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1. Introduction

In this note we provide examples of compact embedded lagrangians in Cn

for any n ≥ 2 that under mean curvature flow develop singularities in finite
time. When n is odd the lagrangians can be taken to be orientable. By
gluing these lagrangians onto a special lagrangian embedding L we provide
examples of compact embedded lagrangians in a Calabi-Yau manifold that
under mean curvature flow develop arbitrarily many singularities in finite
time. These lagrangians look like the special lagrangian L with “filigree”
attached at points.

The construction of these examples has been motivated, at least in part,
by the desire to obtain a better understanding of a recent conjecture of
Thomas-Yau [T-Y]. Given a compact lagrangian submanifold in a Calabi-
Yau manifold with zero Maslov index, Thomas and Yau conjecture that
mean curvature flow exists for all time and converges to a smooth special
lagrangian submanifold. (Actually to eliminate the possibility that in the
limit the lagrangian degenerates into a connect sum, Thomas-Yau restrict
the range of the “grading” on the lagrangian. For a more detailed discussion
of the conjecture see below.) The examples we construct have a strikingly
different behavior. However because they are not known to have zero Maslov
index they are not counterexamples to the conjecture. On the other hand if
they did have zero Maslov index then they would be counterexamples.

The authors are grateful to Mu-Tao Wang for useful discussions on the
topics of this note and to Richard Thomas for comments on an earlier version
of this note.

2. The conjecture

Let (N,ω) be a Calabi-Yau manifold with ω the Kähler form. Let σ be a
unit parallel section of the canonical bundle. If L is a lagrangian submanifold
then:

σ|L = eiβdvol,
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where dvol is the volume form on L for the induced metric and β is an S1

valued function on L, the lagrangian angle or the phase function. The closed
one-form on L, dβ, has two intrepretations: First, if H denotes the mean
curvature vector on L then H ω = dβ. Second the homology class [dβ] ∈
H1(Σ, Z) is the Maslov class. In particular, if the Maslov class vanishes then
β admits a lift from S1 to R. A grading of L is the choice of such a lift.
The phase of a homology class [L] is defined by noting that the complex
number

∫
L σ and therefore its phase depend only on [L]. If L is graded this

phase lifts to define a real number φ(L). A lagrangian submanifold is called
special lagrangian if H = 0, equivalently, if β is constant, equivalently, if
after multiplying σ by a suitable phase factor, Im σ|L = 0. If L is special
lagrangian then β = φ(L). A special lagrangian submanifold minimizes
volume in its homology class.

Basic to the discussion of mean curvature and lagrangian submanifolds is
that if the ambient Kähler manifold is Kähler-Einstein (in particular, Calabi-
Yau) then mean curvature is an infinitesimal symplectic motion. Thus the
mean curvature flow preserves the lagrangian constraint. In the Calabi-Yau
case, if the Maslov class vanishes then mean curvature is an infinitesimal
hamiltonian motion and mean curvature flow preserves the hamiltonian de-
formation class of the lagrangian. Because the lagrangian angle is a primitive
of mean curvature it is not difficult to show that under mean curvature flow:

d

dt
β = −∆β,

d

dt
dvolL = −|dβ|2 dvolL.

The maximum principle then shows that the osculation of β, sup β − inf β
is non-increasing.

Given a graded lagrangian submanifold L in a Calabi-Yau manifold Thomas
and Yau conjecture that mean curvature flow exists for all time and con-
verges to a special lagrangian submanifold in the same hamiltonian defor-
mation class as L. Actually Thomas-Yau modify the conjecture to allow
for the possibility that in the limit L may decompose into a connect sum
L1#L2 ∼ L of two lagrangians L1 and L2. Suppose that for all graded
connect sums L1#L2 ∼ L we have:

[φ(L1), φ(L2)] 6⊆ (inf
L

β, sup
L

β) (2.1)

Then since the osculation of β is non-increasing under mean curvature flow
if L satisfies (2.1) such a degeneration cannot occur. Requiring, in addition,
that L satisfy (2.1) gives the modified conjecture. Note that in case either
L1 or L2 is null in homology the phase φ(Li) is undefined and condition
(2.1) is vacuous.
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3. Barriers and development of singularities

For the purposes of this paper we define a k-barrier for mean curvature
flow (simply, a k-barrier) to be a smooth oriented hypersurface M of an
oriented Riemannian manifold N with the property that the sum of any k
principal curvatures is greater than zero, where 1 ≤ k ≤ 2n − 1. We say
such a hypersurface is a strong k-barrier if there is, in addition, a constant
a > 0 such that the sum of any k principal curvatures is greater than or
equal to a. We say a hypersurface is a weak k-barrier if the sum of any k
principal curvatures is greater than or equal to zero, where 1 ≤ k ≤ 2n− 1.
Note that the definitions depend on the choice of orientation.

Let Σ be a smooth compact embedded (or immersed) k-dimensional sub-
manifold of Cn that lies in the “inside” (as determined by the orientation)
component of a k-barrier M . Consider the function d(x), for x ∈ Σ, the
distance to M ,

d(x) = inf
y∈M

d(x, y).

Let Σt denote the image, at time t, of Σ under mean curvature flow. Set
d(t) = infx∈Σt d(x).

Theorem 3.1. Suppose that Σt is a smooth immersion for 0 < t < t0. Then
the minimum distance to M , d(t), is an increasing function of t, for t < t0.
If M is a strong k-barrier then there is a constant a > 0 such that d′(t) ≥ a,
for a.e. t < t0.

Proof. Fix t and let x0 ∈ Σt be a point where the minimum value of d(x)
on Σt is attained (x0 need not be unique). Let l be a geodesic in Cn with
an endpoint at y0 on M and at x0 that achieves minx d(x). Then l is a line
segment that meets both M and Σt orthogonally. Translate a neighborhood
of y0 in M along l to x0. Denote the translated neighborhood U . Then U
and Σt are tangent at x0 and so the inward pointing unit normal, ν, to M
at y0 is also normal to Σt at x0. Since d(x) has a minimum at x0, there is
a neighborhood W ⊂ Σt of x0 that lies on one side of U . It follows that the
sum of the principle curvatures for ν of Σt at x0 is greater than or equal to
the sum of any k principle curvatures of M at y0 and is therefore positive.
Thus at x0 the mean curvature vector to Σt has a component that is inward
pointing. The remaining components are tangent to U at x0. Hence under
mean curvature flow d(t) is increasing.

The function d(t) need not be differentiable, however, since it is increasing
it is differentiable a.e. in t. By the above reasoning if M is a strong k-barrier
then d′(t) ≥ a, for a.e. t. �

Corollary 3.2. Under the hypotheses of the theorem if d(t) is not increasing
on (0, t0) then for some t < t0, Σt is singular.
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Next, let Σ be a smooth compact embedded (or immersed) k-dimensional
submanifold of a Riemannian manifold N that lies in the “inside” (as deter-
mined by the orientation) component of a weak k-barrier B. Let Σt denote
the image, at time t, of Σ under mean curvature flow.

Theorem 3.3. Suppose that Σt is a smooth immersion for 0 < t < t0.
Then Σt lies in the closure of the “inside” (as determined by the orientation)
component of B for all 0 < t < t0.

Proof. At a point where Σt is tangent to B its mean curvature vector is
inward pointing or zero. Therefore under mean curvature flow Σt cannot
cross B, provided it remains regular. �

4. Interior barriers and diameter

Let S2n−1(ρ) denote the standard sphere of radius ρ in R2n. Suppose that
Σ is a closed smoothly embedded hypersurface in R2n that lies in the non-
compact component of R2n \ S2n−1(ρ). Suppose that for all time 0 < t < t0
the image Σt of Σ under mean curvature flow remains immersed. Then it is
well known that there is a t1, 0 < t1 ≤ t0, depending only on ρ, such that
for all t, 0 < t ≤ t1, Σt lies in the non-compact component of R2n \S2n−1(ρ).
The sphere S2n−1(ρ) is an interior barrier for Σ under mean curvature flow
in the sense that it controls the diameter of Σt.

This idea can be generalized to higher codimension submanifolds as fol-
lows: Consider a linear (k + 1)-subspace P of R2n (for example, P can be
given by xk+2 = xk+3 = · · · = x2n = 0). Let Sk(ρ) denote the sphere of ra-
dius ρ in this subspace and let B(ρ) denote the hypersurface Sk(ρ)×R2n−k−1.
Suppose that Σ is a closed, smoothly embedded k-submanifold of R2n that
lies in the outside component of R2n \B(ρ) and that non-trivially links the
(2n − k − 1)-subspace orthogonal to P . We will say that Σ non-trivially
links B(ρ). Suppose that for all time 0 < t < t0 the image Σt of Σ under
mean curvature flow remains immersed. We say that Σt has k + 1-diameter
greater than ρ if Σt lies in the outside component of R2n \B(ρ/2) and non-
trivially links B(ρ/2). In particular, the points in the projection of Σt onto
the (k + 1)-plane P , denoted π(Σt), are at least ρ/2 distant from the origin
and π(Σt) links Sk(ρ/2). Therefore, diam(π(Σt)) > ρ.

Theorem 4.1. There is a t1, 0 < t1 < t0, depending only on ρ, such that
for all t, 0 < t < t1, the k + 1-diameter of Σt is greater than ρ.

Proof. Denote by Bt the image of B(ρ) under mean curvature flow. Note
that for any t, Bt = Sk(r) × R2n−k−1 for some 0 ≤ r < ρ. Let d(t) be the
distance between Bt and Σt (i.e., d(t) = inf{d(x, y) : x ∈ Bt, y ∈ Σt}). Let
x0 ∈ Bt and y0 ∈ Σt be points where d(t) = d(x0, y0). Then d(t) is achieved
by a line segment joining x0 and y0 that is orthogonal to Bt at x0 and
orthogonal to Σt at y0. The line segment lies in a (k +1)-plane parallel to P
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and (suitably oriented) points in the direction of the mean curvature vector
to Bt at x0. Translating Bt along the line to y0 and using the minimizing
property of d(t), Σt is tangent to Bt and lies on one side of Bt, at least
locally. Therefore the component of the mean curvature of Σt at y0 that is
parallel to the mean curvature vector of Bt has magnitude less than or equal
to that of Bt at x0. The other components of the mean curvature of Σt at
y0 are tangent to Bt. It follows that d(t) is non-decreasing.

It is well known that under mean curvature flow B(ρ) flows to B(ρ/2)
in finite time T depending only on ρ. Set t1 < min(T, t0). Since d(t) is
non-decreasing, for any 0 < t < t1, Σt lies in the outside component of
R2n \ B(ρ/2). By homotopy invariance, for all 0 < t < t1, Σt non-trivially
links B(ρ/2). �

We will call B(ρ) an interior barrier for Σ.

5. Embedded lagrangrians

Let (x1, . . . , x2n) be coordinates on R2n. Set

F (x1, . . . , x2n) =
2n−1∑
i=1

x2
i − f(x2n),

where f(t) is a smooth positive function that will be determined below.
Let M be the zero set of F . Then M is a smooth manifold oriented by
the choice of unit normal ν = −∇F/|∇F |. A vector X is tangent to M if
∇F ·X = 0. Let X, Y be unit tangent vectors and write X =

∑2n
i=1 ai

∂
∂xi

,
Y =

∑2n
i=1 bi

∂
∂xi

. Then the second fundamental form on X, Y is:

〈ν,∇XY 〉 = −〈∇Xν, Y 〉 =
1

|∇F |

2n∑
i,j=1

aibjFij ,

where Fij = ∂2F
∂xi∂xj

. To compute the second fundamental form of M at
any point p it suffices, using the obvious symmetry, to assume that the
coordinates of p are (

√
f(x2n), 0, . . . , 0, f(x2n)). Then at p,

∇F = (2
√

f(x2n), 0, . . . , 0,−f ′(x2n)).

A vector X =
∑2n

i=1 ai
∂

∂xi
is tangent to M at p if:

2
√

f(x2n)a1 − f ′(x2n)a2n = 0.

Set Y = f ′(x2n) ∂
∂x1

+ 2
√

f(x2n) ∂
∂x2n

. Then{
X1 =

Y

|Y |
, X2 =

∂

∂x2
, . . . , X2n−1 =

∂

∂x2n−1

}
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is an orthonormal frame at p. In terms of this frame the second fundamental
form at p is diagonal with diagonal elements:

1
|∇F |

(
2(f ′)2 − 4f ′′f

((f ′)2 + 4f)
, 2, . . . , 2

)
.

These are then the principal curvatures at p. It follows that M is a strong
n-barrier if there is a scalar a > 0 such that:

2(f ′)2 − 4f ′′f + 2(n− 1)((f ′)2 + 4f) ≥ a((f ′)2 + 4f)
3
2 , (5.1)

Equivalently, if

(n + 1)(f ′)2 + 4f((n− 1)− f ′′) + (n− 1)((f ′)2 + 4f) ≥ a((f ′)2 + 4f)
3
2 ,

Evidently, if:

(f ′)2 + 4f < C, (n + 1)(f ′)2 + 4f((n− 1)− f ′′) ≥ 0, (5.2)

then there is such a scalar a > 0 depending only on the bound C.
Choose c � 1 and 0 < ε � 1/2. Define:

gε(t) =


ε2, −c ≤ t ≤ c,

ε2 + (c−ε2)
c (|t| − c), c ≤ |t| ≤ 2c,

c, |t| ≥ 2c.

Then gε is a piecewise smooth positive function that fails to be smooth only
at ±c and ±2c. It is possible to smooth these corners such that the smoothed
function fε equals gε, except on intervals of length < 1 around ±c and ±2c,
and such that f ′ε ≥ 0 and f ′′ε ≤ n− 1. Then there is a constant C such that
(5.2) is satisfied. Note that the scalar a > 0 is independent of ε. It follows
from (5.1) that if M is the zero set of

Fε(x1, . . . , x2n) =
2n−1∑
i=1

x2
i − fε(x2n)

then M is a strong n-barrier. We call the portion of M that lies in the set
{x : −c ≤ x2n ≤ c}, the “tubular portion” of M .

Lemma 5.1. Suppose that Σ is a smooth n-dimensional embedding in Cn

that passes through the “tubular portion” of M . Let Σt denote the image
of Σ under mean curvature flow. Suppose that, for all time t for which the
mean curvature flow is defined, Σt passes through the “tubular portion” of
M . Then for some t ≤ tM = ε/a, Σt is singular.

Proof. By Theorem 3.1, d′(t) ≥ a for a. e. t. Since the radius of the tubular
portion of M is ε, 0 ≤ d(t) ≤ ε. The result follows from Corollary 3.2. �

Next we construct a lagrangian embedding lying in the “inside” of the
barrier M . We first describe the construction of lagrangian embeddings that
have an interior barrier. Let P ⊂ R2n denote an (n + 1)-plane. Consider
the standard n-spheres Sn(ρ) ⊂ Sn(r) of radii ρ < r in P centered at the
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origin. Then Sn(r) links the hypersurface B(ρ) = Sn(ρ) × Rn−1 ⊂ R2n

in the sense defined above. It is not difficult to verify that the embedding
ı : Sn(r) → R2n satisfies the topological conditions necessary to homotop
it, using the h-principle, to a lagrangian immersion ` : Sn(r) → R2n. The
lagrangian immersion ` can be taken C0 close to ı [E-M] and can be assumed
to have, at worst, ordinary double points. These double points can then be
replaced by lagrangian handles using lagrangian surgery [P]. The resulting
submanifold L is a lagrangian embedding. For ρ sufficiently small, L is
disjoint from the hypersurface B(ρ) and links it. Thus B(ρ) is an interior
barrier for L. Alternately an explicit construction, one not using the h-
principle, can be made by observing that the Clifford torus Tn = S1 ×
· · · × S1 ⊂ C × · · · × C = Cn is a lagrangian embedding that links an
(n − 1)-plane in Cn and therefore for ρ sufficiently small is disjoint from
and links an Sn(ρ)×Rn−1. (For example, introducing complex coordinates
(z1, . . . , zn) on Cn with zj = xj + iyj , the Clifford 2-torus links the line
x1 = 0, y1 = t−1/2, x2 = t+1, y2 = t, for −∞ < t < ∞. The Clifford 3-torus
links the plane x1 = 0, y1 = t+ s− 1/2, x2 = t+1, y2 = t, x3 = s+1, y3 = s,
for −∞ < t, s < ∞, etc.)

In terms of the coordinates introduced in the construction of M , put yn =
x2n. Consider Cn−1 ⊂ Cn given by zn = 0. In Cn−1 let L0 be a lagrangian
immersion of Sn−1. (When n = 2 we require that L0 be a “zero area”
immersed curve, that is, we require that the integral of the Liouville form on
L0 vanish.) By perturbation we can assume that L0 has only ordinary double
points. By scaling and translation we can assume that L0 is contained in
the ball of radius ε

2 centered at the origin. Construct a lagrangian cylinder
C in Cn by setting: C = L0 × {it : −σ ≤ t ≤ σ} ⊂ Cn−1 × C, where
σ > 2c. The boundary spheres S+ = L0×{iσ} and S− = L0×{−iσ} bound
immersed lagrangian discs Dn

± in Cn [E-M]. Attaching these discs to C at
its boundary we construct a lagrangian immersion C̃ of Sn. Perturbing this
immersion we can suppose that it has only ordinary double points. Next
attach lagrangian “bubbles” to the ends of C̃ as follows: In the half spaces
{z : yn > σ} and {z : yn < −σ} consider lagrangian embeddings L+ and
L−, respectively. We require that both L+ and L− are in the “inside”
component of Cn \M and that they have interior barriers B+(ρ) and B−(ρ),
ρ > 0, constructed, as described above, from (n + 1)-planes P+ and P−
that are parallel to the line {yn = t : −∞ < t < ∞}. By perturbation and
translation we can assume that L+ and L− intersect C̃ transversely in a finite
number of isolated points. At each of these points we perform a lagrangian
surgery [P] and replace the double point with a lagrangian handle. To make
the resulting lagrangian immersion an embedding we perform a lagrangian
surgery at each remaining ordinary double point. The resulting manifold is
a smooth lagrangian embedding Σ that is orientable if n is odd. The surgery
can be performed locally so that Σ remains in the “inside” component of
Cn \M .
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Theorem 5.2. For ε sufficiently small, under mean curvature flow the la-
grangian embedding Σ develops singularities in finite time.

Proof. The lagrangian embedding Σ has two interior barriers B+(ρ) and
B−(ρ). Applying Theorem 4.1 to both interior barriers there is a t1 depend-
ing only on ρ such that for 0 < t < t1, Σt is disjoint from and links both
B+(ρ/2) and B−(ρ/2). Choose 0 < ε < min(ρ/2, t1a). For all t < t1, Σt has
interior barriers B+(ρ/2) and B−(ρ/2) and therefore, since ε < ρ/2, must
pass through the “tubular portion” of M . Since tM = ε/a < t1 the result
now follows from Lemma 5.1. �

6. Adding filigree to special lagrangrians

In this section we modify the constructions of the previous section to
attach “filigree” to an embedded special lagrangian submanifold of a Calabi-
Yau n-manifold N . To begin we continue to work in Cn and we construct
two n-barriers.

Choose c � 1 and 0 < ε � 1
2 . Define:

g0,ε(t) =



ε2, −10c ≤ t ≤ c,

ε2 + (c−ε2)
c (t− c), c ≤ t ≤ 2c,

c, 2c ≤ t ≤ 10c,

c− (c−ε2)
c (t− 10c), 10c ≤ t ≤ 11c,

ε2, t ≥ 11c,

g1,ε(t) =



c, −10c ≤ t ≤ −c,

c− (c−ε2)
c (t + c), −c ≤ t ≤ 0,

ε2, 0 ≤ t ≤ c,

ε2 + (c−ε2)
c (t− c), c ≤ t ≤ 2c,

c, 2c ≤ t ≤ 10c,

c− (c−ε2)
c (t− 10c), 10c ≤ t ≤ 11c,

ε2, t ≥ 11c,

Then both g0,ε and g1,ε are piecewise smooth positive functions that fail to
be smooth at finitely many points. As in the previous section it is possible
to smooth these corners such that the smoothed functions f0,ε and f1,ε equal
g0,ε and g1,ε,respectively, except on intervals of length < 1 around the corners
and satisfy f0,ε ≤ f1,ε. The functions f0,ε and f1,ε are positive and satisfy
(5.2) for some constant C > 0. Therefore the hypersurface M0, the zero set
of:

F0,ε(x1, . . . , x2n) =
2n−1∑
i=1

x2
i − f0,ε(x2n),

and the hypersurface M1, the zero set of:

F1,ε(x1, . . . , x2n) =
2n−1∑
i=1

x2
i − f1,ε(x2n),
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are strong n-barriers for a constant a > 0 depending only on C.
Next we construct an embedded lagrangian contained in the “inside” re-

gion of M0. As above, consider Cn−1 ⊂ Cn given by zn = 0. In Cn−1 let L0

be a lagrangian immersion of Sn−1 with only ordinary double points. By
scaling and translation we can assume that L0 is contained in the ball of
radius ε

2 centered at the origin. Construct a lagrangian cylinder C in Cn

by setting: C = L0 × {it : −10c ≤ t ≤ 2c} ⊂ Cn−1 × C. The boundary
spheres S+ = L0×{2ci} and S− = L0×{−10ci} bound immersed lagrangian
discs Dn

± in Cn. Attaching these discs to C at its boundary we construct
a lagrangian immersion C̃ of Sn. Perturbing this immersion we can sup-
pose that it has only ordinary double points. Next attach a lagrangian
“bubble” to the “+” end of C̃ as follows: In the inside region of M0 with
2c < yn < 10c consider a lagrangian embedding L+ that has an interior bar-
rier B+(ρ), ρ > 0, constructed, as described in the previous section, from an
(n+1)-plane P+ that is parallel to the line {yn = t : −∞ < t < ∞}. By per-
turbation and translation we can assume that L+ intersects C̃ transversely
in a finite number of isolated points. At each of these points we perform a
lagrangian surgery and replace the double point with a lagrangian handle.
Finally, to make the resulting lagrangian immersion an embedding we per-
form a lagrangian surgery at each remaining ordinary double point. Denote
the resulting lagrangian embedding by Σ.

Let L be an embedded special lagrangian submanifold of a Calabi-Yau n-
manifold N . Note that the homology class [L] is non-trivial. Let Br denote
the normal sphere bundle of L considered as a subset of a tubular neighbor-
hood of L ⊂ N , where r denotes the radius of each fiber sphere Sx, x ∈ L.
Choose r sufficiently small so that Br is an embedded submanifold and so
that each principal curvature of Sx for all x ∈ L is greater than the absolute
value of every principal curvature of L. Since L is a minimal submanifold
it follows that Br is a weak n-barrier, though not an n-barrier. Let p ∈ L
be a point and U a coordinate neighborhood of p ∈ N . In U construct
strong n-barriers M0 and M1 and an embedded lagrangian Σ as above. The
n-barriers M0 and M1 intersect Br transversely in (n−2)-submanifolds that
are topological spheres. It is not difficult to smooth these “corners” such
that the resulting smoothly embedded hypersurfaces, denoted M0 and M1

respectively, are both weak n-barriers. The lagrangian Σ can be constructed
to intersect L in the interior region of M0. By perturbation we can assume
that Σ intersects L transversally in a finite number of ordinary double points.
Perform lagrangian surgery at these double points to construct an embedded
lagrangian that we denote L#Σ. These surgeries can be performed so that
L#Σ remains in the interior region of M0.

Note that the Calabi-Yau metric on Ū is uniformly equivalently to the
euclidean metric on a compact ball in Cn and therefore mean curvature flow
can be studied using either metric. Under mean curvature flow M0 is a
weak n-barrier and so by Theorem 3.3 L#Σ remains inside M0 though, a



10 R. SCHOEN AND J. WOLFSON

priori, the submanifold may flow through the tubular region into either end.
However, L#Σ has an interior barrier B+(ρ). Therefore, there is a time
t1, depending only on ρ, such that, for 0 < t < t1, (L#Σ)t links B+(ρ/2).
Therefore if ε < ρ/2, for 0 < t < t1, the submanifold cannot flow out of the
inside region of M0 between yn = c and yn = 11c. Since L represents a non-
trivial homology class, the entire submanifold cannot flow into the tubular
region of M0 and therefore, for all t with 0 < t < t1, the submanifold
transverses the region of M0 between yn = −10c and yn = c.

Theorem 6.1. For ε sufficiently small, the lagrangian embedding L#Σ de-
velops a singularity, under mean curvature flow, in finite time.

Proof. We suppose, by way of contradiction, that for any finite time t,
(L#Σ)t is an immersion. Choose ε sufficiently small so that ε < ρ/2 and
such that t1 > tM1 = ε/a. Then for all t, 0 < t ≤ tM1 , (L#Σ)t trans-
verses the tubular region of M0 between yn = −10c and yn = c. Set
(Σ+)t = (L#Σ)t ∩ {z : yn ≥ −5c}. Let d1(t) be the minimum distance
between (Σ+)t and the barrier M1. On the boundary of (Σ+)t the distance
to M1 is greater than

√
c−ε > ε. For 0 < t < t1, since (Σ+)t transverses the

tubular region of M1, d1(t) ≤ ε. Therefore, for 0 < t < t1, d1(t) assumes its
value at points in the interior of (Σ+)t. Thus d1(t) is a continuous function
of t and, as shown in the proof of Theorem 3.1, d′1(t) ≥ a for a.e. t. Hence
(Σ+)t develops a singularity at some t ≤ tM1 , proving the theorem. �

Let p1, . . . , pk be disjoint points in L with disjoint neighborhoods, U1, . . . , Uk,
in N . Carrying out the previous construction in each neighborhood Ui we
construct an embedded lagrangian L# ∪k

i Σi in N that, under mean curva-
ture flow, develops at least k singularities, in finite time. The lagrangians
L# ∪k

i Σi look like the special lagrangian L with “filigree” attached at k
points, where k can be taken arbitrarily large.
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