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Abstract. A construction is described that associates to each positive smooth

function F : S1 → R a Riemannian metric gF on SL2(R) ∼= R2 × S1 that
is complete and curvature homogeneous. The construction respects moduli:

positive smooth functions F and G lie in the same Diff(S1) orbit if and only

if the associated metrics gF and gG lie in the same Diff(SL2(R)) orbit.
The constructed metrics all have curvature tensor modeled on the same

algebraic curvature tensor. Moreover, in this construction, the following are

equivalent: F is constant, gF is left-invariant (and homogeneous), and (SL2(R), gF )
Riemannian covers a finite volume manifold.

1. Introduction

Let (M, g) be a connected Riemannian manifold, ∇ its Levi-Civita connection,
and R its curvature tensor. Then (M, g) is said to be curvature homogeneous of
order k if for every p, q ∈ M there exists a linear isometry I : TpM → TqM such
that

I∗(∇iR)q = (∇iR)p

for each i = 0, 1, . . . k. When M is curvature homogeneous of order 0, M is simply
said to be curvature homogeneous. Locally homogeneous (M, g) are clearly curva-
ture homogeneous of all orders. In the seminal paper [Si], I.M. Singer proved the
converse:

Theorem 1.1 (Singer). A connected and complete d-dimensional Riemannian
manifold (M, g) that is curvature homogeneous of order at least d(d − 1)/2 − 1
is locally homogeneous. If, in addition, M is simply connected, then (M, g) is ho-
mogeneous.

While Singer’s theorem ensures that completeness and curvature homogeneity of
sufficiently large order implies local homogeneity, there exist examples of complete
and curvature homogeneous Riemannian manifolds that are not locally homoge-
neous. We refer the reader to [BoKoVa, Chapter 12] for examples and additional
references. In this note we prove:

Theorem 1.2. There is a construction that associates to each positive smooth
function F : S1 → R a complete and curvature homogeneous Riemannian metric
gF on SL2(R). In this construction, the following are equivalent:

(1) F is constant
(2) gF is left-invariant (and homogeneous)
(3) (SL2(R), gF ) Riemannian covers a finite volume manifold.
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Theorem 1.2 is related to a conjecture attributed to Gromov by Berger in [Be]
that we now describe. Let T denote a fixed algebraic curvature tensor on Euclidean
space En and let M denote a connected, smooth n-manifold. A Riemannian metric
h on M with curvature tensor R is said to be modeled on T if for each x ∈ M
there is a linear isometry I : TxM → En such that I∗(T ) = Rx. It is clear that
such a Riemannian metric h is curvature homogeneous and that Diff(M) acts on
the space of such metrics by pullback. Let M(M,T ) denote the space of Diff(M)
orbits of complete Riemannian metrics on M with curvature tensor modeled on T .

Conjecture 1.1 (Gromov). If M is compact, then the moduli space M(M,T ) is
finite dimensional.

As will be explained Section 3, the Riemannian metrics constructed in Theorem
1.2 all have curvature tensors modeled on a fixed algebraic curvature tensor that
we will call T throughout. Our next theorem describes the moduli space of these
metrics.

Theorem 1.3. Let F and G be two positive smooth functions on the circle. Then
there exists a diffeomorphism Φ : SL2(R) → SL2(R) such that Φ∗(gG) = gF if and
only if there exists a diffeomorphism φ : S1 → S1 such that F = φ∗(G).

The space of Diff(S1) orbits of positive smooth functions on S1 is easily seen to
be infinite dimensional. Hence, Theorems 1.2 and 1.3 yield the following:

Corollary 1.4. There is an algebraic curvature tensor T such that the moduli space
M(SL2(R), T ) is infinite dimensional.

Corollary 1.4 demonstrates that compactness of M in Gromov’s conjecture can-
not in general be replaced by a completeness assumption on the metrics under
consideration.

Theorem 1.2 is also related to a classification result for constant vector curvature
three-manifolds contained in [ScWo]. A Riemannian manifold (M, g) has constant
vector curvature ε if each tangent vector v ∈ TM lies in a tangent plane of sectional
curvature ε. When ε = −1, the authors prove [ScWo, Theorem 1.1]:

Theorem 1.5. Suppose that M is a finite volume three-manifold with constant
vector curvature −1. If sec ≤ −1, then M is real hyperbolic. If sec ≥ −1 and
M is not real hyperbolic, then its universal covering is isometric to a left-invariant

metric on one of the Lie Groups E(1, 1) or S̃L2(R) with sectional curvatures having
range [−1, 1].

As will be explained in Section 3, the metrics constructed in Theorem 1.2 all
have constant vector curvature −1 and sectional curvatures having range [−1, 1].
Therefore, it is not possible to remove the finite volume hypothesis in Theorem 1.5
in the case when sec ≥ −1.

2. SL2(R)

Let SL2(R) denote the Lie group consisting of 2×2 real matrices of determinant
one and let e ∈ SL2(R) denote the identity element. Its Lie algebra sl2(R) ∼=
Te SL2(R) consists of 2× 2 real matrices of trace zero. Consider the following three
one-parameter subgroups of SL2(R):



COMPLETE CURVATURE HOMOGENEOUS METRICS ON SL2(R) 3

K =

{(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
| θ ∈ R

}
N =

{(
1 s
0 1

)
| s ∈ R

}
A =

{(
et/2 0

0 e−t/2

)
| t ∈ R

}
.

The multiplication map K × N × A → SL2(R), (k, n, a) 7→ kna is a diffeomor-
phism, yielding the Iwasawa decomposition SL2(R) = KNA.

Define trace zero matrices E1, E2, E3 ∈ sl2(R) by

E1 =

(
0 1
−1 0

)
, E2 =

(
0 1
0 0

)
, and E3 =

(
1/2 0
0 −1/2

)
.

Then {E1, E2, E3} is a basis for the Lie algebra sl2(R). Moreover, E1, E2, and
E3 are the infinitesimal generators of the one-parameter subgroups K,N , and A,
respectively. This Lie algebra basis satisfies the following bracket relations:

(2.1) [E1, E2] = 2E3, [E2, E3] = −E2, [E1, E3] = E1 − 2E2.

The vectors Ei have unique extensions to left-invariant vector fields on SL2(R)
that we also denote by Ei. Declaring the left-invariant framing {E1, E2, E3} of
SL2(R) to be orthonormal determines a left-invariant Riemannian metric on SL2(R).
Throughout the remainder of this paper, we let g1 denote this left-invariant metric.
The pull back of its curvature tensor via a linear isometry from Euclidean space E3

to Te SL2(R) defines an algebraic curvature tensor that we denote by T in the re-
mainder of the paper. In the next section, we give the construction of Theorem 1.2.
The metrics constructed will all have curvature tensors modeled on the algebraic
curvature tensor T .

3. The Construction

Note that the subgroup K of SL2(R) is diffeomorphic to S1. Throughout what
follows, we assume that a diffeomorphism between K and S1 has been fixed, identi-
fying positive smooth functions on K with those on S1. A positive smooth function
F : K → R determines a positive smooth function F̄ : SL2(R) → R as follows.
Given g ∈ SL2(R), there is a unique expression g = kna with k ∈ K, n ∈ N , and
a ∈ A by the Iwasawa decomposition. Define F̄ (g) = F̄ (kna) = F (k).

Alternatively, the bracket relations (2.1) show that the left-invariant vector fields
E2 and E3 span an involutive plane distribution; the foliation of SL2(R) by integral
surfaces of this distribution coincides with the foliation of SL2(R) by left-cosets of
the subgroup NA. As NA is a closed subgroup of SL2(R), the natural projection
map to the space of left-cosets

π : SL2(R)→ SL2(R) /NA

is smooth. Note that the space of cosets SL2(R) /NA is diffeomorphic to K. Then
F̄ = F ◦ π is constant on the leaves of the foliation of SL2(R) by left-cosets of NA.
We summarize this in the following lemma.
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Lemma 3.1. Smooth functions F : K → R lift to smooth functions F̄ : SL2(R)→
R satisfying E2(F̄ ) = E3(F̄ ) = 0.

Let F : K → R be a smooth and positive function and F̄ : SL2(R) → R its
associated lift. Define a framing {e1, e2, e3} of SL2(R) by

(3.1) e1 = F̄E1, e2 = E2, e3 = E3.

We will call such a framing an F -framing. The bracket relations for an F -framing
are easy to deduce from (2.1) and the fact that E2(F̄ ) = E3(F̄ ) = 0. They are
given by

(3.2) [e1, e2] = 2F̄ e3, [e2, e3] = −e2, [e1, e3] = e1 − 2F̄ e2.

Definition 3.1. Given a smooth positive function F : K → R, the F -metric on
SL2(R) is the Riemannian metric denoted by gF which is defined by declaring the
associated F -framing to be gF orthonormal.

Note that for the function F which is identically one on K, the associated F -
metric is the left-invariant metric g1 described in Section 2. We remark that the
space of F -metrics is path connected. Indeed, given two positive functions F0 and
F1 on K, the metrics g(1−t)F0+tF1

with t ∈ [0, 1] defines the path joining gF0
to gF1

.
As we shall show, all F -metrics have curvature tensors modeled on the algebraic
curvature tensor T .

In order to calculate the curvatures of an F -metric, we first calculate the Christof-
fel symbols. As an F -framing is by definition orthonormal for the metric gF ,
Koszul’s formula reads:

(3.3) gF (∇eiej , ek) =
1

2
{gF ([ei, ej ], ek)− gF ([ej , ek], ei) + gF ([ek, ei], ej)}.

Combining (3.2) and (3.3), yields:

∇e1e3 = e1 − 2F̄ e2 ∇e2e3 = −e2

∇e3e1 = 0 ∇e3e2 = 0

∇e2e1 = 0 ∇e2e2 = e3(3.4)

∇e1e2 = 2F̄ e3 ∇e1e1 = −e3

∇e3e3 = 0.

We let Rijkl denote the component of the curvature tensor

R(ei, ej , ek, el) = gF (∇ei∇ejek −∇ej∇eiek −∇[ei,ej ]ek, el).

Tedious but straightforward calculations using (3.2), (3.4), and the fact that
e2(F̄ ) = e3(F̄ ) = 0 show that:

(3.5) R1221 = 1, R1331 = −1 = R2332, Rijkl = 0 if three indices are distinct.

The symmetries of the curvature tensor determine its remaining components.
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Corollary 3.2. An F -metric gF is curvature homogeneous and has curvature ten-
sor modeled on the algebraic curvature tensor T . An F -framing diagonalizes the
Ricci tensor. If σ is a two plane and v =

∑3
i=1 ciei is a unit vector orthogonal to

σ, then
sec(σ) = c23 − c21 − c22.

Consequently, gF has constant vector curvature −1, e3 lies in the intersection of
all curvature −1 planes and the range of sectional curvatures for an F -metric is
[−1, 1].

Proof. To prove the first claim, note that by (3.5), the curvatures of an F -metric
with respect to an F -framing do not depend on the function F : K → R. Therefore,
they all have curvature tensors modeled on the curvature tensor of the F -metric
corresponding to F ≡ 1 which is the left-invariant metric g1 constructed at the end
of the previous section.

The fact that an F -framing diagonalizes the Ricci tensor is immediate from
(3.5). This fact and [ScWo, Lemma 2.2] yield the curvature formula. The curvature
formula implies the last statement. �

Lemma 3.3. An F -metric gF is complete.

Proof. Let F : K → R be a positive smooth function and gF the associated F -
metric. As K is compact, there exists M > 1 such that 1

M < F < M . Consider the

Riemannian metrics M−2g1 and M2g1 obtained by scaling the left-invariant metric
g1. The induced norms satisfy

M−1‖v‖g1 = ‖v‖M−2g1 < ‖v‖gF < ‖v‖M2g1 = M‖v‖g1
for each tangent vector v ∈ T SL2(R). Consequently, the induced path metrics
satisfy

M−1dg1(p, q) ≤ dgF (p, q) ≤Mdg1(p, q)

for any pair of points p, q ∈ SL2(R). As dg1 Cauchy sequences converge, the same
is true of dgF Cauchy sequences. �

The following lemma may be of interest to some readers. It is not used in the
proof of our main results and may be skipped.

Lemma 3.4. For any F -metric gF , the foliation of SL2(R) by left-cosets of NA is
a foliation by totally geodesic hyperbolic planes.

Proof. Let F : K → R be a smooth positive function, gF the associated F -metric,
and {e1, e2, e3} the associated F -framing. The leaves of the foliation of SL2(R)
by left cosets of NA are precisely the integral surfaces of the involutive plane
distribution e2 ∧ e3. These leaves are totally geodesic since by (3.4), ∇e2e1 =
∇e3e1 = 0. By (3.5), R2332 = −1 so that the leaves are hyperbolic. As NA is
diffeomorphic to R2, the leaves are hyperbolic planes. �

To complete the proof of Theorem 1.2 from the introduction, it remains to es-
tablish the following proposition.

Proposition 3.5. For a positive smooth function F : K → R, the following are
equivalent:

(1) F is constant
(2) gF is left-invariant (and homogeneous)
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(3) (SL2(R), gF ) Riemannian covers a finite volume manifold.

Proof. Let F : K → R be a positive smooth function and gF the associated F -
metric on SL2(R).

Proof that (1) =⇒ (2):
As F is constant, so is its lift F̄ . The associated F -framing {e1 = F̄E1, e2 =
E2, e3 = E3} is easily seen to be left-invariant since the framing {E1, E2, E3} is
left-invariant. Therefore gF is a left-invariant metric.

Proof that (2) =⇒ (3):
This is an easy consequence of the fact that SL2(R) admits lattice subgroups.

Proof that (3) =⇒ (1):
Let M denote the finite volume manifold Riemannian covered by (SL2(R), gF ). We
first claim that the metric gF is locally homogeneous. Indeed, by Corollary 3.2,
M has constant vector curvature −1 and sectional curvatures with range [−1, 1].

By Theorem 1.5, the universal covering (S̃L2(R), g̃F ) is left-invariant (and homoge-
neous), whence gF is locally homogeneous.

Let F̄ denote the lift of F to SL2(R) and let {e1, e2, e3} be the associated F -
framing. Let p, q ∈ SL2(R) be two points. As gF is locally homogeneous, there is
an r > 0 and an isometry I between the balls of radius r centered at p and q with
I(p) = q:

I : B(p, r)→ B(q, r).

The derivative map dI : TB(p, r)→ TB(q, r) preserves the line field spanned by
e3 and the perpendicular plane field e1 ∧ e2 by the curvature formula in Corollary
3.2. Therefore, there exists a smooth map θ : B(q, r)→ R such that dI(e3) = ±e3
and such that the restriction of dI to the plane field e1 ∧ e2 has matrix representa-

tion given by either

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
or

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
with respect to the

{e1, e2} framing.

By (3.2),

dIp([e1, e2]p) = dIp(2F̄ (p)e3) = ±2F̄ (p)e3 ∈ Tq SL2(R)

where the sign is + if dI preserves the orientation of e3 and is − if the orientation
is reversed. A simple calculation yields,

gF ([dIp(e1), dIp(e2)]q, e3)q = ±[e1, e2]q = ±2F̄ (q) ∈ Tq SL2(R)

where the sign is + if dI preserves the orientation of the plane field e1 ∧ e2 and is
− if the orientation is reversed.

Since, dIp([e1, e2]p) = [dIp(e1), dIp(e2)]q, we have that F̄ (p) = ±F̄ (q). As F̄ is
everywhere positive, it must be the case that F̄ (p) = F̄ (q). Therefore F is constant,
concluding the proof. �

We conclude with a proof of Theorem 1.3 that we now restate for the reader’s
convenience.
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Theorem 3.6. Let F and G be two positive smooth functions on the circle. Then
there exists a diffeomorphism Φ : SL2(R) → SL2(R) such that Φ∗(gG) = gF if and
only if there exists a diffeomorphism φ : S1 → S1 such that F = φ∗(G).

Proof. Recall that a diffeomorphism between S1 and K has been fixed, identifying
positive smooth functions on these two spaces.

First, assume that there is a diffeomorphism φ : K → K such that φ∗(G) =
F. Define a diffeomorphism Φ : SL2(R) → SL2(R) as follows. By the Iwasawa
decomposition each g ∈ SL2(R) has a unique expression g = kna; define Φ(g) =
Φ(kna) = φ(k)na. It is routine to check that Φ∗(gG) = gF .

Now assume that Φ : SL2(R)→ SL2(R) is a diffeomorphism satisfying Φ∗(gG) =
gF . Let F̄ and Ḡ denote the lifts of F and G to SL2(R) and let {e1, e2, e3} and
{ẽ1, ẽ2, ẽ3} denote the associated F -framing and G-framing of T SL2(R), respec-
tively. Since e2 = ẽ2, e3 = ẽ3, and e1 and ẽ1 are positively proportional, these
framings induce the same orientation of SL2(R).

As Φ : (SL2(R), gF ) → (SL2(R), gG) is an isometry, it preserves the sectional
curvatures of planes. By Corollary 3.2 it follows that the derivative map

dΦ : T SL2(R)→ T SL2(R)

satisfies dΦ(e3) = ±ẽ3 and maps the plane field e1 ∧ e2 isometrically to the plane
field ẽ1 ∧ ẽ2. Therefore, there exists a smooth map

θ : SL2(R)→ R

such that the matrix representation of

dΦ|e1∧e2 : e1 ∧ e2 → ẽ1 ∧ ẽ2
with respect to the framings {e1, e2} and {ẽ1, ẽ2} is given by(

cos(Φ∗(θ)) − sin(Φ∗(θ))
sin(Φ∗(θ)) cos(Φ∗(θ))

)
if dΦ|e1∧e2 preserves orientation or by(

cos(Φ∗(θ)) sin(Φ∗(θ))
sin(Φ∗(θ)) − cos(Φ∗(θ))

)
if dΦ|e1∧e2 reverses orientation.

By (3.2),

dΦ([e1, e2]) = dΦ(2F̄ e3) = ±2F̄ ẽ3.

A simple calculation shows that

[dΦ(e1), dΦ(e2)] = ±
(
−Φ∗(ẽ1(θ) ) ẽ1 − Φ∗(ẽ2(θ) ) ẽ2 + Φ∗(2Ḡ ) ẽ3

)
where the sign ± is + if and only if dΦ|e1∧e2 is orientation preserving.

Since dΦ([e1, e2]) = [dΦ(e1), dΦ(e2)], comparing ẽ3 components, we have that
F̄ = ±Φ∗(Ḡ). As both F̄ and Ḡ are positive, we have

(3.6) F̄ = Φ∗(Ḡ).

Consequently, dΦ(e3) = ẽ3 if and only if dΦ|e1∧e2 is orientation preserving. In
particular, Φ is orientation preserving.

Comparing ẽ1 and ẽ2 components yields

(3.7) ẽ1(θ) = ẽ2(θ) = 0.



8 BENJAMIN SCHMIDT AND JON WOLFSON

By (3.2) and (3.7),

2Ḡẽ3(θ) = [ẽ1, ẽ2](θ) = (ẽ1ẽ2 − ẽ2ẽ1)(θ) = 0.

As Ḡ is nonzero, it follows that ẽ3(θ) = 0, whence θ is globally constant. In what
follows, we will consider the two cases dΦ(e3) = ẽ3 and dΦ(e3) = −ẽ3 separately.

Case I: The case when dΦ(e3) = ẽ3.

As Φ is orientation preserving, we have that dΦ|e1∧e2 is orientation preserving.
Using (3.2),

gG(dΦ([e2, e3]), ẽ1) = sin(θ).

Using (3.2),
gG([dΦ(e2), dΦ(e3)], ẽ1) = − sin(θ).

As dΦ([e2, e3]) = [dΦ(e2), dΦ(e3)], it follows that sin(θ) = 0 and that θ is an integral
multiple of π.

As θ is an integral multiple of π, the derivative map dΦ preserves the plane
distribution e2 ∧ e3. Consequently, the diffeomorphism Φ preserves the foliation of
SL2(R) by left-cosets of NA and descends to a diffeomorphism φ of K. By (3.6),
F = φ∗(G), concluding the proof in this case.

Case II: The case when dΦ(e3) = −ẽ3.

As Φ is orientation preserving, we have that dΦ|e1∧e2 is orientation reversing.
Using (3.2),

gG(dΦ([e2, e3]), ẽ2) = cos(θ).

Using (3.2),
gG([dΦ(e2), dΦ(e3)], ẽ2) = 2Ḡ sin(θ)− cos(θ).

As dΦ([e2, e3]) = [dΦ(e2), dΦ(e3)], it follows that cos(θ) = Ḡ sin(θ). As θ is con-
stant, so is Ḡ. By (3.6) F̄ = Ḡ are equal constants. Hence, any diffeomorphism
φ : S1 → S1 satisfies F = φ∗(G), concluding the proof. �

It is likely the case that the metrics gF constructed in this paper describe all of
the complete Riemannian metrics on SL2(R) (up to isometry) that are modeled on
the curvature tensor T , a problem that we leave open.
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