̄) ⊂ X \ S0 has gt-area strictly less than 2
in (X, gt). In conclusion, there is a two-sphere S in (X, gt) that represents
α1−α2 in integral homology such that, for sufficiently small t, the gt-area of
S is strictly less than 2. Recall that the gt-area of each of the holomorphic
curves S1, S2 and S3 is 1 and of the holomorphic curve S0 is t.

We say a surface Σ in the K3 surface (X, g) is J -holomorphic if it is J-
holomorphic for some J ∈ J the hyperkähler line of g. We will need the
following elementary lemma.

Lemma 3.2. Suppose that Σ is a surface in the K3 surface (X, gt) that is
J -holomorphic. Then

areagt(Σ) =
√

(ωt · γ)2 + |Ωt · γ|2

where γ is the Poincaré dual of Σ.

Proof. Suppose that Σ is holomorphic with respect to the complex structure
J compatible with gt and let ω be the Kähler form of (J, gt). Then

areagt(Σ) =
∫
Σ

ω = γ · ω.
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Let γ+ be the self-dual part of γ. Then (γ · ω)2 = (γ+ · γ+)(ω · ω). But

γ+ · γ+ =
(γ · ωt)2

ωt · ωt
+

2|γ · Ωt|2

Ωt · Ωt
.

The result follows using ωt · ωt = 1
2Ωt · Ωt and ω · ω = ωt · ωt. �

The following theorem is our main result.

Theorem 3.3. When t is sufficiently small, no area minimizer of α1−α2 ∈
H2(X, Z), for the hyperkähler metric gt, is the sum of surfaces each of which
is J -holomorphic.

Proof. Suppose, by way of contradiction, that some area minimizer of α1−α2

is the sum of surfaces each of which is J -holomorphic. Recall that we have
constructed a two-sphere representing this class with area strictly less than
2. First suppose that the area minimizer has one component C. Then C is
a branched minimally immersed surface that represents α1 − α2. Thus,

C · C = (α1 − α2) · (α1 − α2) = −4.

C cannot be holomorphic, for any complex structure, as this would contra-
dict the adjunction formula.

Next suppose that the area minimizer has, at least, two component sur-
faces B and C. Each one is, by assumption, holomorphic for some complex
structure. Therefore, provided that neither surface represents ±α0 in ho-
mology, by Lemmas 3.1 and 3.2,

area(B) + area(C) ≥ 2.

But the sum of the areas of all component surfaces is stricly less than 2.
Therefore, at least one of the surfaces represents either α0 or −α0 in homol-
ogy. The sum of the remaining surfaces then represents either (i) α1−α0−α2

or (ii) α1 + α0 − α2. Note that a single holomorphic curve cannot represent
α1 + kα0−α2 for any k ∈ Z (since (α1 + kα0−α2)2 = −4− 2k2). It follows
that in both cases the set of remaining surfaces contains at least two compo-
nents neither of which represents ±α0 in homology. The previous argument
shows that this is impossible. The result follows. �

The previous arguments can be adapted to the study of minimizers among
lagrangian two-spheres as follows: Recall that for each 0 < t < 1 there is a
unique hyperkähler metric gt with Kähler form in the class of ωt. Then for
each 0 < t < 1 there is an S1 of Kähler forms, compatible with gt, such that
the −2-curves S1 and S2 (used above) are lagrangian with respect to each
form in the family. For each t choose such a Kähler form and denote it wt.
Choosing a subsequence as t → 0, we can suppose that the sequence {wt}
converges to the (orbifold) symplectic form w0 on X0 and that S̄1 and S̄2

are lagrangian for w0. The oriented lagrangian surfaces S̄1 and −S̄2 can be
glued using a Lawlor neck to construct a lagrangian two-sphere S̄ in X0\{p}
— p being the orbifold singularity of X0 — with g0-area equal to 2− ε, for
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some ε > 0. It follows that there is a δ > 0 such that for all t < δ the two-
sphere S := ρ̄(S̄) ⊂ X \ S0 has gt-area strictly less than 2 − ε/2 in (X, gt).
Now on any fixed compact subset of X \ S0 wt converges smoothly to w0 .
Therefore, for δ sufficiently small and t < δ, S is approximately lagrangian
with respect to wt. In particular, it can be deformed to a lagrangian two-
sphere without changing its gt-area by more than ε/2. We conclude that for
some t sufficiently small there is a lagrangian two-sphere with gt-area less
than 2. Next we minimize area among lagrangian two-spheres that represent
α1 − α2.

Theorem 3.4. There is some lagrangian class in H2(X; Z) that has an
area minimizer among lagrangian two-sphere (for the hyperkähler metric gt,
t sufficiently small) that is not a branched immersion.

Proof. Suppose, by way of contradiction, that every lagrangian two-sphere
that is a gt-area minimizer is regular (i. e., is a branched immersion). Then
by the results of [SW] every such lagrangian two-sphere is holomorphic for
some complex structure on the hyperkähler line determined by gt. Consider
an area minimizing sequence of lagrangian two-spheres that represent α1−α2

and recall that we have constructed a lagrangian two-sphere representing this
class with area strictly less than 2. The argument in the proof of Theorem
3.3 leads to a contradiction. �

Remark: It follows from Theorem 3.4 that, on lagrangian area minimizers
in a K3 surface, singularities other than branch points can and do occur.

To put this result in context, recall the constrained variational theory
developed in [SW]. Consider a homology class in a Kähler surface that can
be represented by the image of a lagrangian map of a compact surface (a
lagrangian homology class) and minimize area among such maps. Then in
[SW] it is shown that a lagrangian minimizer exists, that the map is Lipschitz
and is an immersion except at a finite number of isolated points that are
either (i) branch points, or (ii) singular points with non-flat tangent cone.
The tangent cones can be described precisely and it can be shown that
there is a Maslov index associated to each tangent cone (and hence to each
singular point). If the map is a minimizer this index is ±1. The sum of these
indices equals the pairing of the first Chern class of the Kähler surface with
the homology class of the minimizer. Thus, when this pairing is non-zero,
a lagrangian minimizer must have singular points. However if the Kähler
surface is Kähler-Einstein then this pairing vanishes and it is possible that
the minimizer is always regular. More precisely, one could speculate that on
a minimizer a pair of singularities with indices 1 and −1 could be shown to
“cancel”. Theorem 3.4 shows that this is not the case.

4. The Motivating Idea

The main construction in this paper is motivated by the following ob-
servation. Suppose a K3 surface X admits two −2-curves S1 and S2 that
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intersect. Denote [S1] = α1 and [S2] = α2. Suppose there is a hyperkähler
metric g on X with Kähler form ω such that ω(S1) = ω(S2) = 1 and such
that S1 and S2 intersect non-orthogonally with respect to g. Then after
gluing in a “Lawlor neck” a representative of the class α1 − α2 can be con-
structed with g-area less than 2. (In fact, this representative can be taken
to be lagrangian for the Kähler form Re Ω.) Suppose an area minimizing se-
quence among two-spheres representing α1−α2 converges without bubbling.
Then, by the adjunction formula, the area minimizer cannot be holomorphic.
The area minimizing sequence cannot bubble into two spheres representing
α1 and −α2, respectively, because then the sum of the areas of the bubbles
is 2. Other possible bubbling can be ruled out by appropriate choice of
complex structure and metric on X, as was done in Section 3.

We did not use this construction because of the technical difficulty of
finding a hyperkähler metric on X such that two −2-curves intersect non-
orthogonally. Our construction in Section 3 exploits the existence of two −2-
curves that intersect non-orthogonally in an orbifold limit of the hyperkähler
metrics on X. That is, we find the necessary −2-curves on the boundary of
the moduli space of Calabi-Yau metrics rather than in the interior.

5. Stability and Holomorphicity

In this section we give a new proof, based on ideas in [MW], of a theorem of
Donaldson [D]. Donaldson’s result implies that an immersed area minimizer
in a K3 surface with normal Euler number greater than −4 must be J -
holomorphic. If the area minimizer produced in Theorem 3.3 is immersed
and consists of one component (i.e., there is no bubbling) then Donaldson’s
result shows that this example is optimal.

Theorem 5.1. (Donaldson) Let Σ be an oriented immersed minimal surface
in a 4-manifold X equipped with a hyperkähler metric g. If the Euler number
e(ν) of the normal bundle ν of Σ in X satisfies e(ν) ≥ −3 and Σ is not
holomorphic with respect to a Kähler structure of g then Σ cannot be strictly
stable.

Proof. We start by recalling some of the basic geometry of an immersion
F : Σ → X of an oriented surface Σ in an oriented 4-manifold X equipped
with a Riemannian metric g. For more detail, refer to [MW]. We shall adopt
the following notation:

(i) (x, y) will denote isothermal co-ordinates for the metric on Σ induced
by F . z = x + iy is then a local complex co-ordinate on Σ.

(ii) F ∗(TX) = ξ ⊕ ν, ξ = tangent bundle of Σ, ν = normal bundle.
(iii) ξC := ξ ⊗R C, νC := ν ⊗R C,

ξC = ξ1,0 ⊕ ξ0,1, ξ1,0(ξ0,1) = +i(−i) eigenspace of the rotation
JΣ in ξ by 90◦ anticlockwise. Similarly, νC = ν1,0⊕ ν0,1; rotation by
90◦ anticlockwise in ν is denoted by Jν .

(iv) Superscript >(⊥) will denote orthogonal projection onto ξ(ν).
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(v) D : Γ(F ∗(TX) → Γ(T ∗(Σ)⊗ F ∗(TX) is the connection on the pull-
back of the tangent bundle of X induced by the Levi-Civita con-
nection of g. We shall also make use of D′ := dz ⊗ D∂/∂z and
D′′ := dz̄ ⊗ D∂/∂z̄. This notation is slightly different from that in
the Appendix in [MW] but it is more conventional.

(vi) D|Γ(ν) = ∇ + B; ∇ := D⊥|Γ(ν) is a metric compatible connection
on ν and B is the shape operator. B′ is naturally defined by B′s :=
(D′s)> ∀ s ∈ Γ(ν). B′′, ∇′ and ∇′′ are defined similarly.

(vii) D|Γ(ξ) = D>−B∗; D> is the Levi-Civita connection on Σ and B∗

is the second fundamental form of F ; it is dual to the shape operator
B. Of course, B∗′ is defined by B∗′s := −(D′σ)⊥ ∀σ ∈ Γ(ξ). B∗′′ is
defined similarly.

(viii) F is minimal if, and only if, B∗′′|ξ1,0 ≡ 0, which is equivalent to
π0,1

ξ ◦B′′ ≡ 0.

We now assume that g is hyperkähler and we let I1, I2, I3 be complex
structures on X which are parallel with respect to the Levi-Civita connec-
tion of g and which define a quaternionic structure on TX (and therefore,
F ∗(TX)). Let J := JΣ ⊕ Jν . Then J =

∑3
j=1(cos αj)Ij ,

∑3
j=1 cos2 αj ≡ 1.

αj is called the Kähler angle of Σ with respect to Ij . A straightforward cal-
culation shows that, for each j ∈ {1, 2, 3}, Ij preserves Γ(ν1,0 ⊕ ξ0,1). This
is essentially due to the fact that Hom(ν1,0, ξ0,1) is the tangent space of the
twistor space of F ∗(TX) at J . Let η := ν1,0 ⊕ ξ0,1 and let πη = π1,0

ν ⊕ π0,1
ξ .

Define a connection Dη on Γ(η) by Dη := πη ◦D|Γ(η). Endow η with a
holomorphic structure by declaring v ∈ Γ(η) to be holomorphic if, and only
if, Dη

′′v ≡ 0 where Dη
′′ := πη ◦D′′|Γ(η). ν1,0 is endowed with the holo-

morphic structure defined by means of ∇′′ and ξ0,1 is endowed with the
holomorphic structure defined by means of D′′>. Assume that F is min-
imal and write v = s + σ, v ∈ Γ(η), s ∈ Γ(ν1,0), σ ∈ Γ(ξ0,1). Then
Dη

′′v = ∇′′s − B∗′′σ + D′′>σ where we have used π0,1
ξ ◦B′′ ≡ 0 by the

minimality of F . Thus,

v ∈ H0(η) ⇔ σ ∈ H0(ξ0,1) and ∇′′s = B∗′′σ

where s = π1,0
ν v and σ = π0,1

ξ v. The proof of the theorem makes use of the
second variation of area formula applied to sections s = π1,0

ν v, v ∈ H0(η).
In [MW], the second variation of area formula was applied to holomorphic
sections of ν1,0, which can also be viewed as holomorphic sections of η (with
σ = 0).

Let R denote the curvature operator of X and let e1 − ie2 be a local
unitary section of ξ1,0. Then, according to (A.10) in [MW], the second
variation (δ2A)(s) of area in the direction of s ∈ Γ(νC) of a minimal surface
Σ in X is given by:

(δ2A)(s) = 2
∫
Σ
{|∇′′s|2 − |B′s|2 − 1

2〈Rs ∧ (e1 − ie2), s ∧ (e1 − ie2)〉} dA.
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If s ∈ Γ(ν1,0) and X is Kähler with zero scalar curvature then, as can be
seen from Proposition 2.2 in [MW], the curvature term in the formula for
(δ2A)(s) drops out. Furthermore,

|B′s|2 = −1
2(Kξ + Kν)|s|2 (5.1)

where Kξ is the Gauss curvature of Σ and Kν is the curvature of the connec-
tion ∇ on ν. This can be seen as follows: let s = f(e3 − ie4) where e3 − ie4

is a local unitary section of ν1,0. Then

B′s = 1
2f(h311 − h412 − ih312 − ih411)(e1 + ie2)⊗ (θ1 + iθ2)

where θ1+iθ2 is the local unitary section of (ξ1,0)∗ dual to e1−ie2. Therefore,

|B′s|2 = 1
2 |s|

2
(
(h311 − h412)2 + (h312 + h411)2

)
.

Let RABCD := 〈R(eA ∧ eB), eC ∧ eD〉. Then, by the Gauss equation and the
minimality of F ,

Kξ = R1212 − (h2
311 + h2

312 + h2
411 + h2

412)

and, by the Ricci equation,

Kν = R3412 + 2(h311h412 − h312h411).

Equation (5.1) now follows easily on noting that R3412 + R1212 = 〈R(e1 ∧
e2 + e3 ∧ e4), e1 ∧ e2〉 which, according to Proposition 2.2 in [M-W], is equal
to zero for a Kähler surface X with zero scalar curvature.

We are now in a position to prove Theorem 5.1. Let v be a nontrivial
holomorphic section of η and let sj := π1,0

ν (Ijv), j ∈ {0, 1, 2, 3} where, for
convenience, I0 denotes the identity transformation on Γ(η). Then, since
for each j, Ijv is a holomorphic section of η, we have ∇′′sj = B∗′′σj where
σj := π0,1

ξ (Ijv). Now by a calculation similar to that just carried out for the
establishment of equation (5.1) one can show that

|B∗′′σj |2 = −1
2(Kξ + Kν)|σj |2.

It follows that
3∑

j=0

(δ2A)(sj) =
∫
Σ
(Kξ + Kν)

3∑
j=0

(|sj |2 − |σj |2) dA .

It is easy to see that
3∑

j=0

|sj |2 =
3∑

j=0

|σj |2 = 2|v|2.

Therefore,
∑3

j=0(δ
2A)(sj) = 0. But there are at least two values of j (which

we may as well assume to be 0 and 1) for which sj does not vanish iden-
tically. Strict stability would then imply (δ2A)(sj) > 0, j ∈ {0, 1} and
(δ2A)(sk) ≥ 0, k ∈ {2, 3}. Hence strict stability and the existence of a
nontrivial holomorphic section of η lead to a contradiction.
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The proof of the theorem is completed by showing that, if e(ν) ≥ −3 and
F is not holomorphic with respect to any of I1, I2 and I3, then h0(η) > 0.
But by Riemann-Roch,

h0(η) = e(ν)− e(ξ) + 2− 2g + h0((ν0,1 ⊕ ξ1,0)⊗ κ)

where κ is the canonical bundle of Σ. Now ξ1,0⊗ κ is the trivial line bundle
and therefore, the last term is equal to 1+h0(ν0,1⊗κ). The result follows on
noting that e(ξ) = 2g−2 and that, for each j ∈ {1, 2, 3}, π0,1

ν (IjF∗(∂/∂z))⊗
dz is a holomorphic section of ν0,1 ⊗ κ which is nontrivial if F is not holo-
morphic with respect to Ij . �
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