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Abstract. A connected Riemannian manifold M has constant vector curva-

ture ε, denoted by cvc(ε), if every tangent vector v ∈ TM lies in a 2-plane

with sectional curvature ε. When the sectional curvatures satisfy an additional
bound sec ≤ ε or sec ≥ ε, we say that ε is an extremal curvature.

In this paper we study three-manifolds with constant vector curvature.

Our main results show that finite volume cvc(ε) three-manifolds with extremal
curvature ε are locally homogenous when ε = −1 and admit a local product

decomposition when ε = 0. As an application, we deduce a hyperbolic rank-
rigidity theorem.

1. Introduction

We introduce a new curvature condition called constant vector curvature and
present a number of classification theorems in dimension three.

A connected Riemannian manifold M has constant vector curvature ε, denoted
by cvc(ε), if every tangent vector v ∈ TM lies in a 2-plane with sectional curvature
ε; by scaling the metric on M , there is no loss in generality in assuming that
ε = −1, 0, or 1. When the sectional curvatures satisfy an additional bound sec ≤ ε
or sec ≥ ε, we say that ε is an extremal curvature.

Our definition is partly motivated by a consideration of results on geometric rank-
rigidity [Ba, BuSp, Con, Co, Ha, ShSpWi]. A manifold M has positive hyperbolic
rank if along each complete geodesic γ : R→M there exists an orthogonal Jacobi
field J(t) with sec(γ̇, J)(t) ≡ −1; the notions of positive Euclidean rank and positive
spherical rank are analogously defined. The condition of constant vector curvature
simply replaces the condition “along each complete geodesic” with “at each point”.
It replaces a global condition on geodesics with a pointwise condition on vectors.

It is immediate that surfaces with constant vector curvature have constant sec-
tional curvatures. In Section 3 we classify the complete, simply-connected, and
homogeneous cvc(ε) three-manifolds with extremal curvature ε, a class of manifolds
properly containing the eight three-dimensional Thurston geometries. In Section 4
we prove the following:

Theorem 1.1. Suppose that M is a finite volume cvc(−1) three-manifold.
If sec ≤ −1, then M is real hyperbolic. If sec ≥ −1 and M is not real hyperbolic,
then its universal covering is isometric to a left-invariant metric on one of the Lie

groups E(1, 1) or ˜SL(2,R) with sectional curvatures having range [−1, 1].

Theorem 1.2. A finite volume three-manifold M with extremal curvature −1 and
positive hyperbolic rank is real hyperbolic.
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The left-invariant metrics arising in Theorem 1.1 are classified in Section 3; the
necessity of the finite volume assumption will be addressed in [ScWo]. Alternative
proofs of Theorem 1.2 (1) appear in [Co, Ha] when M is compact. To our knowledge
(2) is the first hyperbolic rank-rigidity theorem without the additional assumption
of non-positive sectional curvatures.

In contrast to the cvc(−1) case, there is flexibility in the construction of cvc(0)
three-manifolds. Observe that any three-manifold that is locally a Riemannian
product of a surface and an interval has cvc(0) since every tangent vector lies in a
tangent plane containing the interval factor, a plane of curvature zero. The following
theorem is a partial converse of this observation. Recall that a point p ∈M is said
to be isotropic if all tangent planes to p have the same sectional curvature.

Theorem 1.3. Suppose that M is a complete and finite volume cvc(0) three-
manifold with extremal curvature 0. The subset of M consisting of non-isotropic
points admits a local Riemannian product structure. In addition, if M has no
isotropic points then its universal covering is isometric to a Riemannian product.

We conclude with a brief account of our methods. A cvc(ε) three-manifold M
with extremal curvature ε has the following local structure in neighborhoods of non-
isotropic points (see Section 2): M admits a local orthonormal framing {e1, e2, e3}
that diagonalizes the Ricci tensor with eigenvalues {λ+ε, λ+ε, 2ε} where λ 6= ε. The
line field spanned by e3 is globally defined in the set of non-isotropic points and is
tangent to a foliation by complete geodesics. This is essentially all that local theory
yields. Indeed, a necessary condition for M to be locally homogeneous is for λ to be
locally constant. Even in this case, the local isometry classes of Riemannian three-
manifolds for which the eigenvalues of the Ricci tensor are constants ρ1 = ρ2 6= ρ3
depend on two arbitrary functions of one variable [Ko1, Ko2].

We introduce global methods by studying various ode along the e3-geodesics
satisfied by Christoffel symbols. When M has finite volume and ε = −1 these ode
give enough information to conclude that, in a suitable frame, the curvature and
its covariant derivatives are constant. A result of Singer [Si] then implies that M
is locally homogeneous. Similarly, when M has finite volume and ε = 0, these ode
give enough information to deduce the local product structure.

Section 2 introduces preliminary ideas common throughout the paper. Section 3
describes the homogeneous cvc(ε) three-manifolds with extremal curvature ε. The
proofs of Theorems 1.1 and 1.2 appear in Section 4. The proof of Theorem 1.3
appears in Section 5.

A preliminary study of cvc(1) three-manifolds with extremal curvature 1 shows
that there are large moduli of such metrics. The construction of these moduli
involve substantially different methods and will constitute a future paper.

2. General structure of cvc(ε) three-manifolds

In this section, we set up notation and collect together general results that will
be used in subsequent sections.

Local computations. We begin with a curvature identity that holds for an ar-
bitrary Riemannian three-manifold M . Let {v1, v2, v3} be an orthonormal framing
of a neighborhood U of a point p ∈ M . For unit orthogonal vectors X,Y ∈ TpM ,

write X =
∑3
i=1 aivi and Y =

∑3
i=1 bivi, where the ai and bi are scalars. Set
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A = (a1, a2, a3) and B = (b1, b2, b3). Then |A| = |B| = 1. Since X and Y are
orthogonal unit vectors, we have:

sec(X ∧ Y ) = 〈R(X,Y )Y,X〉.

Lemma 2.1. Let C = (c1, c2, c3) = A×B and set Z =
∑3
i=1 civi. Then

〈R(X,Y )Y,X〉 =
1

2
S − Ric(Z,Z),

where Ric is the Ricci curvature and S is the scalar curvature.

Proof. We first compute:

R(X,Y ) =
∑
i,j

aibjR(vi, vj) =
∑
i,j

aibjRij

= (a1b2 − a2b1)R12 + (a1b3 − a3b1)R13 + (a2b3 − a3b2)R23

= c3R12 − c2R13 + c1R23,

where Rij : TpM → T ∗pM . Then

〈R(X,Y )Y,X〉 = c23R1221 − c2c3R1231 − c1c3R1223

−c3c2R1321 + c22R1331 − c1c2R1332

−c1c3R2312 − c1c2R2331 + c21R2332

Using c21 + c22 + c23 = 1 we have

〈R(X,Y )Y,X〉 = (1− c21 − c22)R1221 − c2c3R1231 − c1c3R1223

−c3c2R1321 + (1− c21 − c23)R1331 − c1c2R1332

−c1c3R2312 − c1c2R2331 + (1− c22 − c23)R2332

=
1

2
S −

(
c1 c2 c3

) (
Ric
)c1c2

c3


=

1

2
S − Ric(Z,Z).

�

Lemma 2.2. Let {v1, v2, v3} be a local orthonormal framing over a neighborhood
U of p ∈ M for which the Ricci tensor is diagonal. Let σ be a two-plane at p and
Z =

∑3
i=1 civi a unit vector orthogonal to σ. Then

sec(σ) = c21λ23 + c22λ13 + c23λ12

where
λ12 = R1221, λ13 = R1331, λ23 = R2332.

Proof. As {v1, v2, v3} diagonalizes the Ricci tensor,

1

2
S = λ12 + λ13 + λ23

Ric(Z,Z) = c21(λ12 + λ13) + c22(λ12 + λ23) + c23(λ13 + λ23).

By Lemma 2.1,

sec(σ) =
1

2
S − Ric(Z,Z) = c21λ23 + c22λ13 + c23λ12,
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as desired.
�

Lemma 2.3. Let M be a Riemannian three-manifold with cvc(ε) and let {v1, v2, v3}
be a local orthonormal framing over a neighborhood of p ∈ M which diagonalizes
the Ricci tensor. Then at least one of the sectional curvatures λij equals ε.

Proof. If not, then there either exist two of the λij which are both greater than
ε or which are both less than ε. Consider the case when two of the λij > ε (the
other case is analogous). After a possible relabeling of indices, we have that both
λ23 and λ13 are greater than ε. Then by Lemma 2.2, all planes containing v3 have
curvature greater than ε, a contradiction. �

Adapted frames, the A matrix, and curvature equations.
The starting point for all of our analysis concerning cvc(ε) manifolds with ex-

tremal curvature ε is the following:

Theorem 2.4. Let M be a Riemannian three-manifold with cvc(ε) and extremal
curvature ε. Then for each non-isotropic point p ∈ M there is a number λp 6= ε
and a unit vector e ∈ TpM such that

(1) the curvature ε planes at p are precisely those containing the vector e
(2) the plane P orthogonal to e has sectional curvature λp and all sectional

curvatures at p lie between ε and λp
(3) for any orthonormal frame {e1, e2} of the plane P , the frame {e1, e2, e = e3}

diagonalizes the Ricci tensor at p with eigenvalues {λ+ ε, λ+ ε, 2ε}.

Proof. Let p ∈M be a non-isotropic point and assume that sec ≥ ε; the case when
sec ≤ ε is handled similarly. Let {v1, v2, v3} be an orthonormal framing of TpM as
in Lemma 2.2. It suffices to prove that exactly two of λ12, λ13, λ23 equal ε.

As p is not isotropic, one of the λij is not equal to ε and by Lemma 2.3 at least
one of the λij equals ε. If at most one of the λij equals ε, then one is less than ε
and one is greater than ε. This contradicts the assumption that ε is extremal. �

By Theorem 2.4, there is a continuous function λ : M → R, (with value ε at
isotropic points), with the property that sec has range between λp and ε at each
p ∈ M . In fact, we have that λ is smooth on M since the scalar curvature of
M equals 2λ + 4ε. Throughout, we let I = {λ = ε} denote the closed subset of
isotropic points and P = M \ I the open subset of non-isotropic points.

We frequently will exploit the fact that cvc(ε) metrics lift to cvc(ε) metrics on
covers. In particular, we always assume that M is oriented. On the non-isotropic
set P the vector field e3 is locally well-defined; the line field spanned by the vector
field e3 is globally defined. This line field may not be orientable in which case it is
in a double cover of each connected component of P. In all arguments that follow,
the reader may check that there is no loss of generality by passing to these covers
when necessary. Consequently, we will always assume that the line field is oriented
by a globally defined vector field e3 on P. As M is oriented, a choice for the vector
field e3 as above orients the perpendicular plane field e⊥3 .

Definition 2.1. An adapted frame is a positively oriented orthonormal framing
{e1, e2, e3}.

Note that any two adapted frames differ by the SO(2) action on positively ori-
ented orthonormal subframings of e⊥3 . Making a choice of such a subframe, we



THREE-MANIFOLDS WITH CONSTANT VECTOR CURVATURE 5

write the Christoffel symbols of the Levi-Civita connection ∇ for the adapted frame
{e1, e2, e3} as follows:

∇e1e3 = a11e1 + a12e2 ∇e2e3 = a21e1 + a22e2

∇e3e1 = ce2 ∇e3e2 = −ce1

∇e2e1 = fe2 − a21e3 ∇e2e2 = −fe1 − a22e3(2.1)

∇e1e2 = ge1 − a12e3 ∇e1e1 = −ge2 − a11e3

∇e3e3 = 0.

We remark that ∇e3e3 = 0 is demonstrated below in Theorem 2.5. Consider the
linear endomorphism e⊥3 → e⊥3 defined by v 7→ ∇ve3. Throughout, we denote its
adjoint by A : e⊥3 → e⊥3 . With respect to the subframing {e1, e2} of e⊥3 we have
that

A =

(
a11 a12
a21 a22

)

Let Tθ =

(
cos θ sin θ
− sin θ cos θ

)
. Under the orthonormal change of adapted frame:

(2.2)

(
ẽ1
ẽ2

)
= Tθ

(
e1
e2

)
the matrix A transforms by:

(2.3)

(
ã11 ã12
ã21 ã22

)
= Tθ

(
a11 a12
a21 a22

)
T−1θ

and the remaining Christoffel symbols f , g, and c transform by:

(2.4)

f̃g̃
c̃

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 f + e2(θ)
g − e1(θ)
c+ e3(θ)


Next, we describe a normal forms decomposition for A. Write A as the sum of

a symmetric matrix Asym and a skew-symmetric matrix Ask. Further decompose
Asym into the sum of a traceless symmetric matrix A0 and the multiple of the
identity matrix ( 1

2 trA)Id so that

A = A0 + ( 1
2 trA)Id +Ask.

Set σ = 1
2 (a11 − a22), τ = 1

2 (a12 + a21), a = 1
2 (a11 + a22) and b = 1

2 (a12 − a21).

Then,

A0 =

(
σ τ
τ −σ

)
, ( 1

2 trA)Id =

(
a 0
0 a

)
, Ask =

(
0 b
−b 0

)
.
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The matrices ( 1
2 trA)Id and Ask are fixed under conjugation by an element of

SO(2). It follows that the normal forms decomposition of A is invariant under
conjugation by an element of SO(2) and that trA, detA, a, and b are smooth
functions on P defined independently of a choice of an adapted frame. Note that
under the change e3 → −e3 we have b→ −b and a→ −a.

Under conjugation by the matrix

Tθ =

(
cos θ sin θ
− sin θ cos θ

)
the matrix A0 transforms according to

(2.5) TθA0T
−1
θ =

(
σ cos 2θ + τ sin 2θ τ cos 2θ − σ sin 2θ

τ cos 2θ − σ sin 2θ −(σ cos 2θ + τ sin 2θ)

)

While σ and τ in general depend on a choice of an adapted frame, the function
− detA0 = σ2 + τ2 is a smooth function on P defined independently of a choice of
adapted frame.

Using the curvature tensor we derive the following equations on the Christoffel
symbols: From R1221 = λ:

(2.6) e1(f) + e2(g) + f2 + g2 + c(a12 − a21) + detA = −λ
From R1331 = ε:

(2.7) −e3(a11) + c(a12 + a21)− (a11)2 − a12a21 = ε

From R2332 = ε :

(2.8) −e3(a22)− c(a12 + a21)− (a22)2 − a12a21 = ε

From R1213 = 0 :

(2.9) −e1(a21) + e2(a11) + g(a11 − a22)− f(a21 + a12) = 0

From R1223 = 0 :

(2.10) −e1(a22) + e2(a12) + f(a11 − a22) + g(a12 + a21) = 0

From R1312 = 0 :

(2.11) e1(c) + e3(g) + ga11 + f(c− a12) = 0

From R2312 = 0 :

(2.12) e2(c)− e3(f)− fa22 + g(c+ a21) = 0

From R1323 = 0 :

(2.13) e3(a12) + c(a11 − a22) + a12 trA = 0

From R2313 = 0 :

(2.14) e3(a21) + c(a11 − a22) + a21 trA = 0

Hence taking the difference of (2.13) and (2.14) we have:

(2.15) e3(b) + (trA)b = 0

Taking the sum of (2.13) and (2.14) we have:

(2.16) e3(τ) + 2cσ + (trA)τ = 0
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Taking the difference of (2.7) and (2.8) we have:

(2.17) e3(σ)− 2cτ + (trA)σ = 0

The e3-geodesic decomposition of P.
The first theorem in this subsection demonstrates that P is foliated by geodesics

of M tangent to the vector field e3. Throughout, these geodesics will be called
e3-geodesics.

Theorem 2.5. On the set P the vector-field e3 satisfies: ∇e3e3 = 0.

Proof. We use the differential Bianchi identity twice. First

〈(∇e2R)(e1, e3)e3, e1〉+ 〈(∇e1R)(e3, e2)e3, e1〉+ 〈(∇e3R)(e2, e1)e3, e1〉 = 0

and the curvature conditions:

〈R(e1, e3)e3, e1〉 = ε = 〈R(e2, e3)e3, e2〉,
〈R(e1, e2)e2, e1〉 = λ,

and
〈R(ei, ej)ek, e`〉 = 0,

when three of i, j, k, ` are distinct, imply that:

(λ− ε)〈∇e3e3, e2〉 = 0.

Next,

〈(∇e1R)(e2, e3)e3, e2〉+ 〈(∇e2R)(e3, e1)e3, e2〉+ 〈(∇e3R)(e1, e2)e3, e2〉 = 0,

implies that:
(λ− ε)〈∇e3e3, e1〉 = 0.

The result follows. �

Next, we describe a decomposition of P into two sets. Let P1 = {− detA0 > 0}
and P2 = {detA0 = 0}. Clearly, P is the disjoint union of the open subset P1 and
the closed subset P2. Recall that a subset of a foliated space is said to be saturated
if it is a union of entire leaves of the foliation.

Lemma 2.6. The subsets P1 and P2 are saturated.

Proof. It suffices to prove that P2 is a saturated subset. Let p ∈ P2 and let γ(t)
be the e3-geodesic with γ(0) = p and γ̇(0) = e3. Let detA0(t) = detA0(γ(t)). By
(2.16) and (2.17), detA0(t) satisfies the ode

d

dt
(detA0) = −2 trA(detA0).

As detA0(0) = 0, it follows that detA0(t) ≡ 0, concluding the proof.
�

Note that at points p ∈ P2, the matrix A0 = 0 independent of the choice of an
adapted frame. This immediately implies:

Lemma 2.7. At each point p ∈ P2 and for any choice of adapted frame at p,

A =

(
a b
−b a

)
.
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In contrast, at points p ∈ P1 the entries of the matrix A0 depend on a choice of
an adapted frame. In subsequent sections, the following lemma is used to pick out
a particular adapted framing at points in P1.

Lemma 2.8. At each point p ∈ P1, there are precisely two adapted framings for
which the matrix A0 has the form

A0 =

(
σ 0
0 −σ

)
with σ =

√
−detA0 > 0. Moreover, these two adapted framings differ by the

element T (π) ∈ SO(2).

Proof. Let p ∈ P1 and fix a positively oriented framing {e1, e2} of e⊥3 at p. Suppose
that with respect to this framing

A0 =

(
σ τ
τ −σ

)
where σ2 + τ2 > 0. We first claim that there is a unique θ ∈ [0, π) such that
TθA0T

−1
θ has the desired form. By (2.5) this is equivalent to proving that

(2.18) τ cos 2θ − σ sin 2θ = 0

and

(2.19) σ cos 2θ + τ sin 2θ > 0

have a unique common solution θ ∈ [0, π).
First suppose that τ = 0. Since σ2 + τ2 > 0, we have that σ 6= 0. By (2.18)

sin 2θ = 0 so that θ = 0 or θ = π
2 . By (2.19), θ = 0 is the unique common solution

when σ > 0 and θ = π
2 is the unique common solution when σ < 0.

Next suppose that τ > 0. Equation (2.18) yields

cot 2θ =
σ

τ

which has precisely two solutions θ ∈ [0, π), one with θ ∈ (0, π2 ) and one with
θ ∈ (π2 , π). It is easy to check that the former satisfies (2.19) while the latter does
not. An analogous line of reasoning shows that there is a unique common solution
when τ < 0, concluding the proof of our claim.

By the previous claim, we may assume that the positively oriented framing
{e1, e2} of e⊥3 from the beginning of the proof puts A0 in the desired form

A0 =

(
σ 0
0 −σ

)
with σ =

√
−detA0 > 0. To conclude the proof, we show that for θ ∈ (0, 2π), the

matrix TθA0T
−1
θ = A0 if and only if θ = π. By (2.18), we necessarily have that

sin 2θ = 0 so that θ = π
2 , π, or 3π

2 . Inequality (2.19) additionally holds if and only
if cos 2θ = 1 or equivalently if and only if θ = π. �
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Evolution equations for trA, detA, and λ along e3-geodesics.
Restrict the three scalar functions trA, detA and λ = R1221 on P to functions

along an e3-geodesic γ. Let t be a parameter for γ such that e3 = d
dt . Then,

Theorem 2.9. Along the e3-geodesic γ(t) we have:

d

dt
(λ− ε) = − trA(λ− ε)(2.20)

d

dt
(trA) = 2(detA− ε)− (trA)2(2.21)

d

dt
(detA+ ε) = − trA(detA+ ε)(2.22)

Proof. To prove the first equality, use the differential Bianchi identity:

〈(∇e3R)(e1, e2)e2, e1〉+ 〈(∇e1R)(e2, e3)e2, e1〉+ 〈(∇e2R)(e3, e1)e2, e1〉 = 0

and the curvatures 〈R(e1, e2)e2, e1〉 = λ, 〈R(e1, e3)e3, e1〉 = ε, 〈R(e2, e3)e3, e2〉 = ε,
and 〈R(ei, ej)ek, e`〉 = 0, if any three of i, j, k, ` differ to conclude that:

e3(λ) = − trA(λ− ε).
The first equality follows.

To prove the second equality, add (2.7) and (2.8) to derive

e3(a11 + a22) = −(a11)2 − (a22)2 − 2a12a21 − 2ε,

from which the second equality easily follows.

To prove the third equality, compute e3(a11a22− a12a21) using (2.13) and (2.14)
to derive e3(detA) = − trA(ε+ detA). The result follows.

�

The following are two immediate corollaries:

Corollary 2.10. Along any e3-geodesic, λ never assumes the value ε. Hence, the
vector field e3 is complete and P is foliated by complete e3-geodesics.

Corollary 2.11. Along any e3-geodesic, trA ≡ 0 if and only if detA ≡ ε.

We conclude this section with a general form solution to the coupled odes (2.21)
and (2.22). Explicit form solutions when ε = −1 or ε = 0 are given at the beginning
of each relevant section.

Theorem 2.12. Along the e3-geodesic γ let `(t) denote the solution to

`′′ + 4ε` = 2k, k = detA(0) + ε

with initial conditions
`(0) = 1, `′(0) = trA(0).

Then `(t) > 0 for each t ∈ R and

trA =
`′

`
and

detA+ ε =
1

`
(detA(0) + ε).
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Proof. To solve (2.21) and (2.22) introduce the function `(t) = exp(
∫ t
0
(trA)dτ) so

that trA = `′

` , `(0) = 1, `′(0) = trA(0), and `(t) > 0 for all t ∈ R. Then from
(2.22) we have:

(2.23) (detA+ ε)′ = −`
′

`
(detA+ ε)

Hence,

(2.24) `(detA+ ε) = k,

where k = detA(0) + ε is a constant. From (2.21) we have:

(2.25)
`′′`− (`′)2

`2
=

(
`′

`

)′
= 2(

k

`
− 2ε)− (`′)2

`2

Hence,

(2.26)
`′′

`
=

2k

`
− 4ε

Simplifying, we have:

(2.27) (`)′′ + 4ε` = 2k

�

By (2.15), (2.20), and (2.22), b, λ− ε, and detA+ ε satisfy the same linear ode
along an e3-geodesic γ. Hence:

Corollary 2.13. For each e3-geodesic γ, there exists constants K and C such that
detA+ ε = K(λ− ε) and b = C(λ− ε).

3. Homogeneous cvc(ε) three-manifolds with extremal curvature ε

A good general reference for this section is [Mi].
In this section, M denotes a connected, simply-connected, complete, and homo-

geneous three-manifold with cvc(ε) and extremal curvature ε. We continue to use
the notation of Section 2.

Sekigawa [Se] classified the connected, simply-connected, complete, and homo-
geneous three-manifolds. They either have constant sectional curvatures, or are
isometric to a product Σ× R where Σ is a complete and simply-connected surface
with constant sectional curvatures, or are isometric to a connected and simply-
connected three-dimensional Lie group endowed with a left-invariant metric.

If M has an isotropic point, then all points are isotropic by homogeneity and M
is a space form of curvature ε. The products S2 ×R and H2 ×R have no isotropic
points and cvc(0). It remains to classify the left-invariant metrics on connected and
simply-connected three dimensional Lie groups with cvc(ε), extremal curvature ε,
and no isotropic points.

Let G denote a connected and simply-connected three-dimensional Lie group
endowed with a left-invariant Riemannian metric determined by an inner-product
〈·, ·〉 on its Lie algebra g. We assume that G has cvc(ε), extremal curvature ε,
and no isotropic points. By Theorem 2.4 there exists an orthonormal framing
{ē1, ē2, e3} of g that diagonalizes the Ricci tensor where the vector e3 is contained in
all curvature ε planes. As left-translation acts by orientation preserving isometries
of G, {ē1, ē2, e3} extends to a left-invariant adapted framing on all of G.
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As this framing is left-invariant, the Christoffel symbols (2.1) are constant func-
tions on G. As λ − ε is a non-zero constant function on G, Theorem 2.9 implies
that trA = 0 and detA = ε. Next, we consider the normal forms for A and in
particular, a, b, σ and τ as defined in Section 2.

We have that a = 1
2 trA = 1

2 (a11 + a22) = 0. Consequently, a11 = −a22 and

σ = 1
2 (a11− a22) = a11 = −a22. By possibly replacing e3 with −e3, we will assume

that b = 1
2 (a12 − a21) ≥ 0. By Lemmas 2.7 and 2.8, we may assume that τ = 0,

or equivalently that a12 = −a21. Consequently, b = a12 = −a21 ≥ 0 and moreover,
with respect to the left-invariant adapted framing {ē1, ē2, e3} we have that

A =

(
σ b
−b −σ

)
where b ≥ 0, σ > 0 if G = P1, and σ = 0 if G = P2.

The curvature equations (2.6)-(2.14) for this left-invariant adapted framing re-
duce to:

From R1221 = λ:

(3.1) f2 + g2 + 2cb+ ε = −λ
From R1331 = ε:

(3.2) b2 − σ2 = ε

From R2332 = ε :

(3.3) b2 − σ2 = ε

From R1213 = 0 :

(3.4) 2gσ = 0

From R1223 = 0 :

(3.5) 2fσ = 0

From R1312 = 0 :

(3.6) gσ + f(c− b) = 0

From R2312 = 0 :

(3.7) fσ + g(c− b) = 0

From R1323 = 0 :

(3.8) 2cσ = 0

From R2313 = 0 :

(3.9) 2cσ = 0

Consider the linear transformation L : g→ g defined by extending

L(ē1) = [ē2, e3], L(ē2) = [e3, ē1], L(e3) = [ē1, ē2]

linearly. Then the Lie group G is unimodular if and only if L is self-adjoint [Mi].
In this case, the Lie algebra g is determined by the signs of the eigenvalues of L as
described by [Mi, p. 307].

With respect to the framing {ē1, ē2, e3} described above, we have that



12 BENJAMIN SCHMIDT AND JON WOLFSON

L =

c+ a21 −σ g
−σ c− a12 −f
0 0 −2b


Hence G is unimodular if and only if f = g = 0. Our first lemma characterizes

when G Riemannian covers a finite volume manifold:

Lemma 3.1. Assume that G is a connected and simply-connected three-dimensional
Lie group endowed with a left-invariant metric of cvc(ε), extremal curvature ε,
and with no isotropic points . Let {ē1, ē2, e3} be a left-invariant framing of G as
described above. Then G Riemannian covers a finite volume manifold if and only
if f = g = 0.

Proof. First assume that f = g = 0 or equivalently that G is unimodular. As
all three-dimensional unimodular Lie groups admit lattices [Mi], G covers a finite
volume manifold.

Next assume that G covers a finite volume manifold N . Then Γ = π1(N) acts by
isometries on G. After possibly passing to an index two subgroup, we may assume
that Γ acts by orientation preserving isometries of G with finite volume quotient.
We assume that one of f or g is non-zero and derive a contradiction in what follows.

Let Isom+(G) denote the group of orientation preserving isometries of G and
F < Isom+(G) the subgroup consisting of orientation preserving isometries fixing
the identity element e ∈ G. We first claim that F is trivial or isomorphic to Z2. To
see this, note that since G has constant vector curvature and is not a space form,
the derivative map of each I ∈ F fixes the line in g ∼= TeG spanned by e3. Define
the homomorphism φ : F → {−1, 1} by dI(e3) = φ(I)(e3). The claim will follow
once we prove φ is injective.

To see that φ is injective, assume that I is an orientation preserving isometry of
G fixing the identity e and the vector e3 ∈ g ∼= TeG. As I preserves orientation,
there is a θ ∈ [0, 2π) such that

dI(ē1) = cos θ ē1 + sin θ ē2

dI(ē2) = − sin θ ē1 + cos θ ē2.

Using the fact that dI([ē1, ē2]) = [dI(ē1), dI(ē2)], we have that(
g
f

)
=

(
cos θ sin θ
− sin θ cos θ

) (
g
f

)
As one of g or f is assumed to be non-zero, we have that dI is the identity map

of g. An isometry is determined by where it sends a point and its derivative at
this point. Consequently, I is the identity map of G, concluding the proof that φ
is injective.

Left-translation L : G → Isom+(G), g 7→ Lg, identifies G with a subgroup of

Isom+(G). Define the map

ν : Isom+(G)→ {−1, 1}
by ν(I) = φ(L−1I(e) ◦ I) for each I ∈ Isom+(G). Alternatively, the derivative of

each isometry I ∈ Isom+(G) maps the left-invariant vector-field e3 to the left-
invariant vector-field ν(I)e3. It follows easily that ν is a homomorphism and that

G = ker(ν). The group Γ̂ = G ∩ Γ has index at most two in Γ, hence also acts on

G with a finite volume quotient N̂ . As all elements in Γ̂ act by left-translations,
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the left-invariant vector fields ē1 and ē2 on G descend to vector fields ê1 and ê2 on
N̂ . A simple calculation shows that f ≡ div ē1 and g ≡ div ē2 and consequently,
f ≡ div ê1 and g ≡ div ê2. As N̂ has finite volume, the divergence of every vector
field on N̂ vanishes somewhere, contradicting the assumption that one of f or g is
non-zero. �

We begin with the proof of the following:

Theorem 3.2. Assume that M is a connected, simply-connected, complete and
homogeneous cvc(1) three-dimensional manifold with extremal curvature +1. Then
either

(1) M is isometric to a left-invariant metric on SU(2), or
(2) M is isometric to a left-invariant metric on the Heisenberg group, or

(3) M is isometric to a left-invariant metric on ˜SL(2,R), or
(4) M is isometric to a left-invariant metric on a non-unimodular solvable

three-dimensional Lie group.

The manifolds appearing in (1)− (3) Riemannian cover finite-volume manifolds
while those in (4) do not.

Proof. As the round three dimensional sphere is isometric to a left-invariant metric
on SU(2), we may assume that M is isometric to a connected and simply-connected
three dimensional Lie groupG endowed with a left-invariant metric with no isotropic
points (or equivalently 1 6= λ ∈ R). We assume that G is endowed with a left-
invariant framing {ē1, ē2, e3} as described above. By (3.2) b2 = 1+σ2 so that b ≥ 1
by our convention that b ≥ 0.

In what follows, we consider two separate types of left-invariant metrics.

Type I, G = P1:
Metrics of this type have σ > 0. Therefore c = 0 by (3.8) and(

0
0

)
=

(
σ b
−b −σ

) (
g
−f

)
by (3.6) and (3.7). As b2 − σ2 = 1, f = g = 0. The curvature equations (3.1)-(3.9)
are all solved once values for the constants b > 1 and σ > 0 satisfying the equality
1 = b2 − σ2 are specified.

Let α = σ
b . As 1 = b2−σ2 = b2(1−α2) and b > 1, we have that α may take any

value in (0, 1). Let µ = b(1−α) > 0. A simple calculation shows that µ = ( 1−α
1+α )1/2.

Note that µ may take any value in (0, 1) .
Rotating ē1 and ē2 at all points by angle π/4, we obtain a new left-invariant

framing {e1, e2, e3} with constant Christoffel symbols c = f = g = a11 = a22 = 0
and µ = a12 = − 1

a21
. The curvature λ = −1 by (3.1). With respect to the framing

{e1, e2, e3},

L =

− 1
µ 0 0

0 −µ 0
0 0 −(µ+ 1

µ )

 .

According to [Mi, p. 307], G is isomorphic to SU(2).
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Type II, G = P2 :
Metrics of this type have σ = 0. Thus b2 = b2 − σ2 = 1 so that b = 1 by our

convention b ≥ 0. We consider two separate cases in what follows:

Case 1, c 6= 1:
By equations (3.6) and (3.7) we have that f(c − 1) = g(c − 1) = 0 whence

f = g = 0 and λ = −(2c+ 1).
With respect to the framing {ē1, ē2, e3},

L =

c− 1 0 0
0 c− 1 0
0 0 −2


giving the bracket relations mentioned in the introduction.

According to [Mi, p. 307], if c > 1 then G is isomorphic to ˜SL(2,R) and if c < 1
then G is isomorphic to SU(2).

The interested reader may check that when c = 3
2 , G is isometric to the universal

covering of the unit-tangent bundle of the hyperbolic plane and that when c = −1,
G is isometric to the constant curvature one three sphere. Moreover, the family of
metrics with c < 1 are isometric to the Berger spheres suitably rescaled so that the
Hopf vector field is contained in curvature one planes. The family of metrics with
c > 1 are constructed in a similar fashion starting with the universal covering of
the unit-tangent bundle of the hyperbolic plane.

Case 2, c = 1:

As in the previous case, we have b = 1. The curvature equations (3.1)− (3.9) are
then satisfied for any values of f and g. The curvature λ = −(3 + f2 + g2). With
respect to the framing {ē1, ē2, e3},

L =

0 0 g
0 0 −f
0 0 −2


The group G is unimodular if and only if f = g = 0 in which case G is isomorphic

to the three-dimensional Heisenberg group. If one of f or g is non-zero, then G is
a non-unimodular three-dimensional Lie group, hence solvable [Mi]. In this case,
Lemma 3.1 implies that G does not cover a finite volume manifold. �

Remark 3.1. In Theorem 3.2 the parameter µ ∈ (0, 1) parameterizes the isometry
classes of Type I metrics and the parameter c ∈ R parameterizes the isometry
classes of Type II metrics as we now outline:

For a Type II metric with parameter c ∈ R the tangent plane e⊥3 has curvature
−(2c+ 1) implying the second statement. As for the first statement, let µ ∈ (0, 1)
and consider the metric Lie algebra (g, <,>µ) with basis {e1, e2, e3} satisfying:

[e2, e3] = − 1

µ
e1, [e3, e1] = −µe2, [e1, e2] = −(

1

µ
+ µ)e3.

Let (G,<,>µ) denote the induced connected and simply-connected Lie group with
left-invariant metric. As explained in the proof of Theorem 3.2, G is isomorphic to
SU(2).
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Now suppose that 0 < µ1 < 1 and 0 < µ2 < 1. For i = 1, 2, let {ei1, ei2, ei3} denote
the left-invariant orthonormal framing of (SU(2), <,>µi) just described. Assume
that

I : (SU(2), <,>µ1
)→ (SU(2), <,>µ2

)

is an isometry. By following I with a left-translation, we may assume that I fixes the
identity element. The derivative map at the identity dI : (g, <,>µ1

)→ (g, <,>µ2
)

is a linear isometry of metric Lie algebras. It follows that

(1) dI([e11, e
1
2]) = [dI(e11), dI(e12)],

(2) dI(e13) = ±e23,
(3) the image under dI of the subframing {e11, e12} of (e13)⊥ differs from the

subframing {e21, e22} of (e23)⊥ by an element of O(2).

A simple calculation using (1)-(3) implies µ1 = µ2.
It is interesting to note that as µ→ 1, the metric Lie algebras (g, <,>µ) converge

to the Type II metric Lie algebra corresponding to the parameter c = 0.

Theorem 3.3. Assume that M is a connected, simply-connected, complete and ho-
mogeneous cvc(−1) three-dimensional manifold with extremal curvature −1. Then
either

(1) M is isometric to three dimensional hyperbolic space, or
(2) M is isometric to a left-invariant metric on E(1, 1), or

(3) M is isometric to a left-invariant metric on ˜SL(2,R).

The manifolds appearing in (1) − (3) all Riemannian cover finite volume man-
ifolds and the sectional curvatures of manifolds appearing in (2) − (3) have range
[−1, 1].

Proof. If M is not hyperbolic, then M is isometric to a connected and simply-
connected three dimensional Lie group G endowed with a left-invariant metric with
no isotropic points (or equivalently −1 6= λ ∈ R). We assume that G is endowed
with a left-invariant framing {ē1, ē2, e3} as described above. By (3.2), b2−σ2 = −1.
In particular, σ 6= 0 and G = P1.

By (3.8), 2cσ = 0 so that c = 0. By (3.6) and (3.7), we have:(
0
0

)
=

(
σ −b
−b σ

) (
f
g

)
As σ2 − b2 = 1, f = g = 0. By 3.1, λ = 1.
Rotate ē1 and ē2 at all points by angle π/4. By (2.3) and (2.4) we obtain a new

left-invariant framing {e1, e2, e3} with constant Christoffel symbols c = f = g =
a11 = a22 = 0 and a12 = 1

a21
= b − σ 6= 0. Let µ = b − σ. Replacing e3 with

−e3 if necessary, we may assume that µ > 0 and by possibly switching e1 and e2
if necessary, we may assume that µ ≥ 1. With respect to the orthonormal framing
{e1, e2, e3},

L =

 1
µ 0 0

0 −µ 0
0 0 1

µ − µ


According to [Mi, p. 307], if µ = 1, then G is isomorphic to E(1, 1) and if µ > 1,

then G is isomorphic to the universal covering group of SL(2,R).
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As for the last claim of the theorem, it is well known that the three dimen-
sional hyperbolic space covers finite volume manifolds while Lemma 3.1 implies
that manifolds appearing in (2) and (3) do as well. �

Remark 3.2. An argument analogous to the one outlined in remark 3.1 classifies
the isometry classes of metrics appearing in Theorem 3.3. The interested reader
may check that there is a unique isometry class of metrics appearing in (2) corre-
sponding to the parameter µ = 1 and that the isometry classes of metrics appearing
in (3) are parameterized by µ ∈ (1,∞).

Theorem 3.4. Assume that M is a connected, simply-connected, complete and ho-
mogeneous three-manifold with extremal curvature −1. If M has positive hyperbolic
rank, then M is isometric to three dimensional hyperbolic space.

Proof. The assumption that M has positive hyperbolic rank implies that M has
cvc(−1). From the proof of Theorem 3.3, a connected, simply-connected, complete
and homogeneous cvc(−1) three-manifold with extremal curvature −1 is isometric
to H3 or to a three-dimensional Lie group G admitting a left-invariant orthonormal
framing {e1, e2, e3} satisfying

∇e1e3 = µe2 ∇e2e3 =
1

µ
e1

∇e3e1 = 0 ∇e3e2 = 0

∇e2e1 = − 1

µ
e3 ∇e2e2 = 0(3.10)

∇e1e2 = −µe3 ∇e1e1 = 0

∇e3e3 = 0

where µ ≥ 1 is a constant and e3 lies in the intersection of all curvature −1 planes. It
suffices to demonstrate that a left-invariant metric with a left-invariant orthonormal
framing as above does not have positive hyperbolic rank.

Consider the unit-speed geodesic γ : R→ G defined by γ(0) = e and γ̇(0) = e1 ∈
g. As ∇e1e1 = 0, γ̇(t) = e1(γ(t)) for all t ∈ R. We show that the geodesic γ has no
orthogonal Jacobi field J(t) satisfying sec(γ̇(t), J(t)) = −1 for all t ∈ R as follows.
If there were such a Jacobi field, then by (1) of Theorem 2.4, J(t) = a(t)e3(t) for
some smooth a : R→ R with isolated zeroes. Use (3.10) to calculate

J ′′(t) = 2µa′(t)e2(t) + (a′′(t)− µ2a(t))e3(t)

and

R(J, γ̇)γ̇(t) = −a(t)e3(t).

The Jacobi equation J ′′(t) + R(J, γ̇)γ̇(t) = 0 implies that 2µa′(t) = 0 and a′′(t) =
(µ2 + 1)a(t). As µ 6= 0, the equality 2µa′(t) = 0 implies that a(t) is constant.
The equality a′′(t) = (µ2 + 1)a(t) then implies that a(t) = 0 for all t ∈ R, a
contradiction. �
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Theorem 3.5. Assume that M is a connected, simply-connected, complete and
homogeneous cvc(0) three-dimensional manifold with extremal curvature 0. Then
either

(1) M is isometric to three-dimensional Euclidean space, or
(2) M is isometric to a product of space forms S2 × R or H2 × R
(3) M is isometric to a left-invariant metric on a non-unimodular solvable

three-dimensional Lie group.

The manifolds appearing in (3) do not Riemannian cover finite-volume mani-
folds.

Proof. If M is not isometric to a manifold in (1) or (2), then M is isometric to
a connected and simply-connected three-dimensional Lie group G endowed with a
left-invariant metric with no isotropic points (or equivalently 0 6= λ ∈ R).

We assume that G is endowed with a left-invariant framing {ē1, ē2, e3} as de-
scribed above. By (3.2), we have that b2 = σ2. We first claim that b = σ = 0 or
equivalently that G = P2. Indeed, if this were not the case then (3.4), (3.5), and
(3.8) imply that f = g = c = 0. By (3.1), λ = 0, a contradiction. Hence σ = 0
and b = 0. The curvature equations (3.1)-(3.9) are then satisfied for any values of
f and g with λ = −(f2 + g2) 6= 0. With respect to the framing {ē1, ē2, e3},

L =

0 0 g
0 0 −f
0 0 0


Therefore, G is a non-unimodular three dimensional solvable Lie group which does
not cover a finite volume manifold by Lemma 3.1. �

As mentioned in the introduction, the eight Thurston geometries have constant
vector curvature. The hyperbolic, Euclidean, and spherical geometries obviously do.

The product geometries have constant vector curvature zero. The Nil and ˜SL(2,R)
geometries are Type II cvc(1) manifolds with c = 1 and c = 3

2 , respectively. The
Sol geometry is the cvc(−1) manifold corresponding to µ = 1.

We conclude this section with a criterion due to Singer [Si] for a Riemannian
manifold to be homogeneous that is used in Section 4 to prove Theorem 1.1. For
an integer n ≥ 0, a Riemannian manifold M satisfies condition P (n) if for each
x, y ∈ M , there exists a linear isometry of TxM onto TyM which maps (∇kR)x
onto (∇kR)y for each k = 0, 1, . . . , n where R is the Riemannian curvature tensor
and ∇ is the Levi-Civita connection on M

Theorem 3.6 (Singer). Assume that M is a connected, simply-connected, and
complete Riemannian manifold satisfying condition P (n) for sufficiently large n.
Then M is Riemannian homogeneous.

4. Three manifolds with cvc(−1) and extremal curvature −1

In this section, M denotes a connected and complete three-manifold with cvc(−1),
extremal curvature −1, and finite volume. We use the notation and conventions
introduced in Section 2.

Restrict the three scalar functions trA, detA and λ = R1221 on P to functions
along an e3-geodesic γ. Let t be a parameter such that e3 = d

dt . The reader may
check the following:
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Lemma 4.1. The solution to

`′′ − 4` = 2k, k = detA(0)− 1

with initial conditions

`(0) = 1, `′(0) = trA(0)

is

`(t) =
1

2

(
trA(0) sinh 2t+ (detA(0) + 1) cosh 2t− (detA(0)− 1)

)
.

Theorem 4.2. The functions trA ≡ 0 and detA ≡ −1 on P. In particular, the
flow generated by e3 preserves volume.

Proof. Note that div(e3) = trA. Hence, the second statement follows from the
first. As for the first statement, it suffices to prove trA vanishes identically along
each e3-geodesic by Corollary 2.11 . For a given e3-geodesic γ(t), let c1 = trA(0),
c2 = detA(0) + 1, and c3 = −2k = −2(detA(0)− 1) so that

`(t) =
1

4
((c1 + c2)e2t − (c1 − c2)e−2t + c3).

As ` is everywhere positive on γ, the initial conditions satisfy c1 + c2 ≥ 0 and
c1 − c2 ≤ 0. Theorem 2.12 implies

trA(t) =
`′(t)

`(t)
= 2

(c1 + c2)e2t + (c1 − c2)e−2t

(c1 + c2)e2t − (c1 − c2)e−2t + c3
.

First suppose that (c1 + c2) = 0 and (c1 − c2) = 0. Then c3 = 4 and the above
formula implies trA ≡ 0. Otherwise, if

(c1 + c2) > 0 then trA→ 2 as t→∞,(4.1)

(c1 − c2) < 0 then trA→ −2 as t→ −∞,(4.2)

(c1 + c2) = 0, (c1 − c2) < 0 then trA→ 0 as t→∞,(4.3)

(c1 − c2) = 0, (c1 + c2) > 0, then trA→ 0 as t→ −∞.(4.4)

Accordingly, e3-geodesics in P fall into four disjoint classes. Those on which: (i)
trA → 2 as t → ∞ and trA → −2 as t → −∞, (ii) trA → 2 as t → ∞ and
trA→ 0 as t→ −∞, (iii) trA→ 0 as t→∞ and trA→ −2 as t→ −∞ and (iv)
trA ≡ 0. We denote the set of points in P that lie on e3-geodesics of type (i) by
S−2,2, of type (ii) by S0,2, of type (iii) by S−2,0, and of type (iv) by S0,0. Our goal
is to prove that P = S0,0. Note that by continuity of trA on P, it suffices to prove
that each of S−2,2, S0,2 and S−2,0 has empty interior.

Seeking a contradiction, first suppose that S0,2 has non-empty interior. As S0,2 is
saturated by complete e3-geodesics, we may find an open set U ⊂ S0,2 also saturated
by complete e3-geodesics and in particular invariant under the flow φt generated by
the vector field e3. By definition, an e3-geodesic γ ⊂ S0,2 has a parameterization
with initial conditions satisfying (c1 + c2) > 0 and (c1− c2) = 0. Consequently, the
derivative `′ and div(e3) = trA are positive functions on γ and hence also on S0,2.

As vol(M) <∞, the set U is a finite volume open set so that

d

ds
vol(φs(U)) =

∫
φs(U)

div(e3).
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This is a contradiction since the left-hand side equals 0 by flow-invariance of U and
the right-hand side is positive since div(e3) > 0 on U = φs(U), a non-empty open
set. An analogous argument proves that S−2,0 has no interior points. It remains to
prove that S−2,2 has empty interior.

Seeking a contradiction, suppose that S−2,2 has non-empty interior. Then we
may find a closed two-dimensional disc D ⊂ S−2,2 transversal to the e3-geodesic
foliation. For x ∈ D, let γx denote the e3-geodesic with γx(0) = x and let c1(x)
and c2(x) denote the corresponding initial conditions for ` along γx. For t ≥ 0, let

U(t) = {γx(s) | (x, s) ∈ D × [t,∞) }.
It is easy to check that trA(γx(t)) > 0 for all t satisfying

e4t >
c2(x)− c1(x)

c1(x) + c2(x)
.

As the initial conditions, c1(x) and c2(x) depend continuously on x ∈ D, there is a
T > 0 such that trA is positive on all of U(T ).

For s ≥ 0, let vs = vol(U(T + s)). The sets U(T + s) have finite and positive
volume. When 0 ≤ s1 < s2, U(T + s2) ⊂ U(T + s1) so that vs is a finite non-
increasing function. On the other hand,

d

ds
vs =

∫
U(T+s)

div(e3)

is positive since div(e3) = trA > 0 on U(T + s), a set with non-empty interior.
This contradiction concludes the proof. �

Corollary 4.3. P = P1

Proof. Suppose not and choose a point p ∈ P2. By Lemma 2.7 we have that

A =

(
a b
−b a

)
with respect to any adapted framing at the point p. By Theorem 4.2 we have that
a = 1

2 trA = 0 and detA = b2 = −1, a contradiction. �

By Lemma 2.8, at each point p ∈ P = P1 there are precisely two adapted
framings {e1, e2, e3} and {−e1,−e2, e3} with respect to which

(4.5) A =

(
σ b
−b −σ

)
with σ > 0.

Let L1 denote the line field on P spanned by e1. For a connected component C
of P, we let C̄ denote a connected component of the orientation double cover of the
line field L1 endowed with the lifted cvc(−1) metric. A choice of orientation for L1

on C̄ yields a global adapted framing {e1, e2, e3} of C̄ for which the matrix A has
the form (4.5).

Lemma 4.4. For a global adapted framing {e1, e2, e3} of C̄ with respect to which
A has form (4.5), c ≡ 0. Moreover, b and σ are constant along e3-geodesics.

Proof. As τ ≡ 0 and σ > 0 on C̄, (2.16) implies c ≡ 0. By Theorem 4.2, trA = 0
so that by (2.15) and (2.17), b and σ are constant along e3-geodesics. �
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By (2.3) and (2.4), rotating the framing {e1, e2} of e⊥3 at all points in C̄ by angle
π
4 yields a global adapted framing {ē1, ē2, e3} of C̄ with respect to which

(4.6) A =

(
0 µ
1
µ 0

)
where µ = σ − b 6= 0 is constant along e3-geodesics and c ≡ 0.

Theorem 4.5. For a global adapted framing {ē1, ē2, e3} of C̄ with respect to which
A has form (4.6), f ≡ g ≡ 0.

Proof. Let γ(t) be an e3-geodesic. Using a11 = a22 = c = 0 in (2.11) and (2.12) we
have: (

f ′

g′

)
=

(
0 1

µ

µ 0

) (
f
g

)
along γ. Hence (

f
g

)
= c1e

t

(
1
µ

)
+ c2e

−t
(

1
−µ

)
.

where c1 = 1
2 (f(0)+f ′(0)) and c2 = 1

2 (f(0)−f ′(0)). Since µ is a non-zero constant
along γ, f ≡ 0 along γ if and only g ≡ 0 along γ.

Seeking a contradiction, we assume that f is non-zero at a point p ∈ C̄. Let D
denote a closed two-dimensional disc transverse to the vector field e3 and passing
through p. By continuity of f , we may assume that f is non-zero and bounded on
D. For each x ∈ D, let γx denote the e3-geodesic with γx(0) = x.

The initial conditions c1(x) = 1
2 (f(x) + f ′(x)) and c2(x) = 1

2 (f(x) − f ′(x)) for
f along γx depend continuously on x ∈ D. As f(p) 6= 0, one of c1(p) or c2(p) is
non-zero. If c1(p) 6= 0, then after possibly shrinking D, we have that c1(x) 6= 0
for all x ∈ D. It follows that for each x ∈ D, |f | → ∞ exponentially along γx as
t→∞. This contradicts the fact that f is bounded on D since by Theorem 4.2 and
Poincare recurrence, γx returns to D along a sequence of times tending to infinity
for almost every x ∈ D.

If c2(p) 6= 0, an analogous argument yields a contradiction, completing the proof.
�

Proposition 4.6. The function µ is a constant 6= 0 and λ ≡ 1 on C̄ .

Proof. Let {ē1, ē2, e3} be a global adapted framing of C̄ with respect to which A
has form (4.6). From (2.9) and (2.10) it follows that ē1( 1

µ ) = 0 and ē2(µ) = 0.

Since e3(µ) = 0 it follows that µ is a global constant. By (2.6) we have that λ ≡ 1
on C̄. �

Corollary 4.7. Either P = ∅ or P = M .

Proof. Note that Proposition 4.6 implies λ = 1 on all of P. This implies that P is
closed since λ = −1 on the isotropic set I = M \ P. The result follows since P is
also open in M , a connected manifold. �

We conclude this section with the proofs of Theorems 1.1 and 1.2 from the
introduction.

Proof of Theorem 1.1. By Theorem 3.3, it suffices to prove that if M has finite-
volume, cvc(−1), extremal curvature −1 and is not real-hyperbolic, then the uni-
versal covering of M is homogeneous.
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If M is not real-hyperbolic, then P 6= ∅. By Corollary 4.7, M = P. Recall
that on a connected component of a double cover M̄ of M there is an adapted
framing {ē1, ē2, e3} of M̄ for which the matrix A has form (4.6). With respect to
this framing, the Christoffel symbols a11 = a22 = c = 0. By Theorem 4.5, the
Christoffel symbols f = g = 0 with respect to this framing. By Proposition 4.6
the remaining Christoffel symbols a12 and a21 are constant with respect to this
framing. An application of Theorem 3.6 proves that the universal covering of M is
homogeneous. �

Proof of Theorem 1.2. As M has positive hyperbolic rank, M has cvc(−1). The
conclusion holds by Theorems 1.1 and 3.4. �

5. Three manifolds with cvc(0) and extremal curvature 0

In this section, M denotes a connected and complete three-manifold with cvc(0),
extremal curvature 0, and finite volume. We use the notation and conventions
introduced in Section 2.

Restrict the three scalar functions trA, detA and λ = R1221 on P to functions
along an e3-geodesic γ. Let t be a parameter such that e3 = d

dt . The reader may
check the following:

Lemma 5.1. The solution to

`′′ = 2k, k = detA(0)

with initial conditions

`(0) = 1, `′(0) = trA(0)

is

`(t) = detA(0)t2 + trA(0)t+ 1

Theorem 5.2. The functions trA ≡ 0 and detA ≡ 0 on P. In particular, the flow
generated by e3 preserves volume.

Proof. Note that div(e3) = trA. Hence, the second statement follows from the
first. As for the first statement, it suffices to prove trA vanishes identically along
each e3-geodesic γ by Corollary 2.11 . Theorem 2.12 implies

trA(t) =
`′(t)

`(t)
=

2 detA(0)t+ trA(0)

detA(0)t2 + trA(0)t+ 1
.

Corollaries 2.10 and 2.13 imply that if detA(0) = 0 then detA(t) ≡ 0. In this
case, the fact that ` is positive on γ implies that trA(0) = 0, and consequently that
trA(t) ≡ 0. Otherwise, we have that detA(0) 6= 0 and detA never vanishes on γ.

Accordingly we define two classes of e3-geodesics. Those on which: (i) detA
never vanishes, and those on which (ii) detA and trA identically vanish. These
classes are disjoint. We denote the set of points in P that lie on e3-geodesics of
type (i) by S and of type (ii) by T . We will conclude the proof by showing P = T
or equivalently that S = ∅.

Suppose S 6= ∅. Then S is a non-empty open set saturated by e3-geodesics on
which detA never vanishes. Let D denote a closed disc transversal to the foliation
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of S by e3-geodesics. For x ∈ D, let γx denote the e3-geodesic with γx(0) = x. For
(x, t) ∈ D × R, let

detA(x, t) = detA(γx(t)) trA(x, t) = trA(γx(t)).

For t > 0, let
U(t) = {γx(s) | (x, s) ∈ D × [t,∞) }.

We first claim that detA is a positive function on S. To see this, let γ be an
e3-geodesic in S. As ` > 0 on γ, we have that detA(0) > 0. The claim follows
since detA is continuous and does not vanish on γ. It follows that for x ∈ D,

trA(x, t) > 0 for all t > − trA(x,0)
2 detA(x,0) . As the initial conditions detA(x, 0) and

trA(x, 0) vary continuously with x ∈ D, there exists a T > 0 such that trA is a
positive function on U(T ).

For s ≥ 0, let vs = vol(U(T + s)). As U(T + s) contains an open set, vs > 0 and
as vol(M) <∞, vs <∞. When 0 ≤ s1 < s2, U(T + s2) ⊂ U(T + s1) whence vs is
a finite non-increasing function. On the other hand,

d

ds
vs =

∫
U(T+s)

div(e3)

and since div(e3) = trA > 0 on U(T+s), a set with interior, vs is strictly increasing.
This contradiction completes the proof.

�

We first consider the subset P1 ⊂ P.
By Lemma 2.8, at each point p ∈ P1 there are precisely two adapted framings

{e1, e2, e3} and {−e1,−e2, e3} with respect to which

(5.1) A =

(
σ b
−b −σ

)
with σ > 0.

Let L1 denote the line field on P1 spanned by e1. For a connected component
C of P1, we let C̄ denote a connected component of the orientation double cover of
the line field L1 endowed with the lifted cvc(0) metric. A choice of orientation for
L1 on C̄ yields a global adapted framing {e1, e2, e3} of C̄ for which the matrix A
has the form (5.1).

Lemma 5.3. For a global adapted framing {e1, e2, e3} of C̄ with respect to which
A has form (5.1), c ≡ 0. Moreover, b and σ are constants along e3-geodesics.

Proof. As τ = 0 and σ > 0 on C̄, (2.16) implies c ≡ 0. By Theorem 5.2, trA = 0
so that by (2.15) and (2.17), b and σ are constant along e3-geodesics. �

By Theorem 5.2, detA = 0 so that σ2 = b2 on C̄. As σ does not vanish on the
connected set C̄, it follows that either σ = b on all of C̄ or σ = −b on all of C̄. By
(2.4) and (2.5), rotating the framing {e1, e2} of e⊥3 at all points in C̄ by angle ±π4
(depending on whether σ = ±b, yields a new global adapted framing {ē1, ē2, e3} of
C̄ with respect to which

(5.2) A =

(
0 0
µ 0

)
where µ = −(b+ σ) if σ = b, µ = σ − b if σ = −b, and c ≡ 0 on C̄. In particular, µ
is non-zero and constant along e3-geodesics in C̄.
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Lemma 5.4. For an adapted framing {ē1, ē2, e3} of C̄ with respect to which the
matrix A has form 5.2, the function µ is a constant 6= 0 on C̄.

Proof. With respect to the given adapted framing {ē1, ē2, e3}, we have that a11 =
a22 = a12 = c = 0. Moreover, a21 = µ is a non-zero smooth function on C̄ satisfying
e3(µ) = 0.

From (2.10) it follows that g = 0 on C̄. Consider the function k = f
µ on C̄.

From (2.12) and the fact that g = 0 it follows that e3(f) = 0. Since additionally
e3(µ) = 0, the function k is constant along e3-geodesics.

By way of contradiction we suppose that µ is not constant on C̄. We may then
find an interval I ⊂ R consisting of regular values of µ. For a regular value r ∈ I,
we let Σr = µ−1(r) denote the smooth level surface. Since e3(µ) = 0 the vector
field e3 is everywhere tangent to Σr. Therefore, each Σr is foliated by complete
e3-geodesics.

Consider the subset

X = {x ∈ C̄ | k(x) = 0} = {x ∈ C̄ | f(x) = 0}

of C̄. We claim that X has no interior point in C̄. Indeed, otherwise there exists
an open subset O of C̄ with O ⊂ X. As f = 0 on O, (2.6) implies that λ = 0 on
O, contradicting the fact that C̄ consists of non-isotropic points.

As X has no interior points, we may find a closed two dimensional disc D ⊂
µ−1(I) transverse to the vector field e3 on which k does not vanish. For each
x ∈ D, let γx denote the e3-geodesic with γx(0) = x and let

U = {γx(t) | (x, t) ∈ D × R}.

As k is constant on e3-geodesics, k does not vanish on U . By (2.9), we have that

ē1(µ) = −fµ = −kµ2.

Therefore, the vector field ē1 is not tangent to Σr ∩ U for each r ∈ µ(U).
We construct a new adapted framing {ẽ1, ẽ2, e3} on U as follows. The vector

field ẽ1 is the unit-normal vector field to the level sets Σr lying on the same side
of these level sets as ē1. The orientation of e⊥3 then determines the vector field ẽ2
which is necessarily tangent to the level sets Σr. Using that each Σr is a surface,

(5.3) 〈[ẽ2, e3], ẽ1〉 = 0.

For each p ∈ U there is a unique angle θ(p) ∈ (−π2 ,
π
2 ), depending smoothly

on p ∈ U , such that Tθ(p) ∈ SO(2) rotates the subframing {ē1, ē2} of e⊥3 to the

subframing {ẽ1, ẽ2}. The matrix Ã is given by (2.3):

Ã = TAT−1 =

(
µ cos θ sin θ −µ sin2 θ
µ cos2 θ −µ cos θ sin θ

)
In particular ã21 = µ cos2 θ and by (2.4) c̃ = e3(θ). Then using (5.3)

(5.4) µ cos2 θ = ã21 = 〈∇ẽ2e3, ẽ1〉 = 〈∇e3 ẽ2, ẽ1〉 = −c̃ = −e3(θ).

Let γ be an e3-geodesic lying in U . We have along γ:

(5.5) −µ =
e3(θ)

cos2 θ
=

θ′

cos2 θ
,
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Integrating along γ from 0 to t and recalling that µ is a non-zero constant along γ
we have:

−µt =

∫ t

0

θ′

cos2 θ
= tan θ(t)− tan θ(0).

Hence,

θ(t) = tan−1(tan θ(0)− µt).
Theorem 5.2 and Poincare recurrence imply that for almost every x ∈ D, there

exists a sequence of times ti → ∞ such that γx(ti) ∈ D. By the last equation,
θ(γx(ti)) → ±π2 . However, by compactness of D, θ is bounded away from ±π2 on
D, a contradiction.

�

Lemma 5.5. For a global adapted framing {ē1, ē2, e3} of C̄ with respect to which
A has form (5.2), f ≡ g ≡ 0.

Proof. In this framing, a11 = a22 = a12 = 0 and µ = a21 is a non-zero constant.
Therefore, (2.9) and (2.10) reduce to µf = 0 and µg = 0. The result follows. �

Corollary 5.6. P1 = ∅ and hence P = P2

Proof. If P1 is non-empty, then we may choose a component C ⊂ P1 as above. In
an adapted framing of C̄ which puts A in the form (5.2) we have f = g = c = 0 so
that by (2.6) λ = detA = 0 on C̄. Therefore, λ = 0 on C, a contradiction. �

We conclude with the proof Theorem 1.3 from the introduction.

Proof of Theorem 1.3. Let P denote the set of non-isotropic points. By standard
proofs of de Rham’s decomposition theorem, it suffices to prove that the line field
on P spanned by e3 is holonomy invariant.

By Corollary 5.6, P = P2. By Lemma 2.7 and Theorem 5.2, the matrix A is the
zero matrix. Consequently, ∇(·)e3 vanishes on e⊥3 . As e3 is also geodesic, ∇(·)e3
vanishes on all of TP as required. �

In Theorem 1.3, the local product structure in the subset of non-isotropic points

need not arise from a global product structure on the universal covering M̃ . This
is illustrated by examples of non-positively curved graph three-manifolds which
have cvc(0) and irreducible universal covering. Such examples play a similar role in
[GuZh] where non-positively curved n-manifolds with bounded sectional curvatures
and Ricci rank r < n are shown to have a local product decomposition on the open
subset of Ricci rank r points. In contrast, we do not know examples of cvc(0)
three-manifolds of non-negative curvature with an irreducible universal covering.
By the Cheeger-Gromoll splitting theorem, this reduces to the question of whether
the three-sphere admits a cvc(0) metric of non-negative curvature, a problem that
we leave open.
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