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Abstract. In this paper we study the topology of compact man-
ifolds of positive isotropic curvature (PIC). There are many ex-
amples of non-simply connected compact manifolds with positive
isotropic curvature. We prove that the fundamental group of a
compact Riemannian manifold with PIC, of dimension ≥ 5, does
not contain a subgroup isomorphic to the fundamental group of a
compact Riemann surface. The proof uses stable minimal surface
theory.

0. Introduction

In this paper we study fundamental groups of compact manifolds of
positive isotropic curvature. We prove that the fundamental group of
a compact Riemannian manifold with positive isotropic curvature of
dimension ≥ 5 can not contain a surface group as a subgroup:

Theorem 0.1. Let M be a compact n-dimensional Riemannian man-
ifold, n ≥ 5, with positive isotropic curvature. Then the fundamental
group of M , π1(M), does not contain a subgroup isomorphic to the
fundamental group π1(Σ0) of a compact Riemann surface Σ0 of genus
g0 ≥ 1.

In [F] the first author proved the genus one case. In particular she
proved that the the fundamental group of a compact n-manifold, n ≥ 5,
of positive isotropic curvature does not contain a subgroup isomorphic
to Z⊕Z. The proof we give here of Theorem 0.1 is closely modeled on
the proof in [F].

The main open conjecture on the topology of compact Riemannian
manifolds with positive isotropic curvature concerns the fundamental
group. It is conjectured that the fundamental group of a compact
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Riemannian manifold with positive isotropic curvature is virtually free
(i.e., contains a free subgroup of finite index). Recall that the funda-
mental group of a compact manifold has 0, 1, 2 or infinitely many ends
[E]. Here we can define the number of ends of a fundamental group as
the number of geometric ends of the universal cover. The conjecture
implies that virtually (i.e., up to finite covers) every subgroup of the
fundamental group of a compact Riemannian manifold with PIC has
either 2 or infinitely many ends. On the other hand, the fundamental
group of a compact Riemann surface of genus ≥ 1 has exactly one end.
In this sense the theorem can be seen as evidence for this conjecture.
Along this line of reasoning we believe the following weaker conjecture
remains interesting and is more amenable: The fundamental group of
a compact Riemannian manifold with positive isotropic curvature has,
virtually, no subgroup with exactly one end. In fact, in the case that
the fundamental group is torsion-free, by a result of Stallings [S], the
weaker conjecture actually implies the conjecture.

Recall the definition of positive isotropic curvature. Let M be an
n-dimensional Riemannian manifold. The inner product on the tan-
gent space TpM at a point p ∈ M can be extended to the complexified
tangent space TpM ⊗ C as a complex bilinear form (·, ·) or as a Her-
mitian inner product 〈·, ·〉. The relationship between these extensions
is given by 〈v, w〉 = (v, w̄) for v, w ∈ TpM ⊗ C. The curvature ten-
sor extends to complex vectors by linearity, and the complex sectional
curvature of a two-dimensional subspace π of TpM ⊗ C is defined by
K(π) = 〈R(v, w)w̄, v〉, where {v, w} is any unitary basis of π. A sub-
space π ⊂ TpM ⊗ C is said to be isotropic if every vector v ∈ π has
square zero; that is, (v, v) = 0.

Definition 0.1. A Riemannian manifold M has positive isotropic cur-
vature (PIC) if K(π) > 0 for every isotropic two-plane π ⊂ TpM ⊗ C,
for all p ∈ M .

This curvature condition is nonvacuous only for n ≥ 4, since in
dimensions less than four there are no two-dimensional isotropic sub-
spaces. PIC is a curvature condition that arises very naturally when
studying stability of minimal surfaces, just as positive sectional curva-
ture is ideally adapted to studying stability of geodesics. Any manifold
with pointwise quarter-pinched sectional curvatures or positive curva-
ture operator has PIC. PIC implies positive scalar curvature, but not
positive (or even nonnegative) Ricci curvature. For more background
on this curvature condition we refer, for example, to the introductions
of [M-M], [M-W] and [F].
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Theorem 0.1 is proved by assuming the existence of a subgroup
G ⊂ π1(M), isomorphic to a surface group and deriving a contradiction.
In an analogous situation Schoen and Yau [S-Y] derive a contradiction
to the existence of such a subgroup of the fundamental group of a com-
pact three manifold X of positive scalar curvature. They construct
a stable minimal surface u : Σ0 → X with u∗ : π1(Σ0) → π1(X) a
monomorphism and use the curvature condition to derive a contradic-
tion to the stability of u. If L is a lens space then the manifold S1×L
admits a PIC metric and a stable minimal map u : T 2 → S1 × L.
Therefore an argument like that of [S-Y] cannot be expected to work
for manifolds with PIC. Rather we assume the existence of a subgroup
G isomorphic to a surface group and find a suitable finite index nor-
mal subgroup N of G using covering space theory. A contradiction
results from the existence of a stable minimal map u : Σ → M with
u∗ : π1(Σ) → π1(M) an isomorphism onto N .

1. Proof of the theorem

Let M be a compact Riemannian manifold. If α ∈ π1(M) we define
the systole of α to be:

S(α) = inf{`(γ) : γ is a closed rectifiable curve with [γ] = α}.
where `(γ) denotes the length of γ. We define the systole of M to be:

S(M) = inf{S(α) : α ∈ π1(M), α 6= 0}.

Theorem 1.1. Let M be a compact Riemannian manifold whose fun-
damental group π1(M) has a subgroup G isomorphic to π1(Σ0), where
Σ0 is a compact Riemann surface of genus g0 ≥ 2. Given C > 0, there
is an integer k > 0 and a index k normal subgroup N of G such that:
(i) there is a smooth map h : Σ → M of a compact surface into M
with h∗ : π1(Σ) → π1(M) a monomorphism onto N , (ii) for any such
map h, with respect to the induced metric, the systole of Σ is > C (i.e.,
every closed non-trivial geodesic γ has length `(γ) > C).

Proof. Given C > 0 there are at most finitely many free homotopy
classes {γi ∈ G ⊂ π1(M) : i = 1, . . . , k} with systole ≤ C. The funda-
mental group of a compact Riemann surface is residually finite [M-K-S].
Therefore for each class [γi] there is a finite index normal subgroup Ni

of G such that [γi] /∈ Ni. The intersection N = ∩k
i=1Ni is a finite index

(index k) normal subgroup of G. Let h0 : Σ0 → M be a smooth map
such that h0∗ : π1(Σ0) → G is an isomorphism. There is a regular
k-covering p : Σ → Σ0 such that p∗ : π1(Σ) → N is an isomorphism.
The map h = h0 ◦ p satisfies (i) in the statement of the theorem. For
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any map h with h∗ : π1(Σ) → N and any non-trivial closed curve γ,
h∗([γ]) ∈ N . Therefore `(γ) > C, where the length is computed using
the induced metric. The result follows. �

Theorem 1.2. Given ε > 0 there exists C(ε) > 0 such that if the
systole of the compact Riemann surface Σ is > C(ε) then there is a
Lipschitz distance decreasing, degree one map f : Σ → S2 satisfying
|df | < ε.

This can be proved as in [F] in the proof of Lemma 3.1. For com-
pleteness, we repeat the argument here.

Proof. Let Σ̃ be the universal cover of Σ, and p : Σ̃ → Σ the covering
map. Since Σ̃ is complete and noncompact with compact quotient Σ,
there is a geodesic line r : R → Σ̃. Let C be the component of Σ̃− r(R)
which is on the side of Σ̃ in the direction of the unit normal ν to r such
that {r′(0), ν(0)} is positively oriented. Choose T very large, T >> C.
Define D1 : Σ̃ → R by,

D1(x) = d(x, r(T ))− T

and let D2 : Σ̃ → R be the signed distance function to r,

D2(x) =

{
d(x, r) for x ∈ C
−d(x, r) for x ∈ Σ̃− C

Both D1 and D2 are Lipschitz continuous with derivative bounded by
1. Consider the region

R̃ =
{

x ∈ Σ̃ : |D1(x)| ≤ C

4
, |D2(x)| ≤ C

4

}
Define the map F : R̃ → R2 by

F (x) = (D1(x), D2(x)).

Then the boundary of R̃ is mapped by F to the boundary of the rec-
tangle [−C

4
, C

4
]× [−C

4
, C

4
] in R2. Also, r(0) is the only point in R̃ which

is mapped under F to the origin in R2. In fact, F is a local diffeomor-
phism in a neighborhood of r(0), and hence the degree of F is equal
to one on the component of R2 −F (∂R̃) containing the origin. Hence,
F (R̃) covers a disk of radius at least C

4
about the origin in R2.

Let λ : D(0, C
4
) → D(0, π) be the contraction λ(x) = 4π

C
x (where

D(0, s) denotes the disk of radius s centered at the origin in R2). Let
e : D(0, π) → S2 be the exponential map at the north pole n of the
sphere S2 with the standard metric, e(x) = expn(x). Extend g = e ◦ λ
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to F (R̃) by defining g ≡ s (the south pole) on F (R̃)−D(0, C
4
). Then

f̃ = g ◦ F : R̃ → S2 is Lipschitz with derivative

|df̃ | ≤ |dF ||dλ||de| ≤ c1

C

where c1 is a constant (independent of Σ).
Observe that diam R̃ ≤ C. Given x, y ∈ R̃, we have d(x, r) =

d(x, r(t1)) ≤ C
4

and d(y, r) = d(y, r(t2)) ≤ C
4

for some t1, t2 with

r(t1), r(t2) ∈ R̃, and

d(r(t1), r(t2)) ≤ D1(r(t1)) + D1(r(t2)) ≤
C

2
.

Now,

d(x, y) ≤ d(x, r(t1)) + d(r(t1), r(t2)) + d(r(t2), y) ≤ C.

Hence no two points of R̃ are identified in the quotient Σ. If two
points were identified, then any minimal curve in R̃ joining the two
points would project to a nontrivial closed curve of length less than or
equal to C, which is less than the systole, a contradiction.

Therefore, R̃ projects one to one into Σ, and we may define f : R→
S2, where R = p(R̃), by f(x) = f̃(p−1(x)). Since f maps ∂R to s,
we can extend f from R to a map f : Σ → S2 by defining f ≡ s on
Σ−R. �

Remark: Gromov-Lawson [G-L] use a similar idea to construct what
they call a c-contracting map ([G-L], Proposition 3.3): Assume that a
compact Riemannian manifold (X, g) has residually finite fundamental
group and admits a metric g̃ of non-positive curvature. Their result
constructs a contracting map X ′ → Sn, where X ′ is some finite cover
of X. The argument they use applies to the fixed metric g and not (at
least directly) to a family of metrics, as in our case.

Let M be a Riemannian manifold of dimension n ≥ 5 with positive
isotropic curvature > κ. Suppose that the fundamental group π1(M)
has a subgroup G isomorphic to π1(Σ0), where Σ0 is a compact Riemann
surface of genus g0 ≥ 2. Let h : Σ0 → M be a smooth map such that
h0∗ : π1(Σ0) → π1(M) is an isomorphism onto G. Choose ε such that
0 < 3(cε)2 < κ where c is to be chosen later. Let C(ε) be given by
Theorem 1.2. Using Theorem 1.1 there is a compact Riemann surface
Σ of genus g, a regular k-covering p : Σ → Σ0 and a smooth map
h : Σ → M whose induced map on π1 is injective. Since p is a covering
map, the Euler characteristics satisfy χ(Σ) = kχ(Σ0) and therefore

2 − 2g = k(2 − 2g0). Also by Theorem 1.1 for every map h̃ : Σ →



6 AILANA FRASER AND JON WOLFSON

M whose induced map on π1(Σ) equals h∗ the surface Σ, with the
induced metric, has systole > C(ε). The map h is incompressible and
thus following [S-Y] there exists a stable conformal branched minimal
immersion u : Σ → M whose induced map on π1(Σ) is h∗.

Let u∗(N ) be the pull-back of the normal bundle of the minimal
surface, u(Σ), with the pull back of the metric and normal connection
∇⊥. Let E = u∗(N ) ⊗ C be the complexified normal bundle. Then
c1(E) = 0 since E is the complexification of a real bundle. The metric
on u∗(N ) extends as a complex bilinear form (·, ·) or as a Hermitian
metric 〈·, ·〉 on E, and the connection ∇⊥ and curvature tensor extend
complex linearly to sections of E. There is a unique holomorphic struc-
ture on E such that the ∂̄ operator is given by ∂̄ω = (∇⊥

∂
∂z̄

ω)dz̄ where
∂
∂z̄

= 1
2
( ∂

∂x
+ i ∂

∂y
), in local coordinates x, y on Σ. Using the complex-

ified formula for the second variation of area (see [Si-Y], [M-M], [F])
the stability condition is the inequality:∫

Σ

〈R(s,
∂u

∂z
)
∂u

∂z̄
, s〉 dxdy ≤

∫
Σ

[|∇⊥
∂
∂z̄

s|2 − |∇>
∂
∂z

s|2] dxdy

for all s ∈ Γ(E). Assume that s is isotropic. Since u is conformal, ∂u
∂z

is isotropic and {s, ∂u
∂z
} span an isotropic two-plane. Using the lower

bound on the isotropic curvature and throwing away the second term
on the right, we have

(1.1) κ

∫
Σ

|s|2 da ≤
∫

Σ

|∂̄s|2 da

where da denotes area element for the induced metric u∗g on Σ. We now
argue that we can find an “almost holomorphic” isotropic section of E
that violates this stability inequality. That is, we will find s ∈ Γ(E)
such that ∫

Σ

|∂̄s|2 da < κ

∫
Σ

|s|2 da

The contradiction (to the existence of u : Σ → M) proves Theorem
0.1.

By Theorem 1.2, since the systole of Σ is > C(ε), there is a distance
decreasing, degree one map f : Σ → S2 with |df | < ε. Let (Lk,∇)
be a complex line bundle over S2 with metric and connection, with
c1(Lk) > 3k(g0 − 1) + 1. Let ξ = f ∗Lk be the pulled back bundle over
Σ. We denote the induced connection ∇ and note that it defines a
holomorphic structure on ξ, and c1(ξ) > 3k(g0 − 1) + 1. The tensor
product bundle ξ⊗E is a holomorphic rank (n−2) bundle over Σ. Let
H(ξ ⊗ E) denote the complex vector space of holomorphic sections of
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ξ ⊗ E. By the Riemann-Roch theorem:

dimC H(ξ ⊗ E) ≥ c1(det(ξ ⊗ E)) + (n− 2)(1− g)

= (n− 2)c1(ξ) + c1(E) + (n− 2)k(1− g0)

= (n− 2)[c1(ξ) + k(1− g0)]

(1.2)

As in [F], we may prove existence of a holomorphic and isotropic
section of ξ ⊗ E. Set m = dimC H(ξ ⊗ E) and observe that the
complex bilinear pairing on E defines a complex bilinear pairing

H(ξ ⊗ E)×H(ξ ⊗ E) → H(ξ ⊗ ξ).

Given any x ∈ Σ we obtain a homogeneous polynomial on Cm ∼= H(ξ⊗
E) given by Px(σ) = (σ, σ)(x). The zero set

V (Px) = {σ ∈ Pm−1 : Px(σ) = 0}
is a hypersurface in Pm−1. Now given m− 1 distinct points, we obtain
m−1 hypersurfaces in Pm−1, and observe that m−1 such hypersurfaces
in Pm−1 intersect in a nonempty set of points. The intersection is
a set of holomorphic sections of ξ ⊗ E which are isotropic at m − 1
distinct points. Let σ ∈ H(ξ ⊗ E) be such a section. Then (σ, σ) is a
holomorphic section of ξ⊗ ξ with at least m−1 zeros. But the number
of zeros of a holomorphic section of ξ ⊗ ξ is 2c1(ξ). From (1.2)

m− 1 ≥ (n− 2)[c1(ξ) + k(1− g0)]− 1 > 2c1(ξ)

since n ≥ 5 and we chose the line bundle Lk so that c1(Lk) ≥ 3k(g0 −
1) + 1. It follows that (σ, σ) ≡ 0 and so σ is isotropic. For brevity of
notation we will suppress the k in Lk.

We claim that any holomorphic isotropic section of ξ ⊗ E produces
an almost holomorphic isotropic section of E. This is achieved by ap-
plying an almost parallel section of ξ∗, the pull back under the distance
decreasing map f of a section of L∗, to ‘undo’ the line bundle part of
the section. The argument of [F] does not require fine control of these
dual sections. In the higher genus case, due to the dependence of L on
k, the construction of the required dual sections is much more delicate,
and uses the following result.

Lemma 1.3. Given a line bundle L → S2 and a Borel measure µ on
S2 there are sections t1, t2 and a constant c > 0 (independent of c1(L)
and µ) such that:

(1) |t1|2 + |t2|2 ≥ 1.

(2) |∇t1| ≤ c.

(3)
∫

S2 |t1|2dµ ≥ 1
2

∫
S2 |t2|2dµ.
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for some connection ∇ on L.

Proof. Fix r � 1 independent of c1(L) and µ. Consider the function
µ : S2 → R+ given by µ(p) = µ(Br(p)). Let p1 ∈ S2 be a point
where the minimum of µ is achieved. Without loss of generality we can
assume that the line bundle (L,∇) is flat on S2 \ B r

2
(p1). Let τ1 be a

smooth section of L that is parallel of length
√

2 on S2 \ B r
2
(p1). Let

τ2 be a smooth section of L such that |τ2|2 < 2 everywhere and |τ2| ≥ 1
on Br(p1). Denote by φr,p1 a cut off function that vanishes in B r

2
(p1),

is identically one on S2 \Br(p1) and satisfies |dφr,p1| ≤ 1
r
. Define:

t1 = φr,p1τ1, t2 = τ2.

It follows that: ∫
S2\Br(p1)

|t1|2dµ ≥
∫

S2\Br(p1)

|t2|2dµ.

By the choice of p1, there is a point p2 ∈ S2 with Br(p1) and Br(p2)
disjoint and µ(Br(p2)) ≥ µ(Br(p1)). Then∫

Br(p2)

|t1|2dµ = 2µ(Br(p2)) ≥ 2µ(Br(p1)) ≥
∫

Br(p1)

|t2|2dµ.

Therefore,

2

∫
S2

|t1|2dµ ≥
∫

S2

|t2|2dµ.

The result follows.
�

Suppose that s̃ ∈ Γ(ξ ⊗E) is holomorphic and isotropic. Define the
measure ν(A) =

∫
A
|s̃|2da for any da measurable subset A ⊂ Σ. Define

the push forward measure:

(1.3) µ = f]ν,

Then µ is a Borel measure on S2 such that for any function h on S2:

(1.4)

∫
Σ

f ∗h|s̃|2da =

∫
S2

hdµ.

Apply Lemma 1.3 to the line bundle L∗ on S2 and Borel measure µ to
find two sections t∗1 and t∗2 satisfying the conclusions of the lemma. Set
α1 = f ∗t∗1 and α2 = f ∗t∗2 and consider these sections as maps:

αi : Γ(ξ ⊗ E) → Γ(E),
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via contraction. Define s1 = α1(s̃), s2 = α2(s̃) ∈ Γ(E). Then using (1)
of the lemma,

|s1|2 + |s2|2 = (|α1|2 + |α2|2)|s̃|2 ≥ |s̃|2.
Hence,

(1.5)

∫
Σ

|s1|2da +

∫
Σ

|s2|2da ≥
∫

Σ

|s̃|2da.

Using (1.4) we have:∫
Σ

|s2|2da =

∫
Σ

|α2|2|s̃|2da =

∫
S2

|t∗2|2dµ

and ∫
Σ

|s1|2da =

∫
Σ

|α1|2|s̃|2da =

∫
S2

|t∗1|2dµ.

Therefore using (3) of the lemma,

2

∫
Σ

|s1|2da ≥
∫

Σ

|s2|2da.

It follows from (1.5) that,

3

∫
Σ

|s1|2da ≥
∫

Σ

|s̃|2da.

Using (2) of the lemma as in [F],

|∂̄s1| = |∂̄(α1(s̃))|
= |(∂̄α1)s̃ + α1(∂̄s̃)|
= |∂̄(f ∗t∗1)s̃|
≤ c|∂̄f ||s̃|
≤ cε|s̃|.

Therefore,

(1.6)

∫
Σ

|∂̄s1|2da ≤ 3(cε)2

∫
Σ

|s1|2da < κ

∫
Σ

|s1|2da.

by our choice of ε. This violates the stability inequality (1.1), and
completes the proof of Theorem 0.1.

Remark 1.1. The ∂̄ operator acting on s1 is determined by the con-
nection on the bundle ξ∗⊗ξ⊗E and is therefore not, a priori, equivalent
to the ∂̄ operator determined by the connection on E. However, the
connection on ξ∗⊗ξ is pulled back from a connection on the line bundle
L∗⊗L over S2 and is trivial outside a simply connected region U ⊂ Σ.



10 AILANA FRASER AND JON WOLFSON

Recall that, on the trivial line bundle over S2, there is only one holo-
morphic structure. Similarly there is a unique holomorphic structure
on ξ∗⊗ ξ that is standard outside U . This uniqueness implies that the
∂̄ operator on ξ∗ ⊗ ξ is equivalent to the standard ∂̄ operator on the
trivial line bundle over Σ. Therefore the ∂̄ operator on ξ∗ ⊗ ξ ⊗ E is
equivalent to that on E.
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