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My research focuses on problems in smooth 4-dimensional topology. The primary goal of which is
to understand smooth structures on 4-dimensional topological manifolds with and without bound-
ary. This dimension is particularly interesting because it is the only dimension admitting infinitely
many smoothings of the same topological manifold. Furthermore, four is “small enough” that I can
visualize the spaces in question combinatorially.

The primary tool that I use to understand and distinguish, or identify, such manifolds is 4-
dimensional handlebody theory. Any smooth n-manifold can be cut into simple pieces, each dif-
feomorphic to an n-dimensional ball, Bn = {x ∈ Rn : |x| ≤ 1}, glued together along portions
of their sphere boundaries. Each ball is known as a handle and the way in which these handles
are attached to one another encodes all of the complexities of the given manifold. A collection of
handles, together with the necessary attaching data, is known as a handle decomposition for the
manifold. Unfortunately, such handle decompositions are far from unique. Therefore given two
decompositions, one fundamental problem is how to determine when they specify the same smooth
n-manifold.

To aid in answering this question, I use techniques arising from differential geometry. Since
we are dealing with smooth manifolds, geometric structures are available to further refine our
understanding. Answers to questions like “is the given manifold a complex surface?” or, “can it
be imparted with a symplectic structure?” provide considerable insight.

Some of these structures can actually be encoded combinatorially using handle theory. Eliashberg
and Gompf [Gom98] show us how to see when a 4-manifold with boundary, presented as a handle
decomposition, can be viewed as a Stein domain. This means that the 4-manifold in question can
be cut from a holomorphic embedding of an open manifold in CN for N large. Manifolds that
admit Stein structures are of particular interest because they can always be placed inside smooth
4-manifolds without boundary with very rigid properties [LM97, AO02]. In fact, such domains
adhere to strict requirements about embedded surfaces within them. Finding smooth surfaces
violating these requirements then precludes the existence of such a Stein structure - which, in turn,
obstructs the existence of a diffeomorphism to any other smoothing admitting such a structure (see
for example [AM97]).

In particular cases, such geometric information greatly curtails the number of smooth manifolds
with given properties. For instance, the diffeomorphism types of 4-manifolds admitting symplectic
fillings of lens spaces (certain quotients of the 3-sphere) equipped with specific contact structures are
completely enumerated by Lisca [Lis08]. Therefore, if a given 4-manifold with lens space boundary
fills the “standard” contact structure on the lens space, then one only has to look to Lisca’s list
to determine the manifold in question - a much simpler problem. Using this approach, I prove
the following theorem relating two families of rational balls. Each family is defined by a handle
decomposition. The first, defined by Yamada [Yam07] and denoted by Am,n, and the second,
constructed much earlier, by Casson and Harer [CH81] and denoted by Bp,q.

Theorem 1 ([Wil14]). For each pair of relatively prime positive integers, (m,n), Am,n carries a

Stein structure, J̃m,n, filling a contact structure contactomorphic to the standard contact structure
ξ̄st on the lens space ∂Am,n. In particular, each Am,n ≈ Bp,q if and only if ∂Am,n ≈ ∂Bp,q.
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This theorem is an example of how the differential geometry of a space can be used to determine
that space. That said, I do not have to appeal to Lisca’s classification result. In fact, by using
surgery descriptions of the lens space boundaries to define explicit maps, I prove directly that the
two families are diffeomorphic.

Theorem 2 ([Wil14]). Let (m,n) = A(p − q, q) for some p > q > 0 relatively prime. Then there
exists a diffeomorphism f : ∂Bp,q → ∂Am,n such that f carries the belt sphere, µ1, of the single
2-handle in Bp,q to a knot in ∂Am,n bounding a disk in Am,n (see Figure 2). Moreover, carving
Am,n along f(µ1) gives S1 ×B3.

Corollary 3 ([Wil14]). f extends to a diffeomorphism f̃ : Bp,q → Am,n.

1. Handle Decompositions of Certain Rational Balls

A 4-manifold X is a rational ball if its singular homology groups computed with Q-coefficients
agree with those of the 4-ball:

H̃i(X;Q) = H̃i(B
4;Q) = 0.

A straightforward way to construct rational balls is to consider Mazur-type manifolds. X is Mazur-
type if X admits a handle decomposition consisting of a single 0-handle, a single 1-handle and a
single 2-handle. Provided the 2-handle geometrically links with the 1-handle, the resulting 4-
manifold will necessarily be a rational ball regardless of the framing of the 2-handle. Rational balls
always have rational sphere boundaries. When a rational sphere is known to bound more than one
4-manifold, one can interchange these two spaces, and investigate the result.

Fintushel and Stern and later Park [FS97, Par97] define a smooth operation, the rational blow-
down, on 4-manifolds containing certain configurations of spheres by removing a neighborhood of
these spheres and replacing them by a rational ball with the same boundary, a lens space. In
the presence of a symplectic structure, and a symplectic configuration of spheres, both operations
can be performed symplectically [Sym98, Sym01]. Under mild assumptions (see [FS97], [Par97]
for details), nontrivial solutions to the Seiberg-Witten equations on the original 4-manifold induce
nontrivial solutions on the surgered manifold. With this fact in place, exotic 4-manifolds can be
constructed (see for instance [SS05]). An understanding of the rational blow-down at the level of
handlebodies is important to facilitate work with these examples concretely, as well as to allow
handle constructions of new examples.

The basis of both of these operations relies on a construction of Casson and Harer [CH81]. They
prove that the lens space L(p2, pq−1) bounds a Mazur-type rational 4-ball Bp,q. Their construction
relies on the fact that each lens space L(p, q) is a 2-fold cover of S3 branched over a 2-bridge knot
(or link) constructed from the continued fraction expansion of the fraction −p/q. In the case of
L(p2, pq−1), they show that the 2-bridge knot associated to −p2/(pq−1) is smoothly slice. Meaning
that there is a proper embedding of the 2-disk in B4 whose boundary is the aforementioned 2-bridge
knot in S3. Then, Bp,q is taken to be the 2-fold cover of B4 branched over the embedded disk. The
authors go on to show that such a cover can be realized as a Mazur-type manifold.

The continued fraction expansion also gives rise to another 4-manifold, Cp,q, bounding L(p2, pq−
1) - namely a plumbing of disk-bundles over the 2-sphere whose Euler classes are chosen according
to the continued fraction expansion. If Cp,q ⊂ X4, then the rational blow-down of X along Cp,q

is given by removing Cp,q from X and gluing back Bp,q. The handle description of Cp,q is fully
understood. However, this leads to a natural question. What is a handle description for Bp,q?
More broadly,

Question 4. Are Mazur-type rational balls bounding L(p2, pq − 1) unique up to diffeomoprhism
type?

One possible approach to answering this question (in the negative) is to find knots, K ⊂ S1×S2,
that admit integer surgeries giving the lens space L(p2, pq−1). Any such knot immediately gives rise
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to a Mazur-type rational ball bounding L(p2, pq−1) since we can attach a single 2-handle along K,
viewed as being embedded on the boundary of S1×B3 with framing equal to the surgery coefficient
realizing the lens space. Here we are using that S1×B3 is the result of attaching a 1-handle to a 0-
handle. By assumption, manifolds constructed in this way will have the appropriate boundary and,
by construction, they will be Mazur-type rational balls. Once one has such examples, there is still
the difficult task of determining whether they represent rational balls which are not diffeomorphic
to the examples constructed by Casson and Harer.

There are two known families of such framed knots in S1 × S2 each giving rise to rational balls
bounding lens spaces. The first family, investigated by Lekili-Maydanskiy in [LM12] is known to
give rise to rational balls diffeomorphic to Bp,q. A proof of this can be found in [LM12]. See the
lefthand 4-manifold in Figure 2 for the handle decomposition (and thus framed knot in S1 × S2)
giving Bp,q. Yamada finds another family of knots in S1×S2 yielding lens space surgeries [Yam07].
The resulting rational balls, known as Am,n, also bound L(p2, pq − 1) when m and n are chosen
appropriately. In fact, Yamada defines a symmetric, involutive function A on the set of pairs of
relatively prime positive integers so that if A(p − q, q) = (m,n) then ∂Am,n ≈ ∂Bp,q. See the
righthand 4-manifold in Figure 2 for the handle decomposition (and thus framed knot in S1 × S2)
giving Am,n.

Given these two families of rational balls bounding lens spaces, a natural question arises (posed
in [KY14]).

Question 5. Are Bp,q and Am,n diffeomorphic?

Or, is the answer to Question 4 “no”? A major part of my work on these rational balls relates
to answering Question 5. In particular, I show that these two families do coincide.

I have two distinct approaches that allow me to conclude this fact. Each relies on fundamentally
different techniques to arrive at the same conclusion. The first method is to use the approach that
Lekili and Maydanskiy employ to prove that the 4-manifold on the lefthand side of Figure 2 is,
in fact, giving Bp,q. Therein, they use that the handlebody in question admits a Stein structure
filling the universally tight contact structure, ξ̄st, on L(p2, pq − 1). This is enough to conclude the
result since Lisca proves [Lis08] that Bp,q is the only diffeomorphism type of symplectic filling of
(L(p2, pq−1), ξ̄st) with b2 = 0. I show that each Am,n also admits such a Stein structure (Theorem
1) specified by Figure 1.

Figure 1. (Am,n, J̃m,n)

This result relies on the work of Eliashberg and Gompf outlined in [Gom98] showing that the
unique Stein structure on S1×B3 extends across a 2-handle if and only if that 2-handle is attached



4 LUKE WILLIAMS

along a Legendrian knot with Seifert framing (the framing determined by taking a push-off in the
direction of an oriented surface bounding the attaching circle) one less than the contact framing
(the framing determined by taking a push-off of the attaching circle which is transverse to the

contact planes). Figure 1 specifies this Stein structure, (Am,n, J̃m,n), where I am assuming that
m < n and that n = mσ0 + ρ1. It is immediate that this determines a Stein domain. What is not
immediate is that this handle decomposition still gives Am,n - which it does.

I also construct a diffeomrphism between Bp,q and Am,n much more directly. To accomplish
this, I make use of the method of “carving” introduced by Akbulut in [Akb77] (see also [Akb14]).
This approach relies on building boundary diffeomorphisms which carry the belt spheres of each
2-handle in the domain to slice knots in the target. Given such boundary maps, one can attempt
to extend them into the interior of the 4-manifolds in question (i.e. across the co-cores of the
2-handles in the domain). This is successful provided that the boundary diffeomorphism preserves
the 0-framings on the belt sphere and the image of the belt sphere induced by the co-core and slice
disk respectively. In the case at hand, the existence of such maps allows me to reduce the extension
problem from extending a self map of a lens space across a rational ball to a problem of extending
a self map on S1 × S2 across S1 ×B3 - a problem which is fully understood [Glu62]. To that end,
I prove Theorem 2 which produces a map f : ∂Bp,q → ∂Am,n as in Figure 2. The definition of f is

Figure 2. The spaces Bp,q and Am,n.

entirely constructive using explicit handle moves and surgeries [Kir78, FR79]. Furthermore, there is
enough freedom in the definition of f so that I can arrange it to be a contactomorphism between the
contact structure, ξJp,q , induced by the Stein structure (Bp,q, Jp,q) on ∂Bp,q and ξJ̃m,n

induced by

(Am,n, J̃m,n) on ∂Am,n. To verify this, I show that, for the given f , ξJp,q and f∗(ξJ̃m,n
) are homotopic

as 2-plane fields in ∂Bp,q. [Gom98] provides a complete set of invariants of homotopy classes of
2-plane fields on 3-manifolds as well as the combinatoric means to compute them. [Hon00, Gir00]
show that homotopic tight contact structures on lens spaces are isotopic - ensuring that such an f
is a contactomorphism.

2. Further Projects

Where my research will go from here splits into two categories. First, there are numerous
questions left unanswered from investigating the aforementioned rational balls. Second, there are
projects that I’m interested in that will require some of the same tools and techniques but are
otherwise unrelated to the project outlined above.

Some of the unanswered questions, resulting from knowing that the rational balls Bp,q and Am,n

are diffeomorphic whenever their boundaries coincide, can be summarized as follows: Both the
method employed to prove Theorem 2 and the method used to prove Corollary 3 give indirect
routes to the diffeomorphisms in question. As such, I am left with the following still unanswered:

Question 6. What are the 4-dimensional handle-moves associated with the diffeomorphism be-
tween Bp,q and Am,n guaranteed in Theorem 1 and Corollary 3?
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Such a description is within reach. In fact, given that the boundary diffeomorphism f can be
extended through carving, I can use the carving disks as a route to modify the definition of f to
give the extension directly. [Akb93] uses this technique successfully to explain the diffeomorphisms
first investigated in [Akb77] as well as to generalize the results therein. Theorem 2 is a perfect
candidate for this approach.

The answer to Question 6 will also provide a method to explore other families of knots in S1×S2

admitting integral surgeries giving L(p2, pq − 1). Moreover, it could also shed light on the much
more subtle question:

Question 7. Are the Stein domains (Bp,q, Jp,q) and (Am,n, J̃m,n) equivalent?

In [LM12], it is shown that lifting (Bp,q, Jp,q) and (Am,n, J̃m,n) to their respective p-fold covers
gives rise to equivalent Stein Domains upstairs. That said, it is unknown whether Bp,q, itself,

admits “exotic” Stein structures. In light of Theorem 1, (Am,n, J̃m,n) is a candidate for such a
structure.

My research interests extend far beyond questions involving the aforementioned rational balls.
There are other projects I am interested in pursuing which my current skill set will aid in answering.
One such project has to do with knot surgery and corks. It is known that any pair of homeomor-
phic non-diffeomorphic closed, simply connected, 4-manifolds are related by a “cork-twist.” That
is, the diffeomorphism type of one manifold can be changed to the other by locating a contractible
manifold, known as a cork, removing it and regluing it by an involution on the boundary which
extends as a homeomorphism but not as a diffeomorphism. The first such example was investi-
gated in [Akb91]. General existence proofs can be found in [CFHS96, Kir96, Mat96] and further
investigation at the handle level in [AY08]. Therefore, any construction producing homeomorphic
non-diffeomorphic closed, simply connected 4-manifolds necessarily arises from a cork twist.

What is often not clear from such examples is how to find that cork. One method to produce
such pairs of homeomorphic manifolds is Fintushel and Stern’s knot surgery [FS98] whereby a
neighborhood of a torus (T 2×D2) is removed from a closed 4-manifold and replaced by a homology
T 2×D2 built from a knot complement in S3 crossed with a circle. [Akb99] gives a handle description
of this process. Even though we know how to perform knot surgery at the handle level, the following
remains:

Question 8. Where is the cork in the handle description of knot surgery?

My understanding of handle theory, coupled with the modern techniques I used with success
in previous projects, will be invaluable for tackling this question. Initially, I will consider specific
cases of knots and closed 4-manifolds. Knowing answers in certain examples will shed considerable
light on the knot surgery process. Ultimately, these findings should aid in giving a more complete
answer to question 8.
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