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ABSTRACT

General (e.g. under and over-determined) systems of polynomially nonlinear par-

tial differential equations (pde) arise frequently in diverse applications. Analyzing

such systems requires differentiations and eliminations to detect and include all their

integrability conditions. Existing symbolic differential elimination algorithms for this

purpose can be prohibitively expensive and only apply to exact systems of pde and

do not stably apply to the approximate systems occurring in applications.

The main contributions of this Thesis are to provide the first practical and sta-

ble methods to address the above problems for approximate pde; and to establish

mathematical foundations for this area. These contributions build on a proposal by

Reid et al, to extend tools from Numerical Algebraic Geometry to general systems

of pde in the framework of the geometric theory of pde (Jet Geometry).

Differentiating systems yields pde systems that are always linear in their highest

derivatives. Two methods are given to exploit this linearity. One is a hybrid method

that applies to exact input systems. The other applies to approximate systems. For a

class of pde appearing in applications, we give an efficient method that only requires

differentiations with respect to one independent variable.

As in Numerical Algebraic Geometry, in Numerical Jet Geometry, the components

of pde are geometrically represented by certain approximate witness points, cut out

by intersection of random linear spaces with the components. Such witness points can

be efficiently and stably computed by numerical homotopy continuation methods.

Keywords: Jet Geometry; Involution; Formal Integrability; Cartan Kuranishi

Algorithm; Numerical Algebraic Geometry; Homotopy Continuation; Approximate

Triangular Decomposition; Polynomial Matrix; Riquier Bases.
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1

Chapter 1

Introduction

The mathematical theory of differential equations has developed together with the
sciences where the equations originate and where the results find applications. Di-
verse scientific fields often give rise to initial and boundary value problems for the
same differential equations. Applications in modeling and geometry have led to the
need to consider general approximate systems of pde. Any method for such general
systems must determine the obstructions to their solvability in the form of integra-
bility conditions by differentiating (prolonging) the systems. Although vital, existing
prolongation methods are prohibitively expensive and numerically unstable.

A central task of this Thesis is to provide numerically stable and practical meth-
ods to study polynomially nonlinear partial differential equations which are unneces-
sary to be square systems (such systems are call general pde systems in this Thesis).
On the one hand geometric approaches giving an intrinsic and stable way to view
the systems are difficult to implement on computers. On the other hand algorithms
are closer to algebra, but sometimes we lose geometric insight after a sequence of
algebraic operations. To keep geometric information in the algorithms is the main
philosophy of the Thesis. Another task is to develop efficient approaches, since re-
alistic problems are often large scale and to find all integrability conditions using
full prolongation (differentiation with respect to all independent variables) leads to
impractically huge systems.

The main tools to address these problems in the Thesis are the geometric tech-
niques of the formal theory of pde (which are coordinate independent) and numerical
algebraic geometry, which works directly on geometric objects and is based on ho-
motopy continuation techniques.

In this chapter we will give a brief introduction to geometric techniques and the
concept of involution and show that it is an important and useful concept for pde.
In the central part of this Thesis – the author’s series of publications [39, 62, 63]
– completion to involution is our main goal. In these papers, we mainly focus on
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polynomially nonlinear pde and completion of such systems to equivalent involutive
forms for which power series solutions may be constructed order by order. So in
Jet Space, we can consider such differential systems as polynomial systems. This
is the key observation enabling the introduction of algebraic geometry methods and
computer algebra tools into the study of differential equations.

One of the most important problems in algebraic geometry is to solve polynomial
systems. Recently a new area called “Numerical Algebraic Geometry”, developed
by Sommese, Wampler, and Verschelde [51, 47, 48, 49, 50, 52], provides numerical
methods to compute approximation of all isolated (complex) roots of such systems.
For positive dimensional systems, they reduce such systems to zero dimensional ones
by slicing with random linear equations. In particular the positive dimensional com-
ponents are represented by using witness points (the solutions of the reduced zero
dimensional systems) together with those linear equations. Necessarily, in this chap-
ter we will discuss some important tools and theoretical results in this new area
which are crucial for this Thesis.

1.1 Background and Motivation

In this section we discuss the need to study general systems of the type considered
in this Thesis.

After the development of calculus, initially only scalar linear pde of order 1
or 2 were studied. Motivated by applications, existence and uniqueness results for
solutions of a wide class of nonlinear determined systems (i.e. # equations = #
unknowns) were given as in Cauchy-Kovalevskaya Theory in the 1800’s. Symmetry
and equivalence applications in the classical work of Lie and Cartan led to the con-
sideration of over-determined systems of pde (see Olver’s book [33] for a historical
discussion). Over the last few decades applications in control theory [35] have led to
the consideration of under-determined pde.

Furthermore, in recent decades it was discovered that many applications lead
to general systems of differential and algebraic equations. Indeed the applications
are so wide-spread and the systems describing them are so complicated that gen-
eral computer modeling environments have been implemented (e.g. Dynaflex [9]) for
automatically producing the systems.

We now discuss existing approaches for general systems of pde.
Ritt (1950) and Kolchin (1973) started a new field, called Differential Algebra,

which provides fundamental algebraic theory for general pde. Riquier (1910) initi-
ated the analytic study and Cartan (1904) introduced geometrical methods for the
general systems of pde expressed as exterior differential systems. All these theories
constitute an area called the formal theory of pde.

However these different approaches share a common feature: for a system of pde,
to apply the above approaches, we need to differentiate the system with respect to
its independent variables to cover all the system’s integrability conditions. In a
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subsequent elimination steps such integrability conditions need to be simplified to
determine if they are satisfied identically, or need to be appended as genuinely new
conditions. This process is called differential elimination. Unfortunately, the number
of new equations after differentiation can grow rapidly, so a computer implementable
efficient differential elimination method is vital.

Much progress has been made in exact differential elimination methods, theory
and algorithms for nonlinear systems of pde. For example see Boulier et al. [3], Chen
and Gao [5], Hubert [17], Mansfield [28], Seiler [45], Reid, Rust et al. [41, 44, 60, 61],
Wu [65]. Such methods enable the identification of all the hidden integrability condi-
tions (or equivalently constraints) for a system of pde and the automatic statement of
an existence and uniqueness theorem for its solutions. They give a geometrical view
of its solution space [41, 45] and enable the determination of its symmetry properties.
They can ease the difficulty of numerical solution of Differential Algebraic Equations
[55] and enable the computation of initial data and associated formal power series
solutions in the neighborhood of a point. Algorithmic membership tests (specifically
in the radical of a differential ideal) can be given [3, 17].

Despite the considerable progresses above, there are two significant obstacles
to such differential elimination techniques. Their inherent complexity puts many
problems in applications out of reach. Moreover, the exact methods don’t apply
stably to systems with approximate coefficients.

This Thesis develops new stable and efficient symbolic-numeric techniques for
general systems of pde in the framework of geometric theory which will be introduced
in the next section.

1.2 Formal Theory of PDE

In keeping with our emphasis on general systems, consider systems of pde with
independent variables (x1, ..., xn) and dependent variables (u1, ..., um). Let x ∈ X
and (x, u) ∈ E , where X and E are manifolds with dim X = n and dim E = m + n.
Here X is the space of independent variables and E is the space of independent and
dependent variables.

Let π : E → X be a surjective submersion. See [6] for introductory material on
differential geometry. Let F be a field (usually C or R).

Definition 1.2.1. We say that E is a fibred manifold over X with projection π,
if for any point of E there exists a coordinate neighborhood U of this point in E, a
local chart {U , Φ} of E and a local chart {U, φ} of X, with U = π(U), such that the
diagram:

U
π

²²

Φ // Fn × Fm

proj
²²

U
φ

// Fn

(1.2.1)



4

commutes. Here proj is the natural projection onto the first n-coordinates.

We denote a point of E by its local coordinates (x, u), where x = (x1, ..., xn), u =
(u1, ..., um) and denote the projected point in X by (x). The coordinate transfor-
mation of E on Uα ∩ Uβ and the transformation of X on Uα ∩ Uβ have the following
forms respectively:

uk
β = ψk

αβ(xα, uα) (1.2.2)

xi
β = ϕi

αβ(xα) (1.2.3)

When E and X are differentiable manifolds and π is a differentiable map, we call
E a differentiable fibred manifold. In the sequel we assume that all the manifolds
and maps are differentiable and specifically that X is a differentiable, connected,
paracompact manifold. The most important feature of paracompact Hausdorff spaces
is that they admit partitions of unity which enables us to introduce integral on
smooth manifolds.

Definition 1.2.2. A local section of E over an open set U ⊂ X is a map f : U → E,
such that for any x ∈ U ,π ◦ f(x) = x (that is π ◦ f = idU). We call U the domain
of f , denoted by domf . In particular, if domf = X, then f is called a global section
of E over X.

Definition 1.2.3. For any x ∈ X, Ex := π−1(x) is a closed sub-manifold of E called
the fiber over x.

Now let Y be another manifold with dim Y = m.

Definition 1.2.4. A fibred manifold E over X with π : E → X is called a bundle
over X with fiber Y , if for any open covering {Uα} of X, there exist homeomorphisms
Φα : π−1(Uα) → Uα × Y , such that the following diagram is commutative:

π−1(Uα)

π

²²

Φα // Uα × Y
proj

xxrrrrrrrrrrr

Uα

(1.2.4)

It is clear that E =
⋃

α π−1(Uα) and that locally it is homeomorphic to X × Y .
If E = X × Y , it is a bundle over X and it is called a trivial bundle.

Remark 1.2.1. Note that a fibred manifold is not necessary to be a bundle. Let X
be a segment {(x, 0, 0) ∈ R3 : x ∈ [−1, 1]} ( 1 dimensional manifold with boundary)
and E be a sphere x2 + y2 + z2 = 1. And the projection π : E → X sends (x, y, z)
to x. When x 6= 1,−1, the fiber Y is a circle with dimension 1. But when x = 1,
π−1(x) = (1, 0, 0), which is not homeomorphic to a circle.
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1.2.1 Jet Bundles

Let f and g be two sections of a fibred manifold E with π : E → X and let x be a
point in domf ∩ domg.

We define a multi-index α as a n-tuple (α1, α2, ..., αn) with αi ∈ N. The order of
the multi-index α, denoted |α| is given by the sum of the αi.

Definition 1.2.5. For any integer q ≥ 0, we say the sections f and g on X are
q-equivalent at x if f(x) = g(x) and ∂αf(x) = ∂αg(x) for any 1 ≤ |α| ≤ q. The
equivalence class of f is called the q-jet of f at x and is denoted by jq(f)x. We
define the set Jq(E)x to be the set of all the q-jets at x of the sections of E and define
Jq(E) :=

⋃
x∈X Jq(E)x.

The set Jq(E) can be considered as a fibred manifold both over X and E , which
is called the bundle of q-jets over E .

It is well known that the total number of derivatives of order q with n independent
variables xi and m dependent variables uj is m

(
n+q−1

q

)
and dim Jq(E) = n + m

(
n+q

q

)
.

We can introduce jet variables with order q which have one-to-one correspondence
with the derivatives of the dependent variables of order q. The set of all jet variables
is defined to be Ω = {uj

α : α = (α1, · · · , αn) ∈ Nn, j = 1, · · · ,m} where each
member of Ω corresponds to a partial derivative by:

uj
α ↔ (∂xn)αn · · · (∂x1)

α1uj(x1, · · · , xn) . (1.2.5)

For convenience, we use u
q

to denote all the q-th order jet variables.

EXAMPLE 1.2.1. Let n = 2 and m = 1. Label the independent variables x
and y and the dependent variable u. Then the first order jet bundle, J1(E), has
coordinates (x, y, u, ux, uy) and J2(E) has coordinates (x, y, u, ux, uy, uxx, uxy, uyy) and
so on. Here u

0
= u, u

1
= (ux, uy), u

2
= (uxx, uxy, uyy) etc.

Proposition 1.2.1. Let r, s ∈ N and s > 1. If we consider Jr+s(E), Jr(Js(E))
and Jr+1(Js−1(E)) as fibred sub-manifolds of Jr+s

1 (E) :=J1(J1(· · · J1(E)))︸ ︷︷ ︸
r+s times

over X in

a natural way, we have the relation:

Jr+s(E) = Jr(Js(E)) ∩ Jr+1(Js−1(E)). (1.2.6)

See Chapter 1 of reference [34] for the proof of this proposition. The basic
idea is very simple. Suppose there is only dependent variable. If we use a vec-
tor (a1, a2, ..., ar+s) to represent a variable in Jr+s

1 (E), where ai ∈ {1, ...n}. And a
jet variable in Jq(E) corresponds to (a1, a2, ..., aq) with a1 ≤ · · · ≤ aq (because of
symmetry of partial derivatives). So a variable in Jr(Js(E)) corresponds to a vector
(a1, a2, ..., as, as+1, ..., as+r) with a1 ≤ · · · ≤ as and as+1 ≤ · · · ≤ as+r. If this variable
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is also in Jr+1(Js−1(E)) then it must satisfy a1 ≤ · · · ≤ as−1 and as ≤ · · · ≤ as+r

which implies a1 ≤ · · · ≤ as+r. So it is a jet variable in Jr+s(E). Conversely we can
split one ascending sequence into two.

We denote by πq+r
q : Jq+r(E) → Jq(E) the map sending a (q + r)-jet jq+r(f) to

the q-jet jq(f) and we identify J0(E) with E . For notational brevity we will often
omit E from Jq(E), writing Jq.

1.2.2 Differential Functions and Differential Equations

Locally E is homeomorphic to Fn × Fm, so Jq = Jq(Fn,Fm). We say a differential
function on Jq is an analytic, F-valued function with variables {x, u, ..., u

q
}. The set

of all differential functions on Jq is denoted by Aq. For any differential function f ,
we define its differential order to be min{q : f ∈ Aq}, denoted by ord(f). We say
a system of differential functions F has (differential) order q, if max{ord(f) : f ∈
F} = q.

We introduce the Formal Total Derivative operator for each independent variable
xi to act on members of Ω by a unit increment of the i-th index of their vector
subscript: Diu

j
α := uj

α+1i
where α + 1i = (α1, ..., αi + 1, ..., αn).

The action of Di to a differential function is defined to be:

Di =
∂

∂xi

+
∑

uj
α∈Ω

Diu
j
α

∂

∂uj
α

So Di : Aq → Aq+1. It is convenient to extend the multi-index notation for formal
jet variables to formal total derivatives:

Dα := (D1)
α1 · · · (Dn)αn (1.2.7)

Clearly, if f ∈ Aq then Dαf ∈ Aq+|α|. We also introduce another convenient notation:
Drf := {Dαf : |α| = r} and define D0f := f . Naturally, we can apply this notation
to a system F ⊂ Aq by defining DrF := {Drf : f ∈ F}.

Differential equations R of order q are often stated as the kernel of a set of
differential functions in Aq with order q:

Z(R) := {(x, uj
α) ∈ Jq(Fn,Fm) : Rk(x, uj

α) = 0, k = 1, ..., `} (1.2.8)

A solution of R over an open set U ⊂ X are m analytic functions f j(x), j =
1, ..., m, such that for each point x ∈ U , (x, uj

α) ∈ Z(R), where uj
α = Dαf j.

Remark 1.2.2. If we intend to view systems of pde as geometric objects, we also
call a fibred sub-manifold Z(R) of Jq(E) a pde of order q on E. In the view of
geometry, a solution of Z(R) is a local section f of E over an open set U ⊂ X such
that jq(f)x ∈ Z(R), for any x ∈ U .
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1.2.3 Formal Power Series Solutions

An analytic solution of R in a neighborhood of x0 can be written as the power series:

uj = f j(x) =
∞∑

|α|=0

cj
α

α!
(x− x0)α (1.2.9)

The coefficient cj
α is equal to the value of Dαf j at the point x0 corresponding to the

jet variable uj
α. So we can consider the power series of a solution up to order q as a

point in Z(R).
The inverse question is: for each point in Z(R), can we construct a power series

solution at this point? Generally, this is not true.

EXAMPLE 1.2.2. Let us consider a system R, where ` = 2,m = 2, n = 2, q = 1,
given by

ux − v = 0, uy − x = 0 (1.2.10)

At first glance we might expect that all the points in Z(R) are consistent points at
which we can construct power series solutions. However there is a hidden constraint
in J1: Dy(ux − v) −Dx(uy − x) = −vy + 1 = 0. Thus some points in Z(R), which
do not satisfy this hidden constraint, are not consistent.

Thus the construction of a power series solution of a pde system R order by
order can be performed only if R contains all its integrability conditions. The systems
having such properties are called formally integrable systems. To study these systems
we need to introduce two basic operators on Jet Space.

Definition 1.2.6. [Prolongation] Let R be a system of pde with order q. Its r-th
prolongation is defined to be:

R(r) := {R,DR,D2R, ...,DrR} (1.2.11)

Remark 1.2.3. If the equations of R have different differential order, we first need
to prolong each equation up to order q, which is given by:

{DpRk : p = q − ord(Rk), k = 1, ..., `}

Applying (1.2.8) to R(r), we have the zero set of a prolonged differential system.
For example, let R = u2

x + ux − u = 0. Then applying the formal total derivatives
Dx and Dy gives:

Z(R(1)) = {(x, y, u, u
1
, u

2
) ∈ J2 : u2

x+ux−u = 2uxuxx+uxx−ux = 2uxuxy+uxy−uy = 0}

Prolongation lifts the locus of a pde system from lower order Jet Space to higher
order Jet Space. An inverse operation, so-called projection, maps the locus from
higher order Jet Space to lower order Jet Space.
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Definition 1.2.7. [Projection] Given a pde R in Jq+r, the projection of R from Jq+r

to Jq is:

πq+r
q Z(R) := {(x, u, u

1
, . . . , u

q
) ∈ Jq : ∃(x, u, u

1
, ..., u

q
, ..., u

q+r
) ∈ Z(R)}.

This geometric operator cannot be algorithmized directly. But it could be trans-
lated to the analogous algebraic versions. Suppose R is a system in Jq and R(1) is
its prolonged system. Then after we eliminate the (q + 1)-order jet variables in R(1),
we have an algebraic representation for the projection, denoted by αR(1).

It is easy to demonstrate that projecting the prolongation of a differential system
R in Jq may not return the original system but a subset thereof:

πq+r
q Z(R(r)) ⊆ Z(R), for any r ∈ N (1.2.12)

If it is only a proper subset of Z(R), then there are extra constraints, which we
call integrability conditions. They are differential rather than algebraic consequences
of the original system. If for some system we cannot find any new constraints by
differentiation, then naturally we introduce the following concept:

Definition 1.2.8. [Formally Integrable System] A differential system R with order
q is formally integrable, if πq+r+1

q+r Z(R(r+1)) = Z(R(r)) for any r ∈ N.

This definition requires that for any r, the projections and prolongations will not
produce any new constraints. However verifying formal integrability by direct use of
Definition 1.2.8 requires checking infinitely many conditions. For finite implementa-
tion, the geometric approach needs to be complemented by some algebraic tools. To
produce a finite test, we now briefly describe involution and Spencer Cohomology
theory.

1.2.4 Involution

We now turn to the consideration of a subset of formally integrable systems known
as involutive systems. Two facts make this class of systems interesting and useful.
Firstly, it is possible to determine whether a given system is involutive using only
a finite number of operations. Secondly, for any system it is possible to produce an
involutive form with the same solution space using only a finite number of operations.

Now let us consider a single prolongation of a system of pde R with order q.
First we study the local structure of Z(R(1)) by looking at the tangent space at a
point p ∈ Z(R(1)). The local dimension of Z(R(1)) is given by the dimension of the
tangent space, which is the null-space of the Jacobian matrix at p. This Jacobian
matrix can be divided into four blocks:
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∂(DR)
∂ u

q+1

∂(DR)
∂u

s

0 ∂R
∂u

s


 , (1.2.13)

where 0 ≤ s ≤ q.

Definition 1.2.9. [Symbol] Consider a pde system R of order q. The matrix(
∂(DR)
∂ u

q+1

)
is called the symbol matrix of R(1), and is denoted by S(1). The kernel

of the symbol matrix is called the symbol of R(1), and is denoted by gq+1.

Similarly we define the symbol matrix of R to be

(
∂R
∂u

q

)
and prolonged symbols

are defined similarly. To avoid introducing laborious notation, we denote the symbol
and the symbol matrix of R by gq and S respectively.

The Symbol can be regarded as a way to test for the existence of integrability
conditions. We first introduce Cartan’s test, a straightforward method, for checking
involutivity of the symbol. This method depends on local coordinates.

The multi-index α = (α1, ..., αn) ∈ Nn is said to be of class k if the first non-zero
entry of α is αk. We know each column of the symbol matrix S corresponds to a jet
variable uj

α. So we order the columns of with higher class so that they appear to the
left of those with lower class and transform S to row echelon form, then define

βk := number of rows of class k (1.2.14)

appearing in the echelon form.

These numbers depend on the local coordinates. But we can choose a coordinate
system in which the sums

∑n
i=k βi, k = n, .., 1 take their maximum values succes-

sively. Such a coordinate system is called δ-regular (almost all coordinate systems
are δ-regular).

Now we apply prolongation only to the pivot equations. If the pivot is class
k, then we apply partial differentiation with respect to x1, ..., xk. Then the new
equations denoted by R′ are a subset of DR. And the rank of symbol matrix of
R′ is

∑n
k=1 kβk. Since the prolongation of the whole system should contain more

equations than R′, in general we have rankS(1) ≥ ∑n
k=1 kβk.

If

rankS(1) =
n∑

k=1

kβk, (1.2.15)

then the coordinate system is δ-regular and S is said to be involutive [34, 45]. The
test (1.2.15) is called the Cartan test. Obviously, this definition depends on local
coordinates. Fortunately a generic set of coordinates is δ-regular, so the Cartan test



10

can be applied after (potentially very expensive) generic linear change of coordinates
[34].

1.2.5 Spencer Cohomology

The famous Cartan test introduced above for involution of the Symbol requires
checking a condition involving some integers βk, which unfortunately are coordinate-
dependent. In the 1960s, Spencer introduced an intrinsic definition of involutivity of
the symbol. His definition was expressed in terms of the exactness of the so-called δ
operator on certain sequences involving the symbols of the system, which employed
concepts from differential geometry and homological algebra. Later, the theory was
thoroughly studied by Spencer [53], Quillen [37] and Goldschmidt [11]. This defini-
tion is very formal but it is convenient from a theoretical point of view because of
its coordinate-independence.

For a base space X with dimension n, we adopt the standard notations of T ∗

for the cotangent bundle over X. And we denote E (with dim E = m + n) a fibred
bundle over X, V(E) for the vertical jet bundle (see [34] for the definition), SpT ∗ (with
dimSpT ∗ =

(
n+p−1

p

)
) and ΛrT ∗ (with dimΛrT ∗ =

(
n
r

)
) for the bundle of symmetric

tensors and skew-symmetric tensors over X respectively.

A basis of SpT ∗ can be represented by vα, where α = (α1, ..., αn) ∈ Nn, and
|α| = ∑

i αi = p (corresponding to all the monomials with degree p). For an integer
i with 1 ≤ i ≤ n, we define α ± 1i := (α1, ..., αi ± 1, ..., αn). When p < 0, we define
SpT ∗ := 0.

The basis elements of ΛrT ∗ are denoted by dxµ = dxµ1 ∧ · · · ∧ dxµr , where µ is a
sequence of integers 1 ≤ µ1 < · · · < µr ≤ n with |µ| = r (the number of elements of
µ is r). When r > n, ΛrT ∗ = 0.

Consider a pde system R of order q. Intrinsically, the symbol gp (p < q) is a
family of vector spaces in SpT ∗ ⊗ V(E) defined by:

gp :=

{
0, if p < 0;

SpT ∗ ⊗ V(E), if 0 ≤ p < q.
(1.2.16)

In local coordinates, the rth prolongation of the symbol equations is given as





∑

1≤j≤m,|α|=q

∂Rk

∂uj
α

vj
α+β : |β| = r, k = 1, ..., `



 . (1.2.17)

The rth prolonged symbol gq+r is the kernel of these equations.

Definition 1.2.10. [δ-operator] With |µ| = r and |α| = p fixed, the δ-operator is a
linear map: ΛrT ∗⊗Sp+1T ∗ → Λr+1T ∗⊗SpT ∗. Let ω = ωµ,αdxµ⊗vα ∈ ΛrT ∗⊗Sp+1T ∗
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then
δ(ω) :=

∑
i,αi>0

ωµ,α(dxµ ∧ dxi)⊗ vα−1i
(1.2.18)

Proposition 1.2.2. For any integer k, the δ sequence

0 // SpT ∗ // ΛT ∗ ⊗ Sp−1T ∗ // · · · // ΛnT ∗ ⊗ Sp−nT ∗ // 0 (1.2.19)

is exact.

Since the vector bundle V(E) is flat, consequently the tensor product retains the
exactness and similarly we obtain the exact sequence

0 // SpT ∗ ⊗ V(E) // ΛT ∗ ⊗ Sp−1T ∗ ⊗ V(E) //

· · · // Λn−1T ∗ ⊗ Sp−n+1T ∗ ⊗ V(E) // ΛnT ∗ ⊗ Sp−nT ∗ ⊗ V(E) // 0

Now by [53, 34] we restrict δ to the space gq+r ⊂ Sq+rT ∗ ⊗ V(E) obtaining

δ : ΛpT ∗ ⊗ gq+r → Λp+1T ∗ ⊗ gq+r−1 (1.2.20)

and a complex

0 // gq+r // ΛT ∗ ⊗ gq+r−1
// · · · // ΛnT ∗ ⊗ gq+r−n

// 0 . (1.2.21)

In general this complex may not be exact. The cohomology Hp
q+r−p which is the

quotient space kerδ/imδ at ΛpT ∗ ⊗ gq+r−p, is called Spencer Cohomology.

Definition 1.2.11. [Involutive Symbol] We say the symbol gq is involutive if Hp
q+r−p =

0 for all 0 ≤ p ≤ n and all r ≥ p.

Remark 1.2.4. Spencer Cohomology groups are dual to the homology groups of a
Koszul complex [13, 11]. Serre showed that this intrinsic definition is equivalent to
Cartan’s definition in a letter to Guillemin and Sternberg [13]. Following Serre’s
idea, Singer and Sternberg gave a rigorous proof in [46]. Other discussion about
involutivity can be found in Pommaret’s book [34]. Thus the operational and intrinsic
definitions of involutivity agree.

We use an example due to Mansfield [29] to show how to perform the involu-
tivity test by using these two definitions. She also showed the connection between
involutivity and Differential Gröbner Bases in [29].

EXAMPLE 1.2.3. Let R be a pde with one dependent variable and three indepen-
dent variables: {

uyz − uxx = 0
uzz − uxz = 0

(1.2.22)
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The symbol equations are {vyz − vxx = 0, vzz − vxz = 0}, which can be equivalently
expressed as the symbol matrix times a vector of monomial basis. The kernel can be
expressed as the following basis

g2 = 〈vyz + vxx, vzz + vxz, vxy, vyy〉 (1.2.23)

Similarly, we compute a basis of g3

g3 = 〈vyyz + vxxy, vxyy, vyyy, vxxx + vxyz + vxxz + vyzz + vxzz + vzzz〉 (1.2.24)

Using the above basis and ST ∗ = {vx, vy, vz}, ΛT ∗ = {dx, dy, dz}, Λ2T ∗ = {dx ∧
dy, dx ∧ dz, dy ∧ dz} and Λ3T ∗ = {dx ∧ dy ∧ dz}, we compute the cohomology at
Λ2T ∗ ⊗ g2:

ΛT ∗ ⊗ g3
// Λ2T ∗ ⊗ g2

// Λ3T ∗ ⊗ ST ∗ // 0 (1.2.25)

Computing the image of δ(ΛT ∗⊗g3) yields an 8-dimensional space. On the other
hand, the dimension of Λ3T ∗⊗ST ∗ is 3, and the dimension of Λ2T ∗⊗g2 is 12. Since
δ(Λ2T ∗ ⊗ g2) is surjective, the kernel has dimension 9. Hence H2

2+2−2 6= 0 and g2 is
not involutive.

Now let us apply Cartan’s test (1.2.15) to this example: β3 = 1, β2 = 1, β1 = 0,
so

∑3
k=1 kβk = 5, which is less than 6, the rank of S(1). So these two results are

consistent.

Apparently Cartan’s test is more convenient. However, if the coordinates of a
given system are not δ-regular, then Cartan’s test may fail.

EXAMPLE 1.2.4. Let us consider a single involutive pde uxy = 0 with one depen-
dent variable and two independent variables. It is easy to check that β1 = 1, β2 = 0
and

∑2
k=1 kβk = 1 but rankS(1) = 2, so Cartan’s test fails. The reader can check that

after a generic linear change of coordinates: (x, y) 7→ (ax + by, cx + dy), it succeeds.
Applying the Spencer Cohomology test, we have dim g2+r = 2, for r ≥ 0. The

complex:

0 // g2+r // ΛT ∗ ⊗ g2+r−1
// Λ2T ∗ ⊗ g2+r−2

// 0 (1.2.26)

is exact, since dim(g2+r)+dim(Λ2T ∗⊗g2+r−2) = 2+2 = dim(ΛT ∗⊗g2+r−1) = 2×2.
This indicates that g2 is involutive.

Remark 1.2.5. We briefly discuss a combination of these two methods for testing
of involutivity of the symbol. We know Cartan’s test gives a sufficient condition. On
the other hand it is impossible to check the exactness of all δ sequences in Spencer’s
Test. But the exactness of each δ sequence is a necessary condition.

We first use Cartan’s test. If it fails then there are two possibilities: either the
symbol is not involutive, or the symbol is involutive but the coordinates are not δ-
regular. Then we choose one δ sequence from (1.2.21) and check its exactness. If
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it is not exact, then we know the symbol is not involutive, and further prolongations
are needed. Otherwise, a random change of coordinates can be launched to restore
δ-regularity.

Theorem 1.2.1. [δ-Poincare Lemma] Let gq be the symbol of a q-th order system R
in Jq(E) with m dependent variables and n independent variables. Then there exists
an integer q′ = θ(m,n, q) such that gq′ is involutive.

Remark 1.2.6. A bound can be calculated by the following recursive formula:





θ(m, 0, 1) = 0;
θ(m,n, 1) = m · (a+n

n−1

)
+ a + 1, where a = θ(m,n− 1, 1);

θ(m,n, q) = θ(m, b, 1), where b =
∑q

i=0

(
n+i−1
n−1

) ·m.
(1.2.27)

For a proof see Sweeney [54]. Although this bound is impractically large, it states
that one can produce an involutive symbol for any pde after finitely many steps of
prolongations.

Definition 1.2.12. [Involutive System] A differential system R is said to be involu-
tive, if it is formally integrable and its symbol is involutive.

Apparently, “involutivity” is a stronger concept than formal integrability. How-
ever it is easier to test involutivity by using the following criterion.

Theorem 1.2.2. [Criterion for Involution] A differential system R of order q is in
involution if and only if its symbol is involutive and πZ(R(1)) = Z(R).

This criterion was formulated precisely by D. Quillen in his PhD Thesis [37] for
linear systems of pde and H. Goldschmidt [12] extended it to nonlinear pde using
Spencer Cohomology theory.

1.2.6 Cartan Kuranishi Completion

By the Cartan-Kähler theorem [67], involutive systems are locally solvable and allow
an existence and uniqueness theorem. The Cartan-Kuranishi prolongation theorem
states, roughly, that given an exterior differential system after finitely many prolon-
gations, it becomes either involutive or incompatible. The finiteness of the following
famous completion procedure was first conjectured by Cartan, and finally proved by
Kuranishi [22]. See Malgrange’s work [27] for a recent discussion.

Procedure 1.2.1. R = CK(R)
Input R
Repeat

while S is not involutive repeat R := R(1)

while Z(R) 6= πZ(R(1)) repeat R := αR(1)
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end loop
Output R

The first loop is the prolongation stage to make the symbol involutive, and will
be finite by Theorem 1.2.1.

The second loop is the projection stage to check if there are new constraints. At
a point of Z(R), the symbol equations can be considered as A-module, a submodule
of Am, where A is the polynomial ring F[x1, ..., xn] and m is the number of dependent
variables. When we find a new constraint after proper steps of prolongations it will
add a new generator to the (symbol) module. Subsequently the symbol modules
consist of an ascending chain. Because Am is Noetherian, the chain will terminate.
Hence the second loop will stop after finitely many steps.

Combining the two loops together we can complete R to an involutive form in
finitely many steps by Theorem 1.2.2.

1.2.7 Other General Methods for PDE

The spirit of this thesis is to develop the theory and algorithms for Numerical Jet
Geometry in the framework of Cartan’s geometric study of pde. However it is
necessary to give brief introduction to other methods since they are still very useful
for our algorithm in [39] and our theory in [63].

Differential algebra was introduced by Ritt [42] and developed by Kolchin [21],
and is a generalization of classical commutative algebra. After completing the ring
structure with a set of commutative derivations ∆ = {δ1, ..., δn}, we can define dif-
ferential polynomials, ideals, fields, modules and algebras in a straightforward way.
A natural attempt is to develop differential analogues of Buchberger’s algorithm for
systems of polynomially nonlinear pde. Carra-Ferro [4] and Ollivier [32] gave def-
initions of such Differential Gröbner Bases. However these bases could be infinite
(unlike the case for polynomial algebraic equations and linear PDE systems). In her
PhD Thesis, Mansfield [28] gave an algorithm which used pseudo-reduction instead
of reduction to attempt to construct Differential Gröbner Bases. It has proved very
useful in applications [29]. In a breakthrough work by Boulier et. al. [3], they gave
an algorithm which performs binary splitting on the initials and separants and rig-
orously proved that the resulting system of cases gives a representation of the radical
of the differential ideal generated by the system (but not the differential ideal).

Besides the algebraic methods mentioned above, there are some analytic ap-
proaches. For example Rust et al. [43, 44] give analytic differential elimination
methods to complete analytic systems of pde to desired forms. The desired forms
are Riquier Bases and reduced involutive forms, which state the existence and unique-
ness of formal power series solutions. Such methods are more related to our work in
Chapter 2 and 4, so we show some details here.
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First we introduce the concept of ranking, which is vital in all the symbolic dif-
ferential elimination methods. A positive ranking [44] ≺ of all the partial derivatives
Ω is a total ordering on Ω which satisfies:

vα ≺ vβ ⇒ ∂vα

∂xi

≺ ∂vβ

∂xi

; (1.2.28)

vα ≺ ∂vα

∂xi

, (1.2.29)

for any independent variable xi and vα, vβ ∈ Ω.

Let us consider an example with one dependent variable u and two independent
variables x, y. By the positivity of ranking (1.2.29), we have u ≺ ux ≺ uxx ≺ · · · .
If we let ux ≺ uy and use the total degree, then a ranking is determined by the
condition (1.2.28):

u ≺ ux ≺ uy ≺ uxx ≺ uxy ≺ uyy ≺ · · · (1.2.30)

It can be checked that this satisfies all the axioms of rankings. For a theory and
classification of rankings see Rust [44].

Let hdf denote the highest derivative of f in Ω with respect the ranking ≺. We
say that f is leading linear with respect to a ranking ≺ if f has the form f = h·hdf+g,
with hdg ≺ hdf and hdh ≺ hdf . Otherwise we say f is leading nonlinear with
respect to a ranking ≺. In addition, we say that f is ≺-monic with respect to a
ranking ≺ if f is leading linear and h = 1.

The principal derivatives of a finite set M of ≺-monic analytic functions are
defined as

PrinM := {v ∈ Ω|∃f ∈M and α ∈ Nn with v = hdDαf} (1.2.31)

The parametric derivatives ofM are those derivatives that are not principal, denoted
by ParM.

The parametric and principal derivatives enable us to specify initial data, that
will be important in the Existence and Uniqueness Theorem 1.2.3.

We define a specification of initial data for M to be a map

φ : {x} ∪ Par M→ F

For x0 ∈ Fm, we say that φ is a specification at x0 if

φ(x) := (φ(x1), φ(x2), · · · , φ(xm)) = x0.

For an analytic function g on Jet Space, let φ(g) be the function of the principal
derivatives obtained from g by evaluating x and the parametric derivatives using φ:

φ(g) := g(φ(x), (φ(u))u∈ParM).
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Given a ranking ≺ of partial derivatives, Riquier bases are in solved form with
respect to their leading derivatives (a set of ≺-monic analytic functions). They are
determined by successively including integrability conditions and performing elimi-
nations on the resulting systems. The solved form requirement means that in the
exact case they are essentially restricted to pde which are linear in their highest
derivatives.

Definition 1.2.13 (Riquier Basis). M is called a Riquier Basis if for all α, α′ ∈ Nm

and f, f ′ ∈ M with hdDαf = hdDα′f ′, the integrability condition Dαf −Dα′f ′ is
reduced to zero by a sequence of one-step reductions by members of M.

See [43] for the definition of one-step reduction used above. A fundamental
property of Riquier Bases is:

Theorem 1.2.3. [Formal Riquier Existence Theorem] Let M be a Riquier Basis
such that each f ∈ M is polynomial in the principal derivatives. For x0 ∈ Fn, let
φ be a specification of initial data for M at x0 such that φ(f) is well-defined for all
f ∈ M. Then there is formal power series solution u(x) ∈ F[[x − x0]]n to M at x0

such that Dαui(x0) = φ(ui
α) for all ui

α ∈ ParM. Furthermore, every formal power
series solution to M at x0 may be obtained in this way for some φ.

The solved form requirement of Riquier Bases means that they cannot be directly
applied to general nonlinear systems. But we know that any pde is either linear
or nonlinear in its leading derivative with respect to a ranking. Furthermore any
leading nonlinear pde after differentiation with respect to any independent variable
becomes leading linear in its leading derivative. A general algorithm to compute
all the integrability conditions, developed by Reid et. al. [40, 61], called rifsimp,
performs linear eliminations amongst the leading linear pde in the same way as
the standard form algorithm in the case of linear systems. The rifsimp algorithm
terminates when no new equations are generated relative to the given system. We
say an equation is new if it lowers the dimension of the existing system regarded as
a submanifold of its Jet Space.

The output of rifsimp is called reduced involutive form (rif) which is related to
the concept of involution as we introduced before.

Significant results have been achieved by algebraic and analytic approaches for
general exact pde. However, we will not use such rewriting techniques directly in
this Thesis because of the inherent instability caused by rankings on approximate
systems. The geometric methods we have discussed are our main tools. Paradoxically
we develop our theory by using rankings and Riquier Bases in Chapter 4. However no
rankings and no eliminations appear in our algorithm and a Riquier Basis is obtained
in an implicit form. Thus the method in Chapter 4 is different from those symbolic
methods discussed above.
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The main theme of this Thesis is dominated by a rhythm of geometry. In the
next section on Numerical Algebraic Geometry, this theme will again be highly em-
phasized.

1.3 Numerical Algebraic Geometry

The most basic nonlinear functions are polynomials. They provide a better approx-
imation of nonlinear phenomena than linear equations. For systems of pde if the
differential equations are polynomials with respect to the jet variables, we say they
are polynomially nonlinear differential equations. If we choose C as our underlying
field, the zero sets defined by such systems in Jet Space are jet varieties. Naturally
we can use the computational techniques of algebraic geometry to study these jet
varieties.

While much of algebraic geometry is concerned with abstract and general state-
ments about varieties, methods for effective computation with concretely-given poly-
nomials have also been developed. A very important class of such techniques are pro-
vided by Buchberger’s Algorithm (see Buchberger’s Thesis 1965), which transforms
polynomial systems to the form of Gröbner bases (a generalization of the Gauss
Algorithm for row reduced form).

Today Buchberger’s algorithm and many improved versions are employed in most
computer algebra systems. But it cannot be applied to approximate systems directly.
The main reason is that Gröbner bases are discontinuous with the input and they
depend on an ordering which can cause numerical instability (the instability prob-
lem caused by Gaussian Elimination is a special case). In addition, the worst case
complexity for computing Gröbner bases is double exponential.

Recently, a new area, “Numerical Algebraic Geometry”, was initiated by Andrew
Sommese and Charles Wampler and is developing rapidly. It bears the same relation
to “Algebraic Geometry” that “Numerical Linear Algebra” bears to “Linear Alge-
bra”. This Thesis mainly aims to develop numerically stable methods for general
pde. So we give a brief introduction to this new area in this section. An elegant and
introductory description of this area can be found in Andrew Sommese and Charles
Wampler’s 2005 book [52].

1.3.1 Homotopy Continuation Methods

Homotopy continuation methods play a fundamental role in Numerical Algebraic
Geometry and provide an efficient and stable way to compute all isolated roots of
polynomial systems. Verschelde implemented these methods in his software package
PHCpack [56].

The basic idea is to embed the target system into a family of systems continuously
depending on parameters. Then each point in the parameter space corresponds to
a set of solutions. Suppose we know the solutions at a point. Then we can track
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the solutions from this starting point to the point representing the target system we
want to solve.

First let us look at the simplest case: a univariate polynomial f(z) with degree
d. We know that f(z) has d roots in C (counting multiplicities). Of course we can
embed f(z) into the family adz

d + ad−1z
d−1 + · · ·+ a0, where the ai are parameters.

Now choose a start point corresponding to zd − 1 in this parameter space, whose
roots are

z0
k = e2kπ

√−1/d, k = 0, 1, ..., d− 1 (1.3.1)

Then we use a real straight line in the parameter space to connect zd − 1 with f(z):

H(z, t) := tf(z) + (1− t)(zd − 1). (1.3.2)

This form is a subclass of the family depending on only one real parameter t ∈ [0, 1].

When t = 0 we have the start system H(z, 0) = zd − 1 and when t = 1 we have
our target system H(z, 1) = f(z). An important question is to show how to track
individual solutions as t changes from 0 to 1. Let us look at the tracking of the
solution zk (the k-th root of f(z)). When t changes from 0 to 1, it describes a curve,
which is function of t, denoted by zk = zk(t). So H(zk(t), t) ≡ 0 for all t ∈ [0, 1].
Consequently, we have

0 ≡ dH(zk(t), t)

dt
=

∂H(z, t)

∂z

dzk(t)

dt
+

∂H(z, t)

∂t
. (1.3.3)

This problem is reduced to an ode for the unknown function zk(t) together with
an algebraic constraint H(zk(t), t) ≡ 0. The initial condition is the start solution
zk(0) = z0

k and zk(1) is a solution of our target problem f(z) = 0.

Remark 1.3.1. In the book [2], Blum, Smale et al. show that on average an ap-
proximate root of a generic polynomial system can be found in polynomial time. Also
application of the polynomial cost method for numerically solving differential alge-
braic equations [18] gives polynomial cost method for solving homotopies.

But there is a prerequisite for the continuous tracking: ∂H(z,t)
∂z

6= 0 along the
curve z = zk(t). If the equations z − zk(t) = 0 and tf ′(z) + d(1 − t)zd−1 = 0 have
intersection at some point (t, zk(t)), then we cannot continue the tracking. There is
way to avoid this singular case, called the “gamma trick” that was first introduced
in [31]. We know two complex curves almost always have intersections at complex
points, but here t must be real. So if we introduce a random complex transformation
to the second curve, the intersection points will become complex points and such
a singularity will not appear when t ∈ [0, 1). Let us introduce a random angle
θ ∈ [−π, π] and modify the homotopy (1.3.2) to

H(z, t) := tf(z) + eiθ(1− t)(zd − 1). (1.3.4)
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It is easy to show that the k-th starting solution is still z0
k in (1.3.1) and that zk(1)

is still a root of f(z).

Genericity and Probability One

In an idealized model where paths are tracked exactly and the random angle can be
generated to infinite precision, the homotopy (1.3.4) can be proved to succeed “with
probability one”. To clarify this statement, it is necessary to use a fundamental
concept in algebraic geometry: genericity.

Definition 1.3.1 (Generic). Let X be an irreducible algebraic variety. We say a
property P holds generically on X, if the set of points of X that do not satisfy P
are contained in a proper subvariety Y of X. The points in X\Y are called generic
points.

The set X\Y is called a Zariski open set of X. Roughly speaking, if Y is a proper
subvariety of an irreducible variety X and p is a random point on X with uniform
probability distribution, then the probability that p /∈ Y is one. So we can consider
a random point as a generic point on X without a precise description of Y . Many
of the desirable behaviors of homotopy continuation methods rely on this fact.

Coefficient-Parameter Homotopy

There are several versions of the Coefficient-Parameter theorem in [52]. Here we only
state the basic one.

Theorem 1.3.1. Let F (z; q) = {f1(z; q), ..., fn(z; q)} be a polynomial system in n
variables z and m parameters q. Let N (q) denote the number of nonsingular solutions
as a function of q:

N (q) := #

{
z ∈ Cn : F (z; q) = 0, det

(
∂F

∂z
(z; q)

)
6= 0

}
(1.3.5)

Then,

1. There exist N , such that N (q) ≤ N for any q ∈ Cm. Also {q ∈ Cm : N (q) =
N} is a Zariski open set of Cm. The exceptional set Y = {q : N (q) < N} is
an affine variety contained in a variety with dimension m− 1.

2. The homotopy F (z; φ(t)) = 0 with φ(t) : [0, 1) → Cm\Y has N continuous
non-singular solution paths z(t).

3. When t → 1−, the limit of zk(t), k = 1, ..., N includes all the non-singular
roots of F (z; φ(1)).



20

An important question is how to choose a homotopy path φ(t) which can avoid
the exceptional set Y . The following lemma [52] gives an easy way to address this
problem.

Lemma 1.3.2. Fix a point q and a proper algebraic set Y in Cm. For a generic point
p ∈ Cm, the one-real-dimensional open line segment φ(t) := (1− t) p + t q, t ∈ [0, 1)
is contained in Cm\Y .

We now apply this lemma to Equation (1.3.4), where q represents the target
system f(z) and p represents the initial system eiθzd − eiθ in the parameter space
for a random θ ∈ [−π, π]. The gamma trick introduces a type of randomization
to the choice of p. During the construction of an initial system (even for positive
dimensional system solving), we always use randomization techniques to avoid such
“bad” situations arising in the numerical computation.

In fact, the “bad set” is not only a lower dimensional variety Y but the numer-
ically difficult region around Y , which has nonzero measure. So in the numerical
computation, we should replace “with probability 1” with “with high probability”.

1.3.2 Polytope Structure

When we apply homotopy continuation methods to solve polynomial system F (z) =
{f1(z), ..., fn(z)} with degree of fi equal to di, an initial system needs to be solved
first. By Lemma 1.3.2 the initial system corresponds to a generic point in the pa-
rameter space. Of course we can use total degree to construct the parameter space
(all the systems will have d =

∏n
i di nonsingular roots).

However the target system may not be a generic system, and the number of roots
can be fewer than the generic case. A well-known example is the eigenvalue problem
A ·v = λv, a ·v = 1, where A ∈ Fn×n, a ∈ Fn. This example only has n roots, but the
Bezout number of this system is 2n. This means if we use total degree homotopy,
when t → 1−, there will be many singular paths, which causes the paths tracking to
be very inefficient.

If we can embed the target system into a special class of systems, which has
much fewer roots, then by Theorem 1.3.1, we can still find all the roots by homotopy
continuation. There are many ways to efficiently estimate the number of roots of the
target system and construct an initial system [25, 31, 26, 58, 16].

Newton Polytopes and Mixed Volume

Here we introduce Newton Polytope techniques which often give a sharp estimate of
the number of roots of a given polynomial system.

Let C∗ := C\0, denote the nonzero complex numbers. A Laurent polynomial in
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the variables x = (x1, ..., xn) is defined in multi-index notation as

f(x) :=
∑
α∈S

cαxα (1.3.6)

where S ⊂ Zn and each cα ∈ C∗. Here S corresponds to the monomial set of f ,
which is called the “support” of f . Embed S into Rn. The convex hull Q := conv(S)
of S is said to be the “Newton Polytope” of f , and is also denoted by Q = conv(f).
Note that Laurent monomial xα allows negative degrees.

Suppose we have two Laurent polynomials f1 and f2. A geometric addition
operation on polytopes Q1 = conv(f1) and Q2 = conv(f2), called the “Minkowski
sum” is of interest to us:

Q1 + Q2 := {q1 + q2 : q1 ∈ Q1, q2 ∈ Q2} (1.3.7)

where q1 + q2 is addition in the vector space Rn. It is interesting that the sum is still
a convex polytope and it equals conv(f1 · f2).

Suppose the vertices of an n-dimensional polytope Q are v0, v1, ..., vn (if Q has
more vertices we can easily decompose it as a union of polytopes and each of them
has n + 1 vertices). The volume of this polytope is

Voln(Q) =
1

n!
| det[v1 − v0, ..., vn − v0]| (1.3.8)

Proposition 4.9 in Chapter 7 of reference [7] shows that Vol(λ1Q1 + · · ·+λnQn) is
a homogenous polynomial of degree n in λi. A certain coefficient of this polynomial
has a special meaning.

Definition 1.3.2. [Mixed Volume] The mixed volume of convex polytopes Q1, ..., Qn

is defined as the coefficient of the term λ1 · · ·λn in the homogenous polynomial
Vol(λ1Q1 + · · ·+ λnQn), and is denoted by Mn(Q1, ..., Qn).

Mixed volume is a very important invariant of a polynomial system. Firstly, it is
a symmetric function of Q1, ..., Qn. And, it is an invariant under a shift of polytopes
(e.g. Mn(Q1, ..., Qn) = Mn(Q1 + v, ..., Qn), for any v ∈ Rn). See [57] for other
properties of mixed volumes.

One of the most important applications of Mixed Volume is the following theorem.

Theorem 1.3.3. [Bernstein Theorem] Let F = {f1, ..., fn} be a system of polynomi-
als. Then the number of roots of F = 0 (counting multiplicities) in (C∗)n is bounded
by the mixed volume Mn(Q1, ..., Qn) where Qi = conv(fi). Moreover if the coefficients
of F are generic then the mixed volume gives the exact number of roots of F = 0
in (C∗)n.

This bound is also called the “BKK bound” in recognition of the contributions
of Bernstein (1975), Kushnirenko (1976) and Khovanski (1978).
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Figure 1.3.1: Compute Mixed Volume by Minkowski sum

This bound only involves the information on monomials appearing in the poly-
nomial system F . Consequently it should be cheaper to compute the bound than to
solve the system. Let us begin with a simple case to see how to compute the mixed
volume and subsequently this bound.

We know Voln(λ1Q1 + λ2Q2) is a homogenous quadratic polynomial in λ1, λ2.
Suppose it has the form: p(λ1, λ2) = c1λ

2
1 + c11λ1λ2 + c2λ

2
2. So we have p(1, 1) −

p(1, 0)− p(0, 1) = c1 + c11 + c2 − c1 − c2 = c11, which means

M2(Q1, Q2) = Voln(Q1 + Q2)− Voln(Q1)− Voln(Q2) (1.3.9)

To show the main idea of this section, we choose a simple system given in Sommese
et al [50] as our running example.

EXAMPLE 1.3.1. Suppose f1 = ax3y + bxy2 + 1, f2 = cx4 + dxy + 1. Let Q1, Q2

be the Newton Polytopes of f1, f2 respectively.

The mixed volume is the area of the grey area of Figure 1.3.1, which is equal to
the Minkowski sum of Q1, Q2 minus the area of Q1 and Q2.

We can generalize this formula to arbitrary n by induction [7]:

Mn(Q1, ..., Qn) =
n∑

i=1

(−1)n−i
∑

I⊂{1,...,n},|I|=i

Voln(Σj∈IQj) (1.3.10)

Polyhedral Homotopies

Note that the formula (1.3.10) is not an efficient way to compute the mixed volume
of a given polynomial system with many equations and many variables. First we
introduce some concepts to show how to improve the efficiency of this computation.
Here we restrict to polytopes spanned by integer vertices.
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Figure 1.3.2: Recursive Computation of Volume

Definition 1.3.3. Let Q = conv(S), spanned by S ⊂ Zn. The support function
h : Rn → R on S is defined by

hS(v) := max
a∈S

〈a,v〉, (1.3.11)

where 〈, 〉 is the Euclidian inner produce in Rn.

Definition 1.3.4. Let Q = conv(S), S ⊂ Zn and v be a vector in Rn. Let ∂vS =
{a ∈ S : 〈a,v〉 = hS(v)}. Then the face of the polytope Q in the direction v is
defined as the convex hull of ∂vS and is denoted by ∂vQ = conv(∂vS).

Now we can compute the volume of a polytope in Zn in a recursive way [58]:

Voln(Q) =
1

n

∑

||v||=1

hQ(v)Voln−1(∂vQ), (1.3.12)

where v ranges over all unit vectors in Rn.
We now illustrate the intuitive geometric idea behind this formula by Figure 1.3.2.

Note that there are only finitely many normalized outer normals v of Q for which
∂vQ 6= 0. For each facet of Q, there is a unique normalized outer normal v. In
Figure 1.3.2, we can consider hQ(v) and ∂vQ as the height and the base of the
triangle 4ABO. So the area of 4ABO is equal to 1/2 · hQ(v)Vol1(∂vQ). It is easy
to see that this can be generalized to the n-dimensional case.

Combining Formula (1.3.12) with Formula (1.3.10), we can obtain a recursive
formula to compute the mixed volume of an n-tuple of polytopes:

Mn(Q1, ..., Qn) =
∑

||v||=1

hQ1(v)Mn−1(∂vQ2, ..., ∂vQn). (1.3.13)
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Figure 1.3.3: Recursive Computation of Mixed Volume

Here to illustrate the main idea we only look at a simple case (for more details
see [7]). Specifically, the mixed volume of two polytopes is:

M2(P,Q) = Vol2(P, Q)− Vol2(P )− Vol2(Q)

= 1/2
∑

||v||=1

hP+Q(v)Vol1(∂v(P + Q))

−1/2
∑

||v||=1

hP (v)Vol1(∂vP )− 1/2
∑

||v||=1

hQ(v)Vol1(∂vQ)

= 1/2
∑

||v||=1

[(hP (v) + hQ(v))(Vol1(∂vP )

+Vol1(∂vQ))− hP (v)Vol1(∂vP )− hQ(v)Vol1(∂vQ)]

= 1/2
∑

||v||=1

(hP (v)Vol1(∂vQ) + hQ(v)Vol1(∂vP ))

=
∑

||v||=1

hP (v)M1(∂vQ).

EXAMPLE 1.3.2. We apply Formula (1.3.13) to the previous Example 1.3.1.
There are only 3 normalized outer normals v of Q1 for which Vol1(∂vQ1) 6= 0 (as
shown in Figure 1.3.3). So

M2(Q1, Q2) =
∑

v=v1,v2,v3

hQ2(v)M1(∂vQ1)

=
4√
10
·
√

10 +
4√
5
·
√

5 + 0 ·
√

5

= 4 + 4 = 8.

which is consistent with the result obtained using Formula (1.3.9).
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Figure 1.3.4: A mixed subdivision of Q1 + Q2

In practice, computing the mixed volume of many polytopes using Formula
(1.3.13) can be complicated and inefficient. A better way, due to Huber and Sturmfels
is given in [16] by using a mixed subdivision of the Minkowski sum of the polytopes.

We only show the main idea using Example 1.3.1. In Figure 1.3.1, the Minkowski
sum of Q1, Q2 consists of three parts: {(A + 0, A + C,A + D), (A + D,A + B,A +
0), (0 + 0, A + 0, A + D, 0 + D)}. Only the grey area is a “mixed cell” which is a
parallelogram spanned by an edge of Q1 and an edge of Q2. Huber and Sturmfels
proved that the mixed volume is equal to the sum of volumes of such “mixed cells”.
T. Y. Li and his team have developed an efficient implementation of this approach
in their software [10].

Note that such a mixed subdivision is not unique. For example, Figure 1.3.4 gives
another mixed subdivision of Q1 + Q2. The upper “mixed cell” is the parallelogram
spanned by {AB,OD} and the lower “mixed cell” the parallelogram spanned by
{BO,OD}. The sum of the areas is still 8.

We next consider how to “break” the Minkowski sum of Q1+· · ·+Qn into pieces to
obtain a mixed subdivision. The key idea is to lift the polytopes Qi to Q̂i in a higher
dimensional space and look at the facets of the lower hull of Q̂1 + · · ·+ Q̂n. Since the
union of the projections of these facets is the Minkowski sum of the original polytopes,
the lifting may induce a subdivision of Q1 + · · ·+ Qn. Huber and Sturmfels showed
that we can always construct such a mixed subdivision by a sufficiently random
(integer) lifting. Furthermore, this lifting can induce a polyhedral homotopy.

Rather than delve deeper into such techniques and theories, we simply illustrate
the idea using the running Example 1.3.1.

EXAMPLE 1.3.3. First we choose an integer lifting: Q̂1 = {(3, 1, 1), (1, 2, 0), (0, 0, 0)}
and Q̂2 = {(4, 0, 0), (1, 1, 1), (0, 0, 0)}. The lower hull of Q̂1 + Q̂2 is shown in Fig-
ure 1.3.5, which induces a mixed subdivision of Q1 + Q2.

We transform the lifted polytopes to polynomials (using t for the extra coordinate):

H(x, y; t) =

{
a x3yt + b xy2 + 1 = 0
c x4 + d xyt + 1 = 0

(1.3.14)

When t = 1, we have H(x, y; 1) = F (x, y). The roots of H(x, y; t) = 0 are alge-
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Figure 1.3.5: Lower Hull of Q̂1 + Q̂2

braic functions of the parameter t (and may have many branches). The branches of
solutions given by Puiseux series have the form

(x(t), y(t)) = (x0t
γ1 , y0t

γ2) + higher order terms, (1.3.15)

where (γ1, γ2, 1) is an inner normal of the mixed cell of the lower hull of Q̂1 + Q̂2.

There is only one mixed cell and its inner normal is (0, 0, 1). So by substituting
x = x0, y = y0, t = 0 into H(x, y; t) we obtain the initial system

{
b x0y

2
0 + 1 = 0

c x4
0 + 1 = 0

(1.3.16)

Obviously, if the coefficients are chosen randomly, then there are 8 roots of the initial
system. This number is exactly equal to the volume of this mixed cell.

Remark 1.3.2. To determine the values of γ1, γ2 in Equation (1.3.15), we can con-
sider the lowest degree of each polynomial of Equation (1.3.14) with respect to t. If
an equation has solutions when t → 0+, then its lowest degree must be greater than
or equal to zero (constant numbers have degree 0). So we have

{
min(0 + 3γ1 + γ2 + 1, 0 + γ1 + 2γ2, 0) ≥ 0

min(0 + 4γ1, 0 + γ1 + γ2 + 1, 0) ≥ 0
(1.3.17)

which can be simplified to

{
min(3γ1 + γ2 + 1, γ1 + 2γ2) = 0

min(4γ1, γ1 + γ2 + 1) = 0
(1.3.18)

The zero set of each equation is a piecewise line and we can check the intersection
is (0, 0). The theoretical study of such objects is called Tropical Algebraic Geometry,
which is a relatively new area started in the late nineties [19].
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1.3.3 Positive Dimensional Systems

When we consider positive dimensional systems, a significant obstacle to algorithms
is giving a finite description of the infinite sets of points that are their positive di-
mensional components. One way is to use parametric representations (e.g. (x, y) =
(a, b)t + (x0, y0), t ∈ F for a straight line). Another way to describe positive dimen-
sional varieties is by using algebraic approaches, such as Gröbner Bases or Triangular
Sets.

Numerical algebraic geometry provides us with a more geometric approach. It
uses a certain nice finite subset of points of a component, called a witness set, to
represent the whole component.

Linear Slicing and Witness Sets

Given a polynomial system F , we first suppose the algebraic variety V (F ) consists
only of pure k-dimensional components. From Harris [15], we know that intersecting
the components by a generic hyperplane (i.e. by appending a linear equation to F )
will always drop the dimension of the components by 1. So by appending k generic
linear equations L[k] to F , the dimension of the new system G = {F, L[k]} will be
0. Using homotopy continuation methods, we can compute all the isolated roots
A = V (G), which are generic points on V (F ) restricted to L[k]. We put these three
ingredients together and call it a Witness Set of V (F ), denoted by W = (A,F, L[k]).

For a mixed dimensional algebraic set, we adopt the following recursive definition.

Definition 1.3.5. Let Z ⊂ Cn be an affine algebraic set. Then a witness set for Z
is a collection of witness sets of Zk, k = 0, ..., dim(Z), where Zk denotes the pure
k-dimensional components of Z.

We summarize the good properties of linear slicing in the following Slicing The-
orem [52].

Theorem 1.3.4. Let X ⊂ Cn be a pure k-dimensional affine algebraic set. There is
a Zariski open set U ⊂ Pn such that for any a ∈ U and L(x; a):
(1) if k = 0, then V (L) ∩X = ∅;
(2) if k > 0, then V (L) ∩X is k − 1-dimensional and deg(V (L) ∩X) = deg(X);
(3) if k > 1 and X is irreducible, then V (L) ∩X is irreducible.

Remark 1.3.3. Witness sets are equivalent to the symbolic method of lifting fibers
in a geometric resolution [24]. This idea of cutting with hyperplanes to determine
the dimensions of solution components appeared in Guisti and Heintz [14].

The approach of describing positive dimensional systems by using witness sets
has many computational advantages.

1. It is cheaper than computing defining equations of varieties (a set of generators
of a radical ideal).



28

Figure 1.3.6: Equi-Dimensional Decomposition of V (F )

2. It is numerically stable, consuming much less memory (see our comparison
results in Chapter 2), and is suitable for parallel computation.

3. The witness sets can be used to construct an approximation of defining equa-
tions [30].

A witness set W = (A,F, L[k]) encodes geometric invariants and gives us a more
direct and explicit description of the components of an algebraic set. For example,
the number of equations of L[k] is equal to the dimension of the component and the
number of generic points in A is the degree of the components.

Also the witness points can be used as an inclusion test for varieties and a radical
ideal membership test for ideals. Given a radical ideal I and a polynomial f , we know
that f ∈ I ⇔ V (f) ⊃ V (I) by the ideal-variety correspondence. So the radical ideal
membership test can be reduced to a special case of the inclusion test of varieties.

Proposition 1.3.1. Let f be a polynomial in C[x1, ..., xn] and W be the witness set
of a variety V̂ ⊂ Cn. If f(p) = 0, for all the witness points of W , then V̂ ⊂ V (f)
equivalently f ∈ I(V̂ ).

This test is very efficient and in particular we will use it to remove the redundant
equations of a (differential) polynomial system [39, 62]. It leads immediately to an
equality test for two varieties.

Decomposition of Components

A main task of numerical algebraic geometry is the so-called numerical equi-dimensional
decomposition and irreducible decomposition of algebraic sets.

We start from a simple but visualizable example.

EXAMPLE 1.3.4. Consider a polynomial system F = [f1, f2] with variables x, y, z
given by

F =

[
(z − y2)(x2 + y2 + z2 − 1)

x(z − x3)(x2 + y2 + z2 − 1)

]
= 0 (1.3.19)

In Figure 1.3.6, visually, the variety of F consists of a sphere and some algebraic
curves.



29

Figure 1.3.7: Irreducible Decomposition of V (F )

Figure 1.3.8: Irreducible Decomposition of V (F )

If we do the numerical irreducible decomposition, we can see in Figure 1.3.7 that
there is one 2-dimensional component (a sphere) and two 1-dimensional components
(two curves).

Now we use witness sets to represent V (F ). For the 2-dimensional component,
cutting by two random hyperplanes, (or equivalently by a random line), we obtain 2
witness points. Using one random hyperplane to cut the 1-dimensional components,
we obtain 2 witness points for one curve and 3 witness points for the other, as shown
in Figure 1.3.8. These results yield the dimension and degree of each component.

By Definition 1.3.5, to compute the equi-dimensional decomposition of an al-
gebraic set is equivalent to finding its witness set. Since we use the linear slicing
method to find the witness points, it is easier to “hit” the points on higher di-
mensional components. The Slicing Theorem 1.3.4 shows that the intersection of a
generic co-dimension k linear space and a component with dimension lower than k is
always empty. So we can start by searching for top dimensional components by slic-
ing with n−1 hyperplanes then peeling off one hyperplane at a time and descending
from n − 1 dimensional to 0 dimensional components. This is called the “Cascade
Algorithm” [47].

When we append n− 1 random linear equations to the original system, we often
obtain an over-determined system (unless the original system has only one equa-
tion). We still use the system in Example 1.3.4. After appending two random linear
equations, we have a new over-determined system G2 = [f1, f2, L1, L2].

In order to use homotopy continuation methods, we have to transform G2 into
a square system. A naive way to do this is to choose three equations to solve first,
then substitute the solutions into the fourth one and finally check the roots of the
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resulting system. Unfortunately, sometimes this approach may fail. For example,
the solutions of [x(x + y − 1) = 0, y(x + y − 1) = 0, xy = 0] are {(0, 0), (0, 1), (1, 0)},
but any two equations of the system intersect at a line rather than a finite set.

One good way to proceed is to embed G2 into a 4-dimensional space by adding
one slack variable s and choosing the coefficients α1, α2, α3, α4 randomly:

G′
2 = [f1 + α1s, f2 + α2s, L1 + α3s, L2 + α4s] (1.3.20)

So (x0, y0, z0) is a solution of G2 if and only if (x0, y0, z0, 0) is a solution of G′
2.

Consequently, we can apply homotopy continuation to the square system G′
2 to find

all the isolated solutions of G′
2 and check if the last coordinate is zero or not.

Another natural procedure to obtain a square systems is by taking random lin-
ear combinations of the original equations, denoted by Mn×` · F `×1, where ` is the
number of original equations. If we choose the matrix M randomly, then any posi-
tive dimensional component of V (F ) is irreducible if and only if it is an irreducible
component of V (M · F ) (see [52]).

By the methods discussed above we can show G2 has finitely many isolated solu-
tions, the top dimensional component of V (F ) is 2 dimensional and these solutions
are witness points of the 2-dimensional component.

Now we remove one hyperplane to compute the witness sets of 1 dimensional com-
ponents of V (F ). However L1 intersects with the curves of V (F ) and also inescapably
meets with the 2-dimensional component of F (the surface). So the solutions of
G1 = [f1, f2, L1] will contain some generic points on the curves and some generic
points on the surface. So they are not a witness set of 1-dimensional components,
but a superset of them, which is called a Witness Superset.

To obtain a witness set from a witness superset it is necessary to remove the
excess (so-called junk) points on the higher dimensional components. Note that
the witness superset of the top dimensional components is a witness set, and the
nonsingular points in the witness supersets of lower dimensional components are
true witness points. For the singular points, there are two possibilities: they could be
witness points with multiplicities greater than 1 or they belong to higher dimensional
components. So any method for computing the local dimension of a variety at a point
can be used to remove the junk points.

Another way to remove junk points involves a technique called “homotopy mem-
bership testing”, which is also important in the numerical irreducible decomposition.
Suppose we have the witness set (A, F, L[k]) of the pure k-dimensional components
of V (F ) and a point p ∈ V (F ). We want to know if p is contained in these compo-
nents. The key idea is to choose a generic linear space L2 passing through p with
codimension k. We then construct a homotopy H(x, t) = [F, (1 − t)L[k] + tL2] and
track the paths starting at t = 0 from A and the ending at t = 1 with the point B (t
varies from 0 to 1). If p ∈ B, then p is a point of the pure k-dimensional components
of V (F ), otherwise it is not.
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In conclusion, by the techniques discussed above, we can compute a witness set of
an algebraic set, which gives a representation of the equi-dimensional decomposition
of V (F ).

A numerical irreducible decomposition method was first given in [48], and is not
used in this Thesis. Roughly speaking, it is the further decomposition of a pure
dimensional solution set into irreducible components by using monodromy loops,
certified by linear traces. For the details of the algorithm, we refer the readers to the
book by Sommese and Wampler [52].

Diagonal Homotopy

In Chapter 2 and Chapter 3, we will see that the algebraic equations appear one by
one after the iteration of differential eliminations. The new equations will be ap-
pended to the old system to obtain a larger system, which geometrically corresponds
to the intersection of algebraic sets.

Reuse of the witness set of the old system is very important for the efficiency of
the whole algorithm. A recent technique called “diagonal homotopy” in numerical
algebraic geometry fits this purpose perfectly.

Here we give a brief introduction to the diagonal intersection algorithm. Suppose
we intersect two solution components of equations F (x) = 0 and G(x) = 0 in X
space, where x = (x1, ..., xn) ∈ X. Suppose we know the witness sets (A,F, LF ) and
(B, G,LG) already. First we embed the two systems into X × X space: {F (x) =
0, G(y) = 0} and (x, y) ∈ X ×X, where y = (y1, ..., yn).

Now consider the homotopy

H(x, y, t) =




F (x)
G(y)
LF (x)
LG(y)


(1− t) +




F (x)
G(y)
x− y
L(x)


 t = 0 (1.3.21)

We know the degree of the intersection is bounded by the product of degrees.
So, at t = 0, we start at the points belonging to the product of the two witness sets
A × B. When t = 1, H(x, y, 1) is at the diagonal x − y = 0, which is equivalent to
{F (x) = 0, G(x) = 0, L(x) = 0}. When we change the codimension of the generic
linear space L using the Cascade Algorithm, we can compute a witness set of all
components (after removing the junk points). For a detailed description of diagonal
homotopies see [49].

1.4 Organization and Comments

This Thesis is presented in an integrated-article format. Chapters from 2 to 6 treat
discrete but related problems and are the author’s publications [39, 62, 63, 30, 66]
respectively. The first three papers focus on using a new area called Numerical Jet
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Geometry to study the geometric structure of differential equations in Jet Space by
using numerical methods. The last two papers focus on approximate computation
in polynomial algebra.

1.4.1 Comments on [39] (Chapter 2)

This paper is a continuation of symbolic-numeric methods for differential systems
begun in [60, 38]. The main contribution is to process the leading linear and nonlinear
parts by using symbolic and numeric methods separately.

The higher efficiency is due to executing (radical) ideal membership testing by a
numeric method which only computes a part of information of the nonlinear system
rather than the complete ideal theoretic information given by the symbolic methods
(e.g. Gröbner Bases and Triangular Decomposition). In particular radical ideal
membership testing is reduced to substituting witness points that are efficiently
computed by homotopy continuation.

Another key factor is to exploit structured information such as mixed volume to
dramatically reduce the number of the paths followed by homotopy continuation.
The new technique Diagonal Homotopy introduced in [49] plays the important role
of reusing the existing information and provides a powerful tool to analyze the large
systems.

1.4.2 Comments on [62] (Chapter 3)

The Hybrid method given in Paper [39] only applies to exact input systems. If
the input is approximate then this method can be numerically unstable because
the leading linear part is processed by some algorithms, closely related to Gaussian
Elimination, which compute a solved form subject to a given ordering. The ordering
can force pivoting on small quantities and hence induce instability.

Paper [62] aims to replace the Gaussian type Differential Elimination algorithms
by stable numerical methods. The philosophy is to use geometric approaches to
study pde, e.g. the Cartan-Kuranishi method combined with numerical algebraic
geometry. It originates from the idea in [38]. But the method given in that paper
causes large nonlinear systems with extremely large Bezout numbers. One of the
key contributions of Paper [62] is to exploit the linearity which always appears after
prolongation.

The second contribution is to replace the membership test in Paper [39] by a
rank test. The advantage is to detect the existence of the new constraints before
we compute them and this provides a much cheaper criterion for termination of the
method.

The third contribution is the construction of the projected constraints by com-
puting the null-space of polynomial matrices.
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1.4.3 Comments on [63] (Chapter 4)

Pryce gave an efficient method in [36] for square Differential Algebraic Equations
(dae) which are essentially ode with algebraic constraints. The most interesting as-
pect of his approach is that it only involves differentiation and no elimination. Paper
[63] generalizes this idea to square systems of pde and gives an efficient prolongation
method which only requires differentiation with respect to one of the independent
variables. In this framework, Pryce’s method is a special case.

Genericity statements in this paper show that our fast prolongation method has
a high probability of success and it can be applied to a wide class of pde.

There is an interesting analogue between our fast prolongation method for dif-
ferential systems and mixed volume techniques for polynomial systems. First they
are both concerned with structural information for square systems (ignoring the co-
efficients). Secondly, generic choices of the coefficients can guarantee the success for
both methods. Finally, both methods use combinatorial and linear programming
techniques to compute the results. The integer linear programming problem given in
this paper is dual to an assignment problem. Eric Schost pointed out such problems
can be solved in polynomial time by Hungarian Method (Harold W. Kuhn, 1955).
We also show in our paper such problems can be solved very efficiently in practice.

1.4.4 Comments on [30] (Chapter 5)

Triangular decomposition techniques [64, 23, 20, 68, 59, 1, 8] give desirable algebraic
representations for varieties of exact polynomial systems. Our study on differential
equations always focuses on polynomially nonlinear systems, so approximate com-
putation in polynomial algebra is a subfield of Numerical Jet Geometry.

In this paper we give the first method to construct approximate triangular decom-
position from geometric objects: isolated points. The advantage is that geometric
objects are more stable than their algebraic representations. The symbolic compu-
tation of triangular decomposition is a long sequence of manipulations of algebraic
equations which often cause very large accumulation errors in the coefficients. On
the other hand, the construction from geometric objects requires only three steps,
for which we can easily provide an estimate on cumulative errors by using statistical
tools. The isolated roots are computed by using homotopy continuation methods.
The condition number at each root, a key factor of our error analysis, delivers the
information on the“quality” of the approximation.

In this paper we use monomial basis for the interpolation. Dr. Corless suggested
us to consider the other basis which may lead to a more stable result. We gave
the forward error analysis in this paper, but backward error is also very important
for a numerical algorithm. As Corless suggested, we can consider an approximate
triangular decomposition as an exact triangular decomposition of some variety which
is close to the given one. Such backward error analysis deserves a careful study in
the future work.
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1.4.5 Comments on [66] (Chapter 6)

This unpublished paper gives the details about the theory and algorithms for poly-
nomial matrices. This theory plays an important role in Paper [62].

One of the motivations is to exploit the linearity of a prolonged differential system.
The key information is contained in the Symbol matrix, which is a polynomial matrix,
if we only consider polynomially nonlinear pde.

Another goal is to explore the relation between the syzygy module and the null-
space of a polynomial matrix. The paper also lays some foundations for interpreting
the approximate computation as a “nearby problem”.

When we reduce polynomial algebra to linear algebra, the matrices appearing
in the computation always have structure which plays an important role. As we
can see in Example 6.2.1, Dr. Corless pointed out the significant difference between
structured and unstructured matrices.
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[14] M. Guisti and J. Heintz. La détermination de la dimension et des points
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[27] B. Malgrange. Systèmes différentiels involutifs. Panoramas et Synthèses 19,
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Chapter 2

Symbolic-Numeric Completion of
Differential Systems by Homotopy
Continuation

Two ideas are combined to construct a hybrid symbolic-numeric differential-elimination
method for identifying and including missing constraints arising in differential sys-
tems. First we exploit the fact that a system once differentiated becomes linear in
its highest derivatives. Then we apply diagonal homotopies to incrementally process
new constraints, one at a time. The method is illustrated on several examples, com-
bining symbolic differential elimination (using rifsimp) with numerical homotopy
continuation (using phc).

2.1 Introduction

Over and under-determined systems of ode and pde arise in applications such as con-
strained multibody mechanics and control systems (e.g. differential-algebraic equa-
tions (dae) arise in constrained Lagrangian mechanics [20]).

Much progress has been made in exact differential elimination methods, theory
and algorithms for nonlinear systems of pde. For example see Boulier et al. [3], Chen
and Gao [5], Hubert [9], Mansfield [12], Seiler [20], Reid, Rust et al. [18], Wu [30].
Such methods enable the identification of all the hidden constraints for a system of
pde and the automatic statement of an existence and uniqueness theorem for its
solutions. They give a geometrical view of its solution space [17, 20] and enable the
determination of its symmetry properties. They enable the computation of initial
data and associated formal power series solutions in the neighborhood of a point.
Algorithmic membership tests (specifically in the radical of a differential ideal) can
be given [3, 9]. They can ease the difficulty of numerical solution of dae systems
[26].

This paper is a sequel to [14] and [7] in which we develop theory and methods
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for using numerical homotopy continuation methods in the differential elimination
process to identify missing constraints for systems of differential equations. In [14]
such methods were first introduced by combining the Cartan-Kuranishni approach
with homotopy methods. During the application of that approach all equations
are differentiated up to the current highest derivative order, resulting in potentially
large numbers of pde. These pde are treated as polynomial equations in jet space,
and their large number implies that the number of continuation paths that must be
tracked can be impractically large.

In this paper we process the leading linear pde using the rifsimp algorithm
[29] and the leading nonlinear pde using PHCpack [27], applying diagonal homo-
topies [23]. The correctness of our results can be certified if the constraints are free
from multiplicities and the numerical representations are well conditioned.

This paper is organized as follows. In Section 2.2 we introduce some basic material
for symbolic differential elimination, and in Section 2.3 we give a short overview on
recent developments in homotopy methods. In Section 2.4 we present our method
and briefly outline some optimizations in Section 2.5. Examples are given in Section
2.6 and concluding remarks in Section 4.9.

2.2 Symbolic Differential Elimination

Consider a polynomially nonlinear system of pde R = (R1, . . . , Rl) = 0 with inde-
pendent variables x = (x1, . . . , xn) and dependent variables u = (u1, . . . , um) over
C with coefficients from some computable extension of Q. As in [3, 18, 20] solu-
tions and derivatives are replaced by formal (jet) variables, allowing manipulation
of equations without first assuming that solutions exist [13]. In particular, denoting
the p-th order jet variables corresponding to derivatives as u

p
, the jet variety of a qth

order system in Jq = Cnq is

V (R) := {(x, u, u
1
, . . . , u

q
) ∈ Jq : R(x, u, u

1
, ..., u

q
) = 0}. (2.2.1)

Here nq = n + m
(

n+q
q

)
is the number of independent variables, dependent variables

and derivatives of order less than or equal to q. We restrict to the subset of the
variables of Jq that actually appear in the given system.

EXAMPLE 2.2.1. Throughout this article we use the following running example,
first introduced in [16], see also [7]:

∂2u(x, y)
∂y2

− ∂2u(x, y)
∂x∂y

= 0,

(
∂u(x, y)

∂x

)r

+
∂u(x, y)

∂x
− u(x, y) = 0. (2.2.2)

For the case r = 2, this is a differential polynomial system R = (uyy − uxy, u
2
x + ux−

u) = 0 in the jet space of second order J2 = C8 and has jet variety V (R) = {(x, y,
u, ux, uy, uxx, uxy, uyy) ∈ J2: uyy − uxy = 0, u2

x + ux − u = 0}.
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The rifsimp algorithm [18, 29] takes on input a ranking of partial derivatives. A
ranking of derivatives [18] is a total ordering on the set of all jet variables (excluding
independent variables) that is invariant under differentiation and satisfies a positivity
condition.

Definition 2.2.1 (Highest Derivative). The highest derivative of a pde ψ is the
largest derivative appearing in the pde in the ranking. A pde is classified as leading
linear or leading nonlinear with respect to a ranking according as whether it is linear
or not in its highest derivative.

EXAMPLE 2.2.2. Consider the ranking of partial derivatives:

u ≺ ux ≺ uy ≺ uxx ≺ uxy ≺ · · · (2.2.3)

Then (3.2.2) has hd(uyy − uxy) = uyy and hd(u2
x + ux − u) = ux. Hence uyy − uxy

is leading linear and u2
x + ux − u is leading nonlinear with respect to the ranking.

Definition 2.2.2 (Formal Total Derivative). The formal total derivative is Dxj
=

∂
∂xj

+Σm
`=1u

`
xj

∂
∂u` + · · · Given a list of equations N = 0, D(N) is the list of first order

total derivatives of all equations of N with respect to all independent variables (i.e.
D(N) := [Dxj

Nk]) and forms a single prolongation of N .

For Example 2.2.1 with N = u2
x +ux−u = 0 and formal total derivatives Dx and

Dy we have:
D(N) = [2uxuxx + uxx − ux, 2uxuxy + uxy − uy].

Implementations of symbolic differential elimination algorithms have devoted much
attention to decreasing the order of such prolongations, while still determining all
the obstructions to the existence of formal power series solutions (e.g. see [20, 29]).

As input the rifsimp algorithm takes a polynomially nonlinear system of pde,
together with a ranking of derivatives [18]. It partitions the system into two disjoint
sets: pde which are linear in their highest derivatives with respect to the ranking,
and its complement the leading nonlinear pde. During its execution these two sets
are continually updated until they satisfy certain theoretical conditions for termina-
tion [18, 29]. One condition is that the integrability conditions, after reduction with
respect to the leading nonlinear pde, should lie in the algebraic ideal generated by
the leading nonlinear pde. Also the once-differentiated set of the leading nonlinear
pde, after reduction with respect to the leading linear pde, should lie in that ideal.
Violation of these conditions gives new equations which are appended to the system,
and the process above is repeated. In existing implementations [29] the membership
is symbolically tested using Gröbner Bases and Triangular Set methods.
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2.3 Numerical Algebraic Geometry

Our tool to numerically solve polynomial systems is homotopy continuation. Ho-
motopy methods define families of systems, embedding a system to be solved in a
homotopy, connecting it to a start system whose solutions are known. Continuation
methods are then applied to track the paths defined by the homotopy, leading to
the solutions. By random choices of constants in the homotopy one can prove that,
except for an algebraic set of bad choices of constants, singularities and diverging
paths can only occur at the end of the paths, when the system to be solved has
singular solutions or fewer solutions than the generic root count.

In [24], a new field “Numerical Algebraic Geometry” was described which led to
the development of homotopies to describe all irreducible components (all meaning:
for all dimensions) of the solution set of a polynomial system. We briefly list key
ingredients of this developing field, see also [25]:

1) Witness Sets: are the key data in a numerical irreducible decomposition. A
witness set for a k-dimensional solution component consists of k random hy-
perplanes and all isolated solutions in the intersection of the component with
those hyperplanes. The degree of the solution component equals the number
of witness points. Witness sets are equivalent to lifting fibers in a geometric
resolution [10].

2) Cascade of Homotopies: Candidate witness points are computed efficiently
using a cascade of homotopies, peeling off the hyperplanes in going from high
to lower dimensional solution components. This idea of cutting with hyper-
planes to determine the dimensions of solution components appeared in Giusti
and Heintz [6].

3) Factorization. Using monodromy loops, certified by linear traces, a pure di-
mensional solution set is factored into irreducibles. See e.g. [4] for the related
approximate multivariate polynomial factorization.

4) Diagonal Homotopies. We intersect two solution components: A and B. Let
A be defined by polynomial equations f(u) = 0, cut by hyperplanes K(u) = 0,
and B similarly defined by g(v) = 0 and L(v) = 0. Consider the homotopy

H(u, v, t) =




f(u) = 0
g(v) = 0
K(u) = 0
L(v) = 0


(1− t) +




f(u) = 0
g(v) = 0
u− v = 0
M(u) = 0


 t. (2.3.1)

For t = 0, we start at the product of the two witness sets A×B. At t = 1, we
are at the diagonal u−v = 0. The above homotopy is just a simple description
of diagonal homotopies, see [23]. Intersecting components is done symbolically
in the geometric resolution, see [10].
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These methods have been implemented in PHCpack [27], see [22] for a description
of some of its added capabilities. An interface to PHCpack within Maple is described
in [11].

2.4 Symbolic-Numeric Completion Algorithm

We will present pseudo-code to describe our main algorithm HybridRif and its
subroutines to find missing constraints.

2.4.1 Using Witness Sets

A basic step of our method is to detect whether a new constraint lowers the dimension
of some component of the current system. As we append constraints, the general
membership test of [22] simplifies to substituting the witness points of the current
constraints into the presumed new constraint.

Algorithm 2.4.1. W new = MembershipTest(W, p, ε)
Input: Witness set W ; a polynomial p; a tolerance ε.
Output: W new = {w ∈ W : |p(w)| > ε}.

For correctness of our methods we need to test whether the constraints are free
from singularities. Numerically this is done by setting thresholds on the condition
numbers of the witness points. While ill-conditioned points are not necessarily points
with with multiplicity > 1 (extreme values of coefficients can lead to a bad scaling),
for our current homotopy methods there is no difference in practice.

Algorithm 2.4.2. boolean = IsReduced(W, ε)
Input: Witness set W ;

ε tolerance on inverse condition number.
Output: true if all points in W have good condition;

false otherwise.

A witness set for a hypersurface (defined by one multivariate polynomial) is ob-
tained by cutting the hypersurface by a general (random) line and applying a uni-
variate root finder.

Algorithm 2.4.3. W = WitnessSet(p, ε)
Input: A polynomial p ; a tolerance ε.
Output: Witness set W for p.

Diagonal homotopies [23] are used to compute a numerical representation of the
intersection of two solution components given by witness sets.

Algorithm 2.4.4. W = Intersect(W1,W2)
Input: Witness sets W1,W2 representing A,B resp.
Output: Witness W representing A ∩B.
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2.4.2 Specification of rifsimp

In brief the rifsimp algorithm described in [18, 29] has the following input and
output characteristics:

Algorithm 2.4.5. [N,L, P ] = rifsimp(S,≺)

Input: S, a system of polynomially nonlinear pde
and inequations over Q, and a ranking ≺.

Output: [N,L,P], where

• L is a set of leading linear pde in solved form with respect to its highest deriva-
tives in the ranking ≺, where hd(L) are all distinct, and no member of hd(L)
is a derivative of any other member;

• N is a set of leading nonlinear pde with no dependence on hd(L) or derivatives
of hd(L);

• P is a set of inequations (the pivots) with no dependence on on hd(L) or
derivatives of hd(L);

• the integrability conditions of the leading linear pde after reduction wrt L are
in 〈N〉;

• D(N) after reduction wrt L is in 〈N〉.
In addition, an existence and uniqueness theorem is provided for its output [18].

We work with a modified version of the rifsimp algorithm, called riflin, which works
with only the leading linear part so no membership tests are performed and D(N) is
not computed. In contrast to rifsimp only a subset of all constraints are determined
and an existence uniqueness result can not be stated.

2.4.3 The main algorithm

The symbolic algebraic equation manipulation in rifsimp is replaced with the nu-
merical diagonal homotopy method.

Algorithm 2.4.6. [N,P, L, fail] = HybridRif(S,≺, ε)

Input : S, a polynomially nonlinear system of differential
equations and inequations over Q and a ranking ≺;
a tolerance ε.

Output: [N,P, L, fail], where
N: leading nonlinear part;
P: pivots (inequations);
L: leading linear part;
fail: true if witness sets are not reduced.
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[N (0), P (0), L(0)] := riflin(S,≺)
W (0) := WitnessSet(N (0), ε)
Repeat from j = 1

Q(j) := N (j−1) ∪ P (j−1) ∪ L(j−1) ∪D(N (j−1))
[N (j), P (j), L(j)] := riflin(Q(j),≺)
if hd(L(j−1)) 6= hd(L(j)) then

[N (j−1), P (j−1), L(j−1)] := [N (j), P (j), L(j)];
else

W (j) := W (j−1);
Repeat p in N (j)\N (j−1)

W new := MembershipTest(W (j), p, ε);
if W new 6= ∅ then

W (j) := WitnessSet(p, ε);
W (j) := Intersect(W new,W (j));

end if;
end loop;
if W (j) = W (j−1) then

fail :=not IsReduced(W (j−1), ε);
return [N (j−1), P (j−1), L(j−1), fail];

end if;
j := j + 1;

end if;
end loop.

In practice HybridRif will abort reporting failure as soon as a witness set shows
intolerably high condition numbers.

2.4.4 Termination Conditions

Algorithm IsReduced is implemented using estimates for the inverse condition num-
ber of the Jacobian matrix at the witness points.

A standard Noetherian argument, which is a minor variation of that in [18], shows
that the linear part L(j) must eventually stabilize. Further it is easily shown that

hd(L(j)) = hd(L(j−1)) ⇒ P (j) = P (j−1). (2.4.1)

The condition MembershipTest(W (j−1), N (j), ε) = ∅ used to terminate HybridRif
corresponds to the symbolic test involving the difference of two varieties:

V (N (j))\V (P (j−1)) ⊇ V (N (j−1))\V (P (j−1)). (2.4.2)

As HybridRif will fail when it encounters singularities or ill-conditioned repre-
sentations, its termination is not absolute as is the case when the symbolic condi-
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tions (2.4.1) and (2.4.2) are applied. However, when HybridRif terminates without
failure, the final witness set can be certified as follows: every witness point is an
approximate zero in the sense of [2].

2.5 Optimizations

It will be advantageous, but not theoretically necessary, to remove redundant equa-
tions. A polynomial is redundant if after its removal the geometry of the solution
set has not changed. By repeated calls to Algorithm 2.4.1, we can implement the
following.

Algorithm 2.5.1. Nnew = Shrink(N,W, ε)
Input: N a set of polynomials;

W witness set representing N−1(0);
ε is tolerance for Algorithm 2.4.1.

Output: Nnew cuts out same solution set as N .

The number of paths followed by homotopy methods is perhaps the most im-
portant aspect of their computational cost. In the case of dense polynomial square
systems, this number is given by the Bézout degree. As a system is prolonged (dif-
ferentiated) the number of equations can grow dramatically and the product of the
degrees of these equations (their Bézout degree) can grow even more explosively.
Thus methods for decreasing this number are a priority in the development of ho-
motopy methods for pde systems.

It is also advantageous to fix the value of the independent variables to random
numbers: x = x̂ where x belongs to the space of independent variables X. Extended
graphs of solutions of pde belong to components which are fibred over X. This condi-
tion is ensured for each component of V (N) ⊆ Jq that is fibred over X. Let πX denote
the projection onto X, that is πX(x, v) = x where v = (u, ..., u

q
). Thus at neighbor-

hoods O(x̂, v̂) of regular points (x̂, v̂) ∈ V (N) we have dim (πXO(x̂, v̂) ∩ V (N)) =
dim X. Equivalently we have dim πXT(x̂,v̂)V (N) = dim X = n where T(x̂,v̂)V (N) is
the tangent space to V (N) at (x̂, v̂).

Suppose we are given a system with variety C and a hyper-surface S. We can
already test S ⊇ C, by use of the algorithm MembershipTest and substitution
of generic points, but the number of continuation paths can be impractically large.
Instead we set x = x̂, Cx̂ = {(x, v) ∈ C : x = x̂} = `x̂ ∩ C and Sx̂ = {(x, v) ∈
S : x = x̂} = `x̂ ∩ S where `x̂ = {(x̂, v)} is a linear space. By application of
MembershipTest and substitution of generic points we can determine if Sx̂ ⊇ Cx̂

by following far fewer continuation paths. In general however this does not necessarily
imply S ⊇ C. For example consider S = {(x, u) : (x − 3)(u − 1) = 0} and C =
{(x, u) : (u − 2) = 0} then with x̂ = 3, Sx̂ ⊇ Cx̂, but S 6⊇ C. But note that
components of form such as x− 3 = 0 are not fibred over X and are not of interest
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for pde, since they imply that the ‘independent variables’ are instead dependent
on each other. Such non-fibred components are avoided, with high probability, by
setting x = x̂.

Assume C has only one component fibred over X and Sx̂ ⊇ Cx̂. If S 6⊇ C, then
C ∩ S is a proper algebraic subset of C [21] which means dim C > dim (C ∩ S) and
since C is fibred over X, Cx̂ is not empty. Therefore dim Cx̂ > dim (C ∩ S ∩ `x̂) =
dim (Cx̂ ∩ Sx̂), contradicting Sx̂ ⊇ Cx̂, so S must contain the whole component of
C. This technique can often dramatically decrease the Bézout bound of the system
and number of paths for the witness set by homotopies in MembershipTest. Note
that the degree d of a pde, when the independent variables are fixed to constants,
is invariant under prolongation. Hence the Bézout degree of the prolongation of a
single pde, is dN where N is the number of pde in the prolongation.

2.6 Examples

2.6.1 Illustrative Example

The simple illustrative system (3.2.2) with r = 2 has

S := [uyy − uxy = 0, u2
x + ux − u = 0] (2.6.1)

on entry into HybridRif. We assume the ranking is given by (2.2.3). Since the
independent variables x, y do not appear explicitly they are not used in dimension
counts.

At the first iteration, applying riflin to S yields the single leading linear pde in
the solved form L(0), and a single leading nonlinear pde N (0):

N (0) P (0) L(0)

u2
x + ux − u = 0 ∅ uyy = uxy

(2.6.2)

We first calculate D(N (0)) = [2uxuxx + uxx − ux, 2uxuxy + uxy − uy] then

Q(1) = L(0) ∪ P (0) ∪N (0) ∪D(N (0)) (2.6.3)

and apply riflin to Q(1) to obtain

N (1) P (1) L(1)

u2
x + ux − u = 0 (2ux + 1) 6= 0 uyy = uy

2ux+1

u2
y − uyux = 0 uxy = uy

2ux+1

uyux − u2
y = 0 uxx = ux

2ux+1

(2.6.4)

We remove the obvious duplicate equation in N (1) by a simple implementation of
Algorithm 2.5.1 although this is not necessary for the correctness and termination of
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HybridRif. Next we check whether the leading linear part is stable or not. Since
hd(L(1)) = [uyy, uxy, uxx] 6= hd(L(0)) = [uyy] we return to the beginning of the major
loop. We first compute

D(N (1)) = [2uxuxx + uxx − ux, 2uxuxy + uxy − uy,

−uxy(ux − uy)− uy(uxx − uxy),

−uyy(ux − uy)− uy(uxy − uyy)] (2.6.5)

then Q(2) = L(1) ∪ P (1) ∪ N (1) ∪D(N (1)). Next riflin is applied to Q(2) which after
removing redundant equations gives:

N (2) P (2) L(2)

u2
x + ux − u = 0 (2ux + 1) 6= 0 uyy = uy

2ux+1

uyux − u2
y = 0 uxy = uy

2ux+1

uxx = ux

2ux+1

(2.6.6)

Here hd(L(2)) = hd(L(1)), so the membership test is applied to N (2) to test
V (N (2))\V (P (2)) ⊇ V (N (1))\V (P (1)).

First we compute the witness set of each polynomial in N (1) in (u, ux, uy)-space
by WitnessSet. There are two paths to be followed for each polynomial. Then
the witness set W (1) for N (1) is computed by Intersect, yielding four witness points
resulting from tracking 4 paths. During the application of MembershipTest points
in W (1) are evaluated in the system N (2). Since IsReduced (W (1), ε) = true and
MembershipTest(W (1), N (2), ε) = ∅, the termination conditions are met and the
algorithm returns [N (1), P (1), L(1)].

For this example it can be checked that the outputs of HybridRif and the fully
symbolic algorithm rifsimp are the same. In Section 2.6.2 an example is given where
the outputs of HybridRif and rifsimp differ.

Comparison with a Numerical Geometrical Completion Method: Here
we compare HybridRif with a numerical geometrical completion method [1, 7, 14]
which is a variation of the symbolic Cartan-Kuranishi method [13, 20]. In [7] the
first application of the interpolation-free method of [14] is given to the example
system above. The method when applied to an input system R involves computing
dim π`DkR where π : Jq → Jq−1 is the usual projection until the criteria of projected
involution [1] are satisfied. The output of the method of [7] consists of

φ1 = 0, φ2 = 0,

Dx(φ
1) = 0, Dy(φ

1) = 0, Dx(φ
2) = 0, Dy(φ

2) = 0,

Dxx(φ
2) = 0, Dxy(φ

2) = 0, Dyy(φ
2) = 0 (2.6.7)

where R = [φ1 = uyy − uxy = 0, φ2 = u2
x + ux − u = 0] is the input system above. In
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[7] the following dimensions are computed using homotopy continuation:

dim(R) = 2 dim(DR) = 1 dim(D2R) = 1

dim π(DR) = 1 dim π(D2R) = 1

dim π2(D2R) = 1 (2.6.8)

and show π(DR) is an involutive system. In the computations, the worst Bézout
number that appears is 64 which is much bigger than 4, the number of continuation
paths that had to be followed in the application of HybridRif above.

2.6.2 System for Discrete Symmetries

Reference [15] solves the problem of determining the full diffeomorphism pseudogroup
of point transformations (x, u) 7→ (x̂, û) of the form x̂ = X(x, u), û = U(x, u), leaving
invariant the ode

uxx =
1

x
ux +

4

x3
u2. (2.6.9)

Requiring that these transformations leave the ode invariant leads [15] to a sys-
tem of nonlinear pde for the unknown functions X, U :

4U2X3
u −X3XuUuu + X3UuXuu + X2UuX

2
u = 0,

X2UxX
2
u + 2X3UuXxu −X3XxUuu − 2X3XuUxu + 2X2UuXxXu

+12U2XxX
2
u + X3UxXuu = 0,

x3X3UxXxx − 4u2X3UuXx − x3X3UxxXx + x3X2UxX
2
x (2.6.10)

+4u2X3UxXu + 4x3U2X3
x = 0,

2xX3UxXxu + X3UxXu − xX3UxxXu + 2xX2UxXxXu −X3UuXx

+xX2UuX
2
x − 2xX3UxuXx + xX3UuXxx + 12xU2X2

xXu = 0

augmented with the condition that the Jacobian of the transformation does not
vanish: XxUu −XuUx 6= 0.

Application of the HybridRif Algorithm with the ranking graded first by total
order of derivative, then with ∂u ≺ ∂x and finally lexicographically with U ≺ X, i.e.:

U ≺ X ≺ Uu ≺ Xu ≺ Ux ≺ Xx ≺ · · · (2.6.11)
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gives the leading linear system

Xxx =
6 X3 − 5 x2XxUuX − x3UuXx

2

5x3XUu

, Xu = 0

Uxx =
(
20 x3U2UuXx

3 − 20 u2X3Uu
2Xx − 5 x2UuX

3UxXx

+4 x3UxX
2UuXx

2 + 6 UxX
5
)
/(5x3UuXxX

3)

Uxu =
2 x3UuXx

2 − 5 x2XxUuX + 3 X3

5x3XXx

Uuu = 0 (2.6.12)

together with the condition Uu 6= 0, Xx 6= 0. The constraint leading nonlinear equa-
tions found by HybridRif are:

x3UuXx
2 −X3 = 0,

−200 x3uXx
2X3Uu

2 + 200 x6Xx
4Uu

2U − 27 x3UuX
4Xx

2 + 36 X7

−25 x4Uu
2X3Xx

2 + 16 x6Uu
2XXx

4 = 0,

−200 x6Xx
3Uu

2Ux − 16 x6Uu
2Xx

4 + 12 x3UuX
3Xx

2 + 90 xX5Uu

−1200 x3X2UuXx
2U + 680 x3uXx

2X2Uu
2 + 85 x4Uu

2X2Xx
2

+720 uX5Uu − 171 X6 − 200 x2uXxX
3Uu

2 = 0,

432 uX10 + 792 x4X7Xx
2Uu + 204 x7X4Xx

4Uu
2 − 60 x6X5Xx

4Uu

−3600 x3X7Xx
2U − 200 x9X2Xx

5Uu
2Ux + 200 x4uX6Xx

2Uu
2

−1200 x2uX8XxUu − 2400 x6X5Xx
3UxUu − 2400 x6X4Xx

4UuU

+1632 x6uX4Xx
4Uu

2 + 6336 x3uX7Xx
2Uu − 800 x9Xx

6Uu
2U2

−1400 x5uX5Xx
3Uu

2 + 800 x6u2Xx
4Uu

3X3 − 990 x3X8Xx
2

+54 xX10 = 0 (2.6.13)

Application of the initial data algorithm [29] to the leading linear equations (2.6.12)
above yields the following initial data

X(x0, u0) = X0, U(x0, u0) = U0,
Xx(x0, u0) = X0

x, Ux(x0, u0) = U0
x , Uu(x0, u0) = U0

u .
(2.6.14)

Then the existence and uniqueness theorem [18] implies that formal power solutions
to the system exist at points where the constants X0, U0, X0

x, U0
x , U0

u satisfy the
constraint nonlinear equations (2.6.13).

In this example N (1) consists of the first 3 nonlinear equations in (2.6.13) with
degrees 6,13,12 respectively, and the corresponding linear part (L(1)) becomes stable.
Next the witness set is constructed for N (1). Next N (2) is obtained with all 4 non-
linear equations of (2.6.13) with degrees 6, 13, 12 and 19 respectively. Application
of MembershipTest shows that the fourth equation is geometrically new so the



52

witness set of its intersection is computed using Intersect.

Because of the high total degree in this example, we use techniques to decrease the
number the continuation paths followed by phc. The first technique is to specialize
the independent variables to random fixed values as discussed in Section 2.5. In
particular the degrees of the uncovered constraints (2.6.13) decrease dramatically
from 6, 13, 12, 19 to 3, 7, 6, 10. A second key to success, was to use mixed volumes
instead of Bézout Bounds. In particular in the application of diagonal homotopies,
this decreased the number of paths needing to be followed for N (1) from 126(= 3·7·6)
to 3 and the number of paths for N (2) from 1260(= 3 · 7 · 6 · 10) to 4.

Application of diagonal homotopies showed the existence of 1 dimensional com-
ponents for the constraint nonlinear system (3 dimensional if we include x, u in the
dimension count). This agrees with the explicit computations in [15]. Denote by
Glie the Lie subgroup of symmetries in a connected component of the identity of the
full symmetry group G of the ode. Our dimensional computation correctly reveals
the dimension of Glie as 1 as determined by a more conventional linearized calcu-
lation in [15]. The degree determined by our calculations is 4 and corresponds to
the cardinality of G/Glie which is in agreement with [15] (indeed there it is shown
that the factor group is isomorphic to Z4). Further calculations using phc on the
full constraint nonlinear system reveals that there are 4 degree one, one dimensional
components (fixing x, u to constants) whose equations can be interpolated if desired.
These computations are again in agreement with the explicit ones in [15].

Interestingly high degree singular components of natural geometric origin violat-
ing the invertibility condition XxUu−XuUx 6= 0 arose in our calculations and initially
caused some numerical difficulties. Such components were excluded by inclusion of
the invertibility condition. For the system above this is equivalent to XxUu 6= 0,
since Xu = 0. Consequently we also have X 6= 0 and U 6= 0.

Comparison with a Numerical Geometrical Completion Method: We
compare HybridRif with a numerical geometrical completion method [1, 7, 14]
which is a variation of the symbolic Cartan-Kuranishi method [13, 20]. The method
when applied to an input system R (2.6.13) involves computing dim π`DkR un-
til the criteria of projected involution [1] are satisfied. The system R has Bézout
number 12288 which is reduced to 1875 after substituting random values for the in-
dependent variables. The prolongation of DR which has 18 equations with Bézout
number 50096498540544. After specializing the independent variables it reduces to
177978515625 which was still too high.

Comparison with the rifsimp symbolic algorithm : Application of rifsimp
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with the ranking (2.6.11) yielded the leading linear system:

Ux,x = (−16x2uU2 − 4x3U2 − 128xu2U2 +

−384u2x2UxU − 16x4UxU − 160x3uUxU +

+4x2uXU + 16xu2XU + 128u3XU − 3x4XUx +

−80u2x2UxX − 32x3uUxX)(x3(4u + x)2(X + 8U))

Xx = (U2(4U + X)(8u + x))/

(u(32uU2 + 4xU2 + 8x2UxU + 32uxUxU

+8uXU + xXU + 4xuXUx + x2UxX))

Xu = 0

Uu =
X + 8U

8u + x
(2.6.15)

with the leading nonlinear equations

32u3XU − 64u2x2UxU − 32xu2U2 − 8u2x2UxX

+8xu2XU − 32u2x3U2
x − 2x3uUxX − 16x3uUxU

+x2uXU − 12ux4U2
x − 8x2uU2 − x3U2 − x5U2

x = 0,

(uX − xU)(xX + 4uX + 4xU) = 0 (2.6.16)

and the inequations X + 8U 6= 0, X 6= 0, U 6= 0.

Unlike the example of Section 2.6.1, this differs from the result obtained by Hy-
bridRif . This discrepancy is resolved by noting that both systems define the the
same locus in jet space.

Finally we note that Hydon [8] gives an elegant and efficient method which ex-
ploits the knowledge of the Lie group Glie to considerably ease computation of the
full group G.

2.6.3 Random first order ODE

In this section we apply our symbolic-numeric approach to a class of random ode
R(ux, u) = 0 for a single dependent variable u. The efficiency of this approach
is compared with that of using the symbolic rifsimp algorithm. Differentiation of
R(ux, u) = 0 gives Ruxuxx + Ruux = 0. The following cases are easily obtained:

Case 1: uxx = −Ru ux

Rux
, Rux 6= 0, R(ux, u) = 0

Case 2: S2 = {R = 0, Ru = 0, Rux = 0}, ux 6= 0
Case 3: S3 = {R(0, u) = 0, Rux(0, u) = 0}, ux = 0

(2.6.17)

For random differential polynomials R, system S2 in (2.6.17) consists of two random
polynomials in one variable and system S3 in (2.6.17) consists of three random poly-
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d 2 3 4 5 6 7 8 9
ram:Z 0.24 0.6 1.4 2.5 8.3 16.5 128.7 inc

ram:C 3.40 6.8 11.2 20.7 62.2 inc inc inc

Table 2.1: rifsimp memory consumption (MB) applied to a class of random polynomial ODE
R(ux,u) = 0 with integer coefficients, and a class with complex rational coefficients.
Here d = degree(R). RAM=inc indicates the memory of machine was exhausted.

d 2 5 8 11 14 17 20
ram:Z 1.5 1.8 2.0 2.1 2.2 2.3 2.5
ram:C 1.5 1.8 2.0 2.0 2.2 2.3 2.6

Table 2.2: phc memory consumption (MB) applied to a class of random polynomial ODE
R(ux,u) = 0 with integer coefficients, and a class with complex rational coefficients.
Here d = degree(R).

nomials in two variables. For random R systems S2 and S3 will be inconsistent with
high probability and Case 1 will be the only consistent case. A full analysis of all
the singular cases for such ode is given in the classic work of Hubert [9].

Two subclasses of random ode with degrees d from 1 to 20 were considered. One
subclass had random coefficients consisting of integers between −99 and 99, and the
other random subclass had random coefficients consisting of complex numbers of the
form (a+ bi)/(max{|a|, |b|}+1) where a, b are random integers between −10 and 10.

The computations were carried out using Maple 9, and phc (release 2.3 beta)
on a 1.5 GHZ Pentium M, with 512 MB of RAM, running under Windows XP. As
shown in Table 2.1 the RAM was exhausted at relatively low degree d = 9, and this
was dramatically worse for complex coefficients where exhaustion occurred at d = 7.
As seen in Table 2.2 RAM usage by phc was dramatically lower and more stable
than that of rifsimp. While changing from random integer to complex coefficients
barely affected the RAM consumed by phc, it dramatically increased RAM usage
by rifsimp.

Degree-time statistics for rifsimp and phc are shown in Figure 2.6.1. The pos-
itive concavity of the two curves for rifsimp indicates its complexity is more than
polynomial. The approximately linear curves for phc in Figure 2.6.1 on the log-log
scale is typical for a polynomial-time method. However the worst case complex-
ity of HybridRif is at least exponential, considering its application to systems of
linear homogeneous pde in a single dependent variable. In that case its output is
isomorphic to a Gröbner Basis. Groundbreaking work on reducing the complexity
to polynomial time for ode was done by Sedglovacic [19]. The memory usage statis-
tics show the discrepancy between rifsimp and phc growing with increasing degree,
and when changing from integer to random complex coefficients. The symbolic dif-
ferential elimination program Rosenfeld Groebner had similar memory and time
behavior to rifsimp on the random class of ode.
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Figure 2.6.1: Time-Degree Statistics for a Random polynomial ODE R(ux,u) = 0 plotted on a
log− log scale. d = degree(R) and t is the time to apply the differential elimination
process using: rifsimp (comp. coeffs. ♦); rifsimp (integ. coeffs. ¤); phc (comp. coeffs.
+); phc (integ. coeffs. o).

2.7 Discussion

Our method applies to intrinsic (exact) systems of polynomially nonlinear pde and
relies on splitting the system into a leading linear subsystem and its complement.
Well-developed (linear) symbolic methods are applied to the leading linear part of the
system. The success of this strategy enables the shrinking of the number of genuinely
nonlinear equations that are dealt with by the numerical continuation methods. The
use of diagonal homotopies allows handling the constraints incrementally, exploiting
the structure of the leading nonlinear systems, and leads to a further decrease in the
number of paths to be followed. Note that one could – at least in theory – replace
the use of witness sets and diagonal homotopies in HybridRif by lifting fibers and
using geometric resolutions [10]. In contrast to Gröbner methods, the fact that
only geometrically new constraints are used means that generally fewer constraints
need to be stored than would be required to represent the ideal. In addition, the
maintenance of the constraints in their introduced form helps to preserve sparsity,
and reduce equation and coefficient growth typical of Gröbner methods. It also
allows flexibility in using alternative and sparse methods to control expression swell.
Such methods include encoding the constraints by straight line programs, or using
memory management based on ordered storage strategies [29] or directed acyclic
graph structures as used by Lecerf in his implementation of the algorithms in [10].

The methods were applied to a number of examples starting with an easy illustra-
tive example in Section 2.6.1. Secondly a system for discrete symmetries of moderate
difficulty for symbolic methods was considered. Although the output was implicit,
it illustrated that useful features of the symmetries could be extracted by the new
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hybrid methods (such as the number of discrete symmetries, and the degree of the
components of the group). On this example, HybridRif was compared with a geo-
metrical approach based on a numerical version of the Cartan-Kuranishi algorithm.
It demonstrated that far fewer continuation paths were needed by HybridRif than
the numerical geometrical method developed in earlier work.

Finally in Section 2.6.3 we considered a class of random first order ode. On
systems which are denser and of higher degree, numerical methods have an advantage
while symbolic methods can perform better on lower degree, highly structured sparse
systems. We caution that the sample size is too small to make emphatic statements.
Certainly it indicates that there is scope to improve rifsimp’s algebraic processing
by using alternative symbolic and numeric algorithms.

This paper belongs to a series initiated in [28], continued in [14] and [7], aimed
at developing “Numerical Jet Geometry”, as a subfield of “Numerical Algebraic
Geometry”. Ultimately, this development will lead to methods enabling the practical
processing of approximate input systems.
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Chapter 3

Application of Numerical
Algebraic Geometry and
Numerical Linear Algebra to PDE

The computational difficulty of completing nonlinear pde to involutive form by dif-
ferential elimination algorithms is a significant obstacle in applications. We apply
numerical methods to this problem which, unlike existing symbolic methods for exact
systems, can be applied to approximate systems arising in applications.

We use Numerical Algebraic Geometry to process the lower order leading non-
linear parts of such pde systems. The irreducible components of such systems are
represented by certain generic points lying on each component and are computed by
numerically following paths from exactly given points on components of a related
system. To check the conditions for involutivity Numerical Linear Algebra tech-
niques are applied to constant matrices which are the leading linear parts of such
systems evaluated at the generic points. Representations for the constraints result
from applying a method based on Polynomial Matrix Theory.

Examples to illustrate the new approach are given. The scope of the method,
which applies to complexified problems, is discussed. Approximate ideal and differ-
ential ideal membership testing are also discussed.

3.1 Introduction

Over and under-determined (non-square) systems of ode and pde arise in applica-
tions such as constrained multibody mechanics and control systems. For example,
differential-algebraic equations (dae) arise from constrained Lagrangian mechanics
(see [1] and the references therein).

Much progress has been made in exact differential elimination methods, theory
and algorithms for polynomially nonlinear systems of pde [3, 8, 14, 20, 19]. Such
methods enable the identification of all hidden constraints of pde systems and the
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computation of initial data and associated formal power series solutions in the neigh-
borhood of a given point. Algorithmic membership tests (specifically in the radical
of a differential ideal) can be given [3, 8]. They can ease the difficulty of numerical
solution of dae systems [1].

This paper is a sequel to [17] and [18] in which theory and methods are de-
veloped for using numerical homotopy continuation techniques in the differential
elimination process. In [17] such methods were first introduced by combining the
Cartan-Kuranishni approach with homotopy methods to identify missing constraints
for pde. Our tool to numerically solve polynomial systems is homotopy continuation.
When applied to pde we stress that the solutions obtained by Homtopy continua-
tion are not graphs of solutions of the pde but instead zeros of the functions defining
the pde. Homotopy methods define families of systems, embedding a system to be
solved in a homotopy, connecting it to a start system whose solutions are known.
Such methods track the paths defined by the homotopy, leading to the solutions.

In [23], a new field “Numerical Algebraic Geometry” was described which led to
the development of homotopies to describe all irreducible components (all meaning:
for all dimensions) of the solution set of a polynomial system. Witness Sets are the
key data in a numerical irreducible decomposition. A witness set for a k-dimensional
solution component consists of k random hyperplanes and all isolated solutions in
the intersection of the component with those hyperplanes. The degree of the solution
component equals the number of witness points. Witness sets are equivalent to lifting
fibers in a geometric resolution [10].

During the application of the Cartan-Kuranishi approach all equations are dif-
ferentiated up to the current highest derivative order, resulting in potentially large
numbers of pde. These pde are treated as polynomial equations in jet space, and
their large number implies that the number of continuation paths that must be
tracked can be impractically large in a direct application of Homotopy methods.

A hybrid method is introduced in [18] to exploit the structure of such systems
to make progress in dealing with the difficulty above. However the hybrid method
uses exact linear algebra (Gaussian Elimination) to process the leading linear part
of such systems, and so is not applicable to approximate systems since it is unstable.
In this paper we instead use stable methods from Numerical Linear Algebra.

In particular we use a numerical version of the geometric Cartan-Kuranishi method.
This yields a coordinate independent split between leading linear and nonlinear sys-
tems, which grades only by total order of derivative, and not within derivatives of
the same order. This independence aids numerical stability. Since the derivatives
of leading nonlinear equations are leading linear with respect to highest order jet
variables, the new pde are viewed as linear equations corresponding to a coeffi-
cient matrix with polynomial entries. We apply the Singular Value Decomposition
(a fundamental technique of Numerical Linear Algebra) to the null spaces of these
polynomial matrices. This construction is based on a modification due to [2] of the
classical criterion of involution for pde (see [9, 15, 20] for the classical criterion).
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3.2 PDE in Jet Space

There are several theoretical approaches to systems of pde such as differential al-
gebra, exterior differential systems and the so-called formal theory built on the jet
bundle formalism. Jet space methods associate a given pde system with a locus of
points in a Jet space. Such methods concern the geometrical study of this locus and
its relationship with the solutions of the differential equations [9, 15, 20].

3.2.1 Jet Space and Jet variety of a PDE

Our tools are applicable to systems of polynomially nonlinear pde with complex-
valued variables and solutions. Consider a polynomially nonlinear system of pde
R = (R1, . . . , Rl) = 0 with independent variables x = (x1, . . . , xr) ∈ Cr and complex-
valued dependent variables u = (u1, . . . , us). We define a multi-index q as an r-tuple
[q1, q2, ..., qr] with qi ∈ N. The order of the multi-index q, denoted |q|, is given by
the sum of the qi. As in [3, 20] solutions and derivatives are replaced by formal
(jet) variables. In particular, denoting the p-th order jet variables corresponding
to derivatives as u

p
, the jet variety (locus) of a q-th order system in the jet space

Jq(Cr,Cs) ≈ Crq is

V (R) := {(x, u, u
1
, . . . , u

q
) ∈ Jq : R(x, u, u

1
, ..., u

q
) = 0} . (3.2.1)

Here rq = r+s
(

r+q
q

)
is the number of independent variables, dependent variables and

derivatives of order less than or equal to q. We will use the shorthand Jq(Cr,Cs) ≡
Jq.

EXAMPLE 3.2.1. We use the following running example [16, 7]:

∂2u(x, y)

∂y2
− ∂2u(x, y)

∂x∂y
= 0,

(
∂u(x, y)

∂x

)2

+
∂u(x, y)

∂x
− u(x, y) = 0 . (3.2.2)

This is a differential polynomial system R = (uyy − uxy, u
2
x + ux − u) = 0 in the jet

space of second order J2 ≈ C8 and has jet variety V (R) = {(x, y, u, ux, uy, uxx,
uxy, uyy) ∈ J2: uyy − uxy = 0, u2

x + ux − u = 0}.

3.2.2 Prolongation and Projection

There are two fundamental operations, prolongation and projection, to manipulate
the locus in Jet space. We give a brief description of them here. For details see [15].
Before we define prolongation of a pde system, we introduce the operator of Formal
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Total Derivation

Dxj
=

∂

∂xj

+
s∑

`=1

u`
xj

∂

∂u`
+ · · · .

Given a list of equations R = 0, D(R) is the list of first order total derivatives of all
equations of R with respect to all independent variables:

D(R) := {(x, u, . . . , u
q+1

) ∈ Jq+1 : R = 0, Dxi
Rk = 0} . (3.2.3)

It forms a single prolongation of R.
For example, let R = u2

x + ux − u = 0, then:
D(R) = {(x, y, u, ux, uy, uxx, uxy, uyy) ∈ J2 :

u2
x + ux − u = 0, 2uxuxx + uxx − ux, 2uxuxy + uxy − uy}.

Prolongation extends the locus of a pde system from lower order jet space to higher
order space. An inverse operation, the so-called projection, maps the locus from
higher to lower order jet space.

Definition 3.2.1 (Projection). Given a jet variety R in Jq, a single projection is:

π(R) := {(x, u, u
1
, . . . , u

q−1
) ∈ Jq : ∃ u

q
, R(x, u, u

1
, ..., u

q
) = 0}.

Let TpV (R) denote the tangent space to V (R) at a given point p ∈ V (R) andN (p)
be a neighborhood of p. We restrict to the case where dim πq (N (p) ∩ TpV (R)) = r,
that is the r variables x are independent and dim is the dimension as a complex
manifold. Here πq : Jq → Cr is the projection onto the space of variables x ∈ Cr.

3.2.3 Formally Integrable and Involutive Systems

The symbol of a system of pde R of order q is the Jacobian of its equations with
respect to the highest derivatives:

SR :=
∂R

∂ u
q

. (3.2.4)

The computational characterization for the symbol being involutive is that in a δ-
regular coordinate system

rank SDR =
r∑

k=1

kβ
(q)
k . (3.2.5)

Alternatively Spencer’s involutivity test based on homology groups (and imple-
mentable using numerical linear algebra) can be used and this avoids the difficulty
of δ-irregular coordinate systems. See [15, 20] for details and the definition of the
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characters β
(q)
k . The most important properties of an involutive system of pde are

that πDR = V (R) and the symbol of R is involutive. An involutive system is also
a formally integrable system. That is for any k > 0:

(πD)(DkR) = V (DkR) . (3.2.6)

Remark 3.2.1. In this paper S means the Zariski Closure of the set S which is the
intersection of all varieties containing S. Since the projection of a variety may not
be a variety, it is necessary to consider the Zariski closure. It is easy to show that
πDR = V (R) implies πDR = V (R).

3.2.4 Cartan-Kuranishi Completion

The full geometric method to complete systems of partial differential equations is
the Cartan-Kuranishni algorithm [19, 20]. This method prolongs the system to
order q + 1, then projects to order q to test for the existence of new constraints.
This is continued until no new constraints are found. If the symbol of the resulting
q-th order system is involutive, then the method has terminated and the system is
involutive. If the symbol is not involutive, the system is prolonged until its symbol
becomes involutive. The system is again tested for the existence of constraints by
prolongation and projection. See [19, 20] for the relevant definitions. In particular
the main iteration involves comparing R and πD(R). Note in general the locus
of R contains that of πDR. A probabilistic method to check the involutivity of
the symbol using Numerical Linear Algebra, and in particular the Singular Value
Decomposition, is given in [26, Section 6]. Numerical difficulties can occur, if there
are multiplicities, and that case is under investigation.

3.3 Polynomial Matrix

In this section we will exploit the linearity of the pde which always appears after
prolongation. Suppose R = (R1, . . . , Rl) = 0 is a polynomially nonlinear system
of pde with independent variables x = (x1, . . . , xr) and dependent variables u =
(u1, . . . , us). If the order of R is q, then we can represent the prolongation of R as:

DR = {S· u
q+1

+ r, R} (3.3.1)

where S is called the Symbol Matrix of DR. The corresponding augmented matrix
is denoted by [S, r]. Obviously they are matrices with polynomial coefficients.

We briefly review some polynomial matrix theory and the associated results on
rank and null-space computation. We let R denote the polynomial ring K[z] in this
paper, where z = (z1, ..., zs) and the field K can be R or C. The ring R is an integral
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domain and also is a unique factorization domain. Q(R) is the quotient field of R
or say rational functions in the variables z1, ..., zs.

Definition 3.3.1. The set of all m× n matrices with entries from R is denoted by
Mm×n(R). Each member in Mm×n(R) is called a polynomial matrix over R.

3.3.1 Rank of Polynomial Matrix

Consider the column vectors of a polynomial matrix A = (α1|α2|...|αn) ∈ Mm×n(R)
and assume yk ∈ R for k = 1, ..., n. If

∑m
k=1 ykαk = 0m×1 implies yk = 0 for

k = 1, ..., n, then these vectors are said to be linearly independent. Otherwise these
vectors are said to be linearly dependent.

Definition 3.3.2 (Rank). The (column) rank of polynomial matrix A ∈ Mm×n(R)
is the maximum number of linearly independent column vectors of A.

Several other frequently used definitions of rank are equivalent to our definition
over a polynomial ring R since it is an integral domain. For example in the book [4],
(algebraic) rank is generalized to arbitrary commutative rings using ideals generated
by the minors.

Theorem 3.3.1. Let A ∈ Mm×n(R). Then rank(A) = k if and only if any t × t
minor of A is zero when t > k and there exist some k × k nonzero minors.

By Theorem 6.2.1, the rank of a polynomial matrix with coefficient field K = R
will not change when the K is extended to C. Moreover the rank evaluation of a
polynomial matrix can be reduced to a constant matrix by choosing a random point
in Cs. In Sommese and Wampler’s book [23], the concept of a generic point over
C is introduced, which plays an essential role in “Numerical Algebraic Geometry”.
Suppose some property P is satisfied everywhere except on a proper algebraic subset
U of an irreducible variety V . We call the points in V \U generic points. Then
dim V > dim U , so V \U is dense in V (with the standard Lebesgue measure 1). So
we say P holds with algebraic probability one for a random point of V . The following
proposition easily follows:

Proposition 3.3.1. For any generic point z0 ∈ Cs we have rank(A) = rank(Az0).

Remark 3.3.1. In Numerical Algebraic Geometry generic points in Cs can be pro-
duced by choosing points in Cs randomly. With probability 1, the rank of a polynomial
matrix is equal to the rank of the matrix evaluated at some random point (actually
this result is also valid in R by Schwartz-Zippel theorem). That is, this will fail only
on some algebraic variety with standard Lebesgue measure 0 in the whole space. This
reduces the cost of rank computation dramatically.

The witness points of a variety V yield a finite number of generic points on each
irreducible component of V . This set is denoted by W (V ). Note that the witness
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points of a polynomial system R is W (V (R)) and shortly we denote it by W (R). A
useful result in [18] is that each point in W (V ) is contained in another variety V ′

implies V ⊆ V ′ with probability 1.

3.3.2 Computing the Null-space

Given a polynomial matrix A ∈ Mm×n(R), there exist r = n − rank(A) linearly
independent polynomial vectors {fi} such that Afi = 0m×1. Let F := [f1, ..., fr],
then AF = 0m×r. In particular F generates a linear space of A over quotient field
Q(R), which is called the null-space of A over Q(R) and is denoted by NullSpace(A).
F is called a basis of NullSpace(A). Note that F may not be a module basis of the
Syzygy module of A. In this section, we propose a method to compute F in R by
using Sylvester Matrices (see [27] for more details).

There is a natural bijection: Mm×n(K[z]) ↔ Mm×n(K)[z], where K[z] is the
polynomial ring R and Mm×n(K) is the matrix with entries in the field K. Hence,
equivalently we can consider a polynomial matrix as a polynomial with matrix coef-
ficients, a so-called matrix polynomial.

Let T (d) =
(

s+d
d

)
(for notational simplification the parameter s, which is the

number of variables in the polynomial ring, is omitted). The polynomial matrix A
can be written in terms of increasing total degree order of monomials of z: A(z) =∑T (d1)

i=1 Aiz
αi . Here d1 is the maximum total degree of the entries of A and T (d1) is

maximum number of terms of A(z). Assume f ∈ N has degree d2. Similarly we have

f(z) =
∑T (d2)

j=1 fjz
βj . Hence

A(z)f(z) =

T (d1+d2)∑

k=1

Ckz
γk = 0m×1 (3.3.2)

where Ck :=
∑

αi+βj=γk

Aifj. This equation is equivalent to each coefficient Ck = 0.

Naturally, we write the coefficients of f(z) as a vector: vf := [f1, ..., fT (d2)]
t. It is

not hard to find a matrix MA whose entries are the coefficients of A(z), such that

M
mT (d1+d2)×nT (d2)
A · vnT (d2)×1

f = 0mT (d1+d2)×1 . (3.3.3)

We call MA the Sylvester Matrix. We make the relations above clear by a diagram:

f
φ−→ f(z)

ψ−→ vf , f
ω−→ vf

A
φ−→ A(z)

ψ−→ MA, A
ω−→ MA (3.3.4)

where φ, ψ are bijections and ω = ψ ◦ φ.
We can use the SVD to compute the null-space of the Sylvester matrix MA,

denoted by NA, then construct vf and f from NA. If fi is in the null-space of A, then
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vfi
must be in NA. Note that dim NA can be larger than r. First we choose lowest

degree columns from NA which are linearly independent vectors over the polynomial
ring, denoted by F . Second we ascend from lower degree to higher degree columns
to check the linear independency (using rank estimation). If a column is linearly
independent it is included in F . Finally we obtain an updated F with rank r, which
is a basis.

The remaining issue is the estimation of a degree bound for a null-space basis
to guarantee the termination of the algorithm. Henrion [6] gave a bound for such
bases. Using the Laplace Theorem in [4] we also give a similar result which easily
follows the standard linear algebra argument about the degree of the determinant of
a polynomial matrix (see [27] for details).

Proposition 3.3.2. Suppose A ∈ Mm×n(R) is a polynomial matrix. Suppose rank(A) =
k < n, r = n − k, and deg(Coli(A)) is the maximum degree of all the elements
in the i-th column of A. We can always change the order of columns to satisfy
deg(Col1(A)) > deg(Col2(A)) > · · · > deg(Coln(A)). Then there exists G which is
a basis of the null-space of A, such that

degree(G) ≤ dA =
k∑

i=1

deg(Coli(A)) . (3.3.5)

If each degc(Ai) = d, then d1 = d and d2 = (n − 1)d. So the maximum size of
MA is m

(
s+nd

s

)× n
(

s+nd−d
s

)
.

3.4 Numerical Completion Methods

In this section we will present a numerical completion method based on polynomial
matrix computation. In order to use generic points to ease our computation, we
extend the coefficient field to C. Note that the key step in completion of a pde system
is to determine whether R is equal to πDR or not. The projection of a variety is
not necessarily a variety. So we compute the Zariski Closure of the projection. But
our method will fail to detect the singular cases of a pde system when the Zariski
closure has more points than the projection. Here we only consider the generic case
and show that this problem can be reduced to rank computation.

To avoid any order dependence on the independent variables we propose a mod-
ified definition of leading linear part of pde. An equation is modified leading linear
(respectively, modified leading nonlinear) if it is linear (respectively, nonlinear) in
the jet variables u

q
, where q is the order of this equation (this (partial) ranking is:

u
0
≺u

1
≺ ... ≺u

q
≺ ...).

The definition of modified leading linear and nonlinear pde partitions R into
two subsystems, the leading linear subsystem and the leading nonlinear subsystem
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respectively. Then we compute the witness sets of the leading nonlinear subsystem
by (diagonal) homotopy continuation methods [22, 18]. The leading linear subsystem
will be processed by numerical differential elimination methods using witness sets.

3.4.1 Using Witness Points

Here we first use witness points to detect whether there are some new constraints
in lower order jet space. If they exist, then we find them by numerical differential
elimination methods introduced in the next section. The advantage of this strategy
is that it can avoid useless elimination of the strategy in [18] whose cost is much
higher than checking the existence of new constraints.

Theorem 3.4.1. For any p ∈ W (R), V (R) = πDR if and only if rank(Sp) =
rank([Sp, rp]).

Proof: Suppose for any p ∈ W (R), we have rank(Sp) = rank([Sp, rp]). At point
p, there exists at least one solution up of S· u

q+1
+ r = 0, so (p, up) must be in

V (DR). Hence p ∈ πDR. This is true for any generic point of R, so V (R) ⊆ πDR.
Consequently V (R) = πDR.

Suppose V (R) = πDR, then each p ∈ W (R) must be in πDR and π−1p ∈
V (DR). This means S· u

q+1
+ r = 0 has at least one solution at point p, so rank(Sp) =

rank([Sp, rp]).

3.4.2 Numerical Differential Elimination

Suppose there are some new constraints resulting from the leading linear equations
of DR (3.3.1). Consider a polynomial vector f of order q, such that f · S = 0, then

f · (S· u
q+1

+ r) = f · r (3.4.1)

which is a polynomial of order q. Obviously, this polynomial is also in the ideal gen-
erated by the leading linear part. To find all such polynomials in order to construct
πDR, naturally leads us to consider the null-space of St.

Theorem 3.4.2. Let F := NullSpace(St), P := rt · F then

1. The inclusion πDR ⊆ V (R) ∩ V (P ) holds, and

2. For all p ∈ W (V (R)∩V (P )), rank(Sp) = rank([Sp, rp]) implies πDR = V (R)∩
V (P ).

Proof: (1) Because F := NullSpace(St) and S· u
q+1

+ r = 0, F t · (S· u
q+1

+ r) =

F t · r = P t = 0. Hence V (DR) ⊆ V (P ) and P only involves order q jet variables, so
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πDR ⊆ V (P ). And πDR ⊆ V (R), hence (1) is proved.
(2) We only need to prove V (R) ∩ V (P ) ⊆ πDR. Because for any p ∈ W (V (R) ∩
V (P )), rank(Sp) = rank([Sp, rp]). At point p, there exists at least one solution up of
S· u

q+1
+ r = 0, so (p, up) must be in V (DR). Hence p ∈ πDR. This is true for any

generic point of V (R) ∩ V (P ), so (2) is true.

3.5 Simple Examples

Recall the simple illustrative system (3.2.2). At first differentiating R up to order 2
yields:

R(0) = {u2
x + ux − u = 0, uyy − uxy = 0,

2uxuxx + uxx − ux = 0, 2uxuxy + uxy − uy = 0} .

We can partition R(0) into a single leading nonlinear pde N (0) = {u2
x + ux − u = 0}

and 3 leading linear pde L(0):




0 (1 + 2ux) 0
(1 + 2ux) 0 0

0 −1 1







uxx

uxy

uyy


 =




uy

ux

0


 . (3.5.1)

Applying WitnessSet [18] to N (0) yields a witness set W (0) with two approx-
imate generic points in V (N (0)). Applying rank test at the witness points of W (0)

shows that there are no new constraints arising from projection. Since the symbol
matrix has full rank, the algorithm has terminated.

Actually, for this example the second order jet variables, if desired, can be ex-
pressed in terms of lower order jet variables yielding the same answer as HybridRif
[18] and the fully symbolic algorithm rifsimp [16]. However our goal is to obtain
an involutive form rather than put the system into triangular solved form. The ad-
vantage is that we can avoid computing the inverse of a symbolic matrix which in
some cases yields an unmanageably large polynomial matrix.

EXAMPLE 3.5.1 (Use of All Witness Points). The input system is 〈ut, vt − u(u −
1), u(v−1)〉. First we prolong u(v−1) once and obtain Dt(u(v−1)) = (v−1)ut+uvt.
We write the system in matrix form as:




1 0
0 1

(v − 1) u




(
ut

vt

)
=




0
u(u− 1)

0


 (3.5.2)

with the constraint u(v − 1) = 0. The witness set contains two points: (0, ṽ) and
(ũ, 1), where ũ, ṽ are some random complex floating point numbers. At (0, ṽ), the
rank of symbol matrix is equal to the rank of the augmented matrix which indicates
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that there are no new constraints in this case. At (ũ, 1), there exists a new constraint,
since the ranks are not equal. We construct the projected polynomial by computing
the null-space of the symbol matrix, which is (1− v,−u, 1). So the new constraint is
(1− v,−u, 1) · (0, u(u− 1), 0)t = −u2(u− 1). Appending the prolongation of the new
equation ((3u2 − 2u)ut) to the system, we obtain a new system in matrix form:




1 0
0 1

(v − 1) u
(3u2 − 2u) 0




(
ut

vt

)
=




0
u(u− 1)

0
0


 (3.5.3)

with constraints {u(v − 1) = 0, u2(u− 1) = 0}. This implies two cases: u = 0 which
was found before and (u, v) = (1, 1). In this case the rank test shows that there are
no new constraints. Hence our algorithm terminates.

3.6 Physical Example

Systems such as the dae below often arise in applications. Such systems of higher
index can become very challenging for symbolic differential elimination algorithms
such as rifsimp. Such algorithms attempt to triangularize the systems, and expres-
sion swell, from the inversion of densely filled symbolic matrices, can follow. We
briefly mention that the size of these matrices below can be sharply reduced when a
strategy is applied to detect constant full rank sub-matrices and reduce the number
of variables by elimination.

EXAMPLE 3.6.1 (Distillation Stages [25]). Consider the square dae system:

z1
t − f1(z

1, u, t) = 0, z2
t − f2(z

1, z2, t) = 0,

z3
t − f3(z

2, z3, t) = 0, z4
t − f4(z

3, z4, t) = 0, (3.6.1)

z4 − out(t) = 0

The unknown functions {f1, f2, f3, f4, out} are replaced with random polynomials with
degree 2. The system is prolonged to order 1 to obtain 5 equations in J1 and one
equation in J0. These 5 equations are written in matrix form and the rank test
shows there are new constraints. We construct them by null-space computation. In
the next iteration, the new equations are prolonged to order 1 and the matrix up-
dated and so on. After 5 iterations, our algorithm stops and finds 5 constraints in
J0. There are 11 equations in J1. The singular values of the symbol matrix are
[158.7, 65.1, 54.1, 25.9, .316]. So it has full rank. The largest matrix processed in this
example is 1120× 210. We also applied rifsimp to this problem using Maple 10, on
a 1.5 GHZ Pentium M, with 512 MB of RAM, running under Windows XP. After
2 hours the computation exhausted RAM and failed. Since the symbol matrix has
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an identity sub-matrix, a more efficient alternative way is to reduce the size of the
Sylvester matrix by solving the corresponding sub-system first.

3.7 Random PDE Examples

In this section we use random systems of pde to illustrate the methods developed
in this paper. By their generic form, one would expect integrability conditions to
impose new algebraic conditions in Jet space, cascading until such systems became
algebraically inconsistent. However, we have:

Theorem 3.7.1. Consider a system of s random pde: {R1, ..., Rs} in C[x, u, ..., u
q
]

with s dependent variables u1, u2, ... , us and r independent variables x1, ..., xr where
each pde has order q. Then with probability 1 the system is involutive.

Outline of Proof: The proof follows directly from the definitions in the Cartan-
Kuranishi approach.

Consider the s so-called highest class order q jet variables w corresponding to(
∂

∂xr

)q

uk and denote the remaining order q jet variables by z (see [15, 20] for the

definition of the class of a jet variable). Then SR =
(

∂R
∂w

∂R
∂z

)
and randomness

implies that det
(

∂R
∂w

) 6= 0 and rank
(

∂R
∂w

)
= s on V (R) with probability 1.

Then by the definition of class of a jet variable β
(q)
r = s, β

(q)
r−1 = · · · = β

(q)
1 = 0. In

addition it easily follows from det
(

∂R
∂w

) 6= 0 that rank (SDR) = rs. As a consequence

(3.2.5) is satisfied and rank (SDR) = rs =
∑r

1 kβ
(q)
k . Thus the symbol of the system

is involutive. Then DR is easily seen to be of maximal rank, and hence there are no
projected conditions and the system is involutive.

EXAMPLE 3.7.1 (Random Square PDE). We generate a pde system R′ randomly
as follows. First generate two random polynomial pde with degree 2:

R = {R1(ux, uy, vx, vy, u, v), R2(ux, uy, vx, vy, u, v)}

Note that R is involutive by Theorem 3.7.1. This implies the prolongation DR is
also involutive. Then we obtain our test system R′ (6 equations with order 2) using
random linear combination of DR. Since R′ has the same variety as DR it is also
an involutive system (in disguise). We show that our method can determine the
involutivity of R′.

First we verify πDR′ = R′, which requires tracing 26 homotopy paths to compute
the witness set of V (R′) (if the degree is 5, this number will be 15625). Applying the
rank test at generic points in J2 space shows there are no new constraints. The test
(3.2.5) shows that the symbol is involutive since

∑2
k=1 kβk = 2 × 2 + 1 × 2 = 6 and

the rank of the symbol matrix of DR′ is 6. This means R′ is involutive.
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Actually R′ is leading linear, which motivates us to compute πR′. Applying the
rank test at generic points in J1 space shows there are new constraints. We use our
algorithm to construct the projected equations S1, S2 in J1. They have degree 2, which
means only 4 (when the degree is 5, it is 25) homotopy paths need to be traced and
this is much more efficient. Let H = {R′,D(S1),D(S2), S1, S2}. Similarly we can
check that H is involutive. Using PHCpack [24] we verify V (S1, S2) = V (R1, R2),
which shows our algorithm finds the projected equations correctly.

When symbolic methods such as rifsimp are applied to R′, they can explode in
memory as a result of trying to triangularize (or invert) complicated high degree
polynomial matrices. Here rifsimp failed to terminate on the above systems with
degree ≥ 2, while the method of this paper easily handled systems up to degree 5 in a
few minutes of CPU time.

3.8 Experiments with Approximate Ideal Mem-

bership Testing

It is natural to wonder how some sort of approximate ideal membership testing
might be done with the output of symbolic-numeric methods. Simply following the
same strategy of exact membership testing, reducing first to a Gröbner Basis, then
finding a normal form of an expression h to test its ideal membership, will usually
be unstable.

To test membership of an expression h in a differential ideal generated by R,
instead of finding a normal form for R we use the tables of dimensions dim π`DkR.
If done exactly, when π`DkR is involutive, this information encodes the differential
Hilbert function of the differential ideal. See [20] for a discussion of the Hilbert
function of involutive systems. If an expression is not in the differential ideal, then
it must change the Hilbert function (a measure of the indeterminancy in the formal
power series solutions of the system). Thus, in our approach, if applied exactly, we
would first determine ` and k such that π`DkR satisfies the involutive dimension
criteria. Then, exact involution would be applied to the system R, h. If any of the
dimensions determining the Hilbert function at involution change, then h is not in
the differential ideal generated by R. We follow a similar strategy in the approximate
case.

EXAMPLE 3.8.1 (Differential Ideal Membership). Consider the ode

yxx + 5 yx − 6 y2 + 6 y = 0 . (3.8.1)

The symmetry vector fields ξ(x, y) ∂
∂x

+ η(x, y) ∂
∂y

generating Lie symmetries leaving
its solution set invariant have coefficients satisfying a linear homogeneous system of
pde [13]. Most computer algebra systems have programs for automatically generating
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k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
` = 0 8 8 6 4 3 2 2
` = 1 6 8 6 4 3 2 2
` = 2 6 4 3 2 2
` = 3 4 3 2 2
` = 4 3 2 2
` = 5 2 2
` = 6 2 2

Figure 3.8.1: Table of dim π`DkR for (3.8.2) with SVD tolerance 10−7. The location of the passing
of the involution test, is indicated by the box.

such systems. The symmetry defining system R associated with ode (3.8.1) is:

ξyy = 0 , 10ξy − 2ξxy + ηyy = 0 (3.8.2)

(6− 12y)η + (6y2 − 6y)(ηy − 2ξx) + 5ηx + ηxx = 0

5ξx + 18(y − y2)ξy − ξxx + 2ηxy = 0

Consider the problem of testing whether h lies in the differential ideal generated by
(3.8.2) (i.e. check if h is a consequence of the differential ideal) where:

h := x(ηxx − ηx) + y(2yξxx + ηx) + (x + 2)(y2ηyy − yηy + ηxy)

Reduction of R to a (linear) differential Gröbner Basis easily yields ηx − η, ξx +
1
2y

η, ηy − 1
y
η, ξy in a ranking dominated by total order of derivative. Reducing h with

respect to this basis yields 0, and so h lies in the differential ideal.

Instead of following this standard procedure, we first applied our symbolic-numeric
projective involutive form method [2]. We observed that the system π5D5R approx-
imately satisfies the dimension criteria for projective involution (see Figure 3.8.1).

Next, a perturbation of order 10−9 was added to h to form h̃. An SVD tolerance
10−7 was used to test approximate involution, but this time for the system R, h̃. We
found that the relevant dimensions at involution did not change. If these results were
obtained exactly then h̃ would be in the ideal generated by R. However since the
computations are approximate they only offer some evidence that some nearby exact
R̂, ĥ has ĥ in the ideal generated by R̂.

Suppose we have approximate R̃, h̃ where the Hilbert dimensions for R̃, h̃ at
involution are the same as those for R̃, using some reasonable tolerance. We then
use refinement processes to attempt to construct nearby systems R̂, ĥ which exactly
satisfy all of the dimension criteria for (exact) ideal membership.

EXAMPLE 3.8.2 (Polynomial Ideal Membership). Consider the system of polyno-



74

mials in Q[x, y]

p = x3 − y3, q = (x2 + y + 1)(x− y), (3.8.3)

f = −5 y3x + 7 x2y3 + xy4 + 12 y4 − 8 y5 − 3 y2x− 7 y2x2

−12 y3 + 3 x2 + 7 x3 + 8 x2y − 4 y2 − 4 x + yx + 4 y

It is easily exactly verified by Gröbner Basis computation that 〈p, q〉 is positive di-
mensional and that f ∈ 〈p, q〉.

To apply our approximate differential elimination methods, we exploit the well-
known bijection between pde and polynomials where monomials in x, y are mapped
to monomials in the differential operators ∂

∂x
, ∂

∂y
.

We form p̃ = p + δp, q̃ = q + δq and f̃ = f + δf where the perturbations δp,
δq, δf are randomly generated degree 3 dense polynomials with random coefficients
of order 10−9.

We apply the approximate projective involution method to p̃, q̃, with an SVD
tolerance of 10−7 and obtain the results given in Figure 3.8.2. This gives some
evidence of the possibility of a nearby projectively involutive system. To give stronger
evidence, we actually now search for an exact such nearby system. We set our search
space as the following symbolic class of polynomials in which p̃, q̃ is embedded (this
is a step where there are often many choices):

P (a) =
3∑

j+k=0

aj,k xjyk, Q(b) =
3∑

j+k=0

bj,k xjyk . (3.8.4)

So p̃ = P (a(0)), q̃ = Q(b(0)) where a(0), b(0) is the list of 10 + 10 = 20 coefficients
defining p̃, q̃.

Scott’s STLS (Structured Total Least Squares) implementation in Maple of the
method [11] is applied to p̃, q̃. In 2 iterations, it converges to a nearby system,
{p̂ = P (a(0) + δa), q̂ = Q(b(0) + δb)} (ie. δa and δb were computed numerically).
Now, with the obtained p̂ and q̂, the dimensions in the table in Figure 3.8.2 can be
recovered with tolerances roughly equal to working precision.

We apply the approximate projective involution method to p̂, q̂, f̃ with an SVD
tolerance of 10−5 and obtain the results given in Figure 3.8.2. This gives some
evidence of the possible existence of a nearby projectively involutive system. The
nearby system was chosen to consist of p̂, q̂ and F (c). Here the forms of p̂, q̂ are
fixed as p̂ = P (a(0) + δa), q̂ = Q(b(0) + δb) and F (c) is a member of the class of
polynomials:

F (c) =
5∑

j+k=0

cj,k xjyk . (3.8.5)

So, f̃ = F (c(0)) where c(0) is the initial list of its 21 defining coefficients, while the
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d = 3 d = 4 d = 5 d = 6
k = 0 k = 1 k = 2 k = 3

` = 0 8 9 10 11
` = 1 6 8 9 10
` = 2 3 6 8 9
` = 3 1 3 6 8

Figure 3.8.2: Table of dim π`DkR for R, which is of degree d = 3, given by p̃, q̃ in (3.8.3) SVD
tolerance 10−7 (& also for p̂, q̂ with tolerance 10−13). The box gives the location of
the passing of the involution test.

d = 5 d = 6 d = 7 d = 8
k = 0 k = 1 k = 2 k = 3

` = 0 10 11 12 13
` = 1 9 10 11 12
` = 2 8 9 10 11
` = 3 6 8 9 10
` = 4 3 6 8 9
` = 5 1 3 6 8

Figure 3.8.3: Table of dim π`DkR for R, which is of degree d = 5, given by p̂, q̂, f̃ with tolerance
10−5 (& also for p̂, q̂, f̂ with tolerance 10−13).The box gives the location of the passing
of the involution test.

20 coefficients of p̂, q̂ will not be altered in the following refinement step.

This time, instead of STLS, Scott’s structured Newton’s method in Maple is ap-
plied to p̂, q̂, f̃ and converges to a nearby system {p̂, q̂, f̂ = F (c(0) + δc)} in 1 itera-
tion. This new system is exactly projectively involutive (to within working precision).
Now, with tolerances about working precision, the dimensions of Figure 3.8.2 can be
recovered.

With the exact systems {p̂, q̂} and {p̂, q̂, f̂} in mind, Figure 3.8.2 and 3.8.2 can be
compared. Note that the pattern of dimensions is the same in both tables and implies
that these two systems have the same Hilbert Function. Thus f̂ ∈ 〈p̂, q̂〉.

3.9 Discussion

Our method applies to inexact systems of polynomially nonlinear pde and relies
on splitting the system into a leading linear subsystem and its complement. A
new numerical differential elimination method based on polynomial matrix solving is
applied to the leading linear part of the system. The success of this strategy enables
the shrinking of the number of genuinely nonlinear equations that are dealt with by
the numerical continuation methods.

A shortcoming of the new differential elimination method is that the size of
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matrices we need to process can be very large (see Example 3.6). Let us consider a
polynomial matrix A ∈ Mm×n(R), if each deg(Coli(A)) = d and rank of A is k, then
d1 = d and dA = kd. So the maximum size of MA is m

(
s+d+kd

s

) × n
(

s+kd
s

)
. Assume

m ≈ n and kd À s, the size of this matrix is bounded by n(k + 1)sds. We know
k < n, so the bound is ns+1ds. When s = 1, a symbolic complexity result in [21]
reports that the cost to compute the rank and null-space is the same as the cost of
multiplication of matrices Õ(n2.7d), where Õ indicates missing logarithmic factors
α(log n)β(log d)γ for three positive real constants α, β, γ. Since the Sylvester matrix
MA is always sparse with block Toeplitz structure [28] gives a numerical algorithm
with complexity O(n3d) using block LQ factorization. However when s > 1, the block
Toeplitz structure of MA is much more complicated and further study is required.

In general, when the size, degree and number of unknowns of the symbol ma-
trix are large, it is unrealistic to solve the corresponding matrix MA. However, in
many applications (e.g. multi-link pendula and Example 3.6) the symbol matrix
has a very special structure, enabling the easy solution of subsystems. If we solve
such sub-systems first, then the projected relations can be obtained directly without
polynomial matrix solving. Hence our strategy is to find well-conditioned constant
sub-matrices and substitute the corresponding solutions into the original system.

Geometric approaches have the advantage that they apply to both real (F = R)
and and complex (F = C) smooth manifolds. One of our main tools, numerical
algebraic geometry, depends on F being algebraically closed (so that a polynomial
over F always has a root in F). Indeed many of the main tools of (exact) algebraic
geometry, although algorithmically powerful, suffer from the same restriction. To
apply our approach to a real system, the pde, the problem is first complexified, and
the results for the real case checked heuristically on a case by case basis. However,
progress in making numerical algebraic geometric techniques algorithmic for the real
case is reported in [12].

Our experimental approach for testing approximate ideal membership differs radi-
cally from Gröbner type approaches, which utilize normal forms and reductions which
are not numerically stable. In some sense, we are going back in history to Macaulay
and Hilbert’s initial studies. In particular we are framing ideal membership in terms
of the dimensions that determine the Hilbert function of an ideal. Analogously, the
new methods of Numerical Algebraic Geometry in some sense go back to a more
primitive notion of geometry — that of a point on a variety.

This paper belongs to a series initiated in [26], continued in [17], [7] and [18]
aimed at developing “Numerical Jet Geometry”, based on “Numerical Algebraic
Geometry”.
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Chapter 4

Symbolic-numeric Computation of
Implicit Riquier Bases for PDE

Riquier Bases for systems of analytic pde are, loosely speaking, a differential ana-
logue of Gröbner Bases for polynomial equations. They are determined in the exact
case by applying a sequence of prolongations (differentiations) and eliminations to
an input system of pde.

We present a symbolic-numeric method to determine Riquier Bases in implicit
form for systems which are dominated by pure derivatives in one of the independent
variables and have the same number of pde and unknowns.

The method is successful provided the prolongations with respect to the dominant
independent variable have a block structure which is uncovered by Linear Program-
ming and certain Jacobians are non-singular when evaluated at points on the zero
sets defined by the functions of the pde. For polynomially nonlinear pde, homotopy
continuation methods from Numerical Algebraic Geometry can be used to compute
approximations of the points.

We give a differential algebraic interpretation of Pryce’s method for ode, which
generalizes to the pde case. A major aspect of the method’s efficiency is that only
prolongations with respect to a single (dominant) independent variable are made,
possibly after a random change of coordinates. Potentially expensive and numerically
unstable eliminations are not made. Examples are given to illustrate theoretical
features of the method, including a curtain of Pendula and the control of a crane.

4.1 Introduction

Differential elimination algorithms apply a finite number of differentiations (pro-
longations) and eliminations to uncover obstructions to formal integrability. Exact
differentiation elimination algorithms that apply to exact polynomially nonlinear
systems of pde are given in [2, 7, 14, 22, 17, 16]. Such methods enable the identifi-
cation of all hidden constraints of pde systems and the computation of initial data
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and associated formal power series solutions in the neighborhood of a given point.
Algorithmic membership tests (specifically in the radical of a differential ideal) can
be given [2, 7]. They can ease the difficulty of numerical solution of ode systems.

A major problem in these approaches is the exploding size of prolongations for
more than one independent variable. In symbolic approaches much effort has been
devoted to control the growth of this size by developing redundancy criteria (for inte-
grability conditions), and making strong use of elimination with respect to rankings
to decrease the size of the prolongations [1, 27]. However symbolic elimination can
also cause expression swell, and even in the case of one independent variable, for con-
strained ode problems arising in multi-body mechanics, it is a significant problem
[26].

Very little work has been done on the corresponding problems for symbolic-
numeric methods. Techniques which are helpful for the symbolic case are often
unstable for the approximate case, since rankings (the differential analogue of term
orders) can cause pivoting on small quantities and result in instability.

In this paper we make some progress on this problem for a certain class of pde.
For this class, only prolongations with respect to one independent variable are needed.
Paradoxically rankings are important in our approach but don’t cause instability
since no eliminations are made. Hence we also avoid the expression swell due to
the eliminations mentioned above. A suitable ranking is determined by solving an
integer linear programming problem to uncover a block structure in the pde system.

Another main idea in our paper is that such prolongations are essentially ode
like enabling us to generalize ode techniques to the pde case. In our case we gen-
eralize a method of Pryce for ode in the framework of Riquier Theory. However we
might imagine this being also used as a bridge for other ode techniques (e.g. that of
Sedoglavic [21]).

In particular, we give methods for computing approximate implicit Riquier Bases
for square systems of analytic pde.

There already exist exact methods for computing Riquier Bases for non-square
polynomially nonlinear pde together with an input ranking of derivatives [18]. How-
ever these exact methods may not succeed if the intermediate systems can not be
solved explicitly for their leading derivatives.

For polynomially nonlinear pde, our approximate Riquier Basis method uses
an approximate method, homotopy continuation, to by-pass this difficulty. From a
given set of solutions of a system of similar structure, homotopy paths converge to
points on the zero set of the functions in the prolongations of the pde system. It is
these points that are used to verify the conditions of the Implicit Function Theorem,
allowing the implicit solution of the given functions for their leading derivatives.
For background on the homotopy methods, constituting the new area of Numerical
Algebraic Geometry, please see the book [24].

In addition our method yields the method of Pryce [13] for systems of differential
algebraic equations as a special case. Prolongation will usually introduce more equa-
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tions as well as more (jet) variables, but this is not always true. If some equations
after differentiation do not introduce new variables for whole system, then there is
the possibility that the dimension of the system is lowered, since generically the sys-
tem’s dimension is the number of its variables minus the number of its equations.
Pryce [13] proposed a method to detect such “chances” that minimize the dimension
by taking advantage of the special structure of some systems. Pryce’s method was
the generalization of a method developed by Pantiledes. Ilie et al [6] show Pryce’s
method can be extended to give a polynomial cost method for numerical solution of
differential algebraic equations.

4.2 Zero Set of PDE

Let F be a field (R or C in this paper), x = (x1, · · · , xn) be the independent variables
and u = (u1, · · · , um) be the dependent variables for a system of pde. The usual
commutative approaches to differential algebra and differential elimination theory
[18, 2] consider a set of indeterminates Ω = {ui

α | α = (α1, · · · , αn) ∈ Nn, i =
1, · · · ,m} where each member of Ω corresponds to a partial derivative by:

ui
α ↔ (Dxn)αn · · · (Dx1)

α1ui(x1, · · · , xn) := Dαui(x1, · · · , xn) .

Formal commutative total derivative operators are introduced to act on members of
Ω by a unit increment of the i-th index of their vector subscript: Dxi

uk
α := uk

α+1i

where α+1i = (α1, ..., αi+1, ..., αn). The usual total derivatives Dxi
act on functions

of {x} ∪ Ω by:

Dxi
=

∂

∂xi

+
∑
u∈Ω

(Dxi
u)

∂

∂u
(4.2.1)

where ∂
∂v

are the usual partial derivatives.

A q-th order differential system with ` equations is associated with a locus (or
zero set) of points

Z(f) := {(x, vi
α) ∈ Jq(Fn,Fm) : fk(x, vi

α) = 0, k = 1, ..., `} (4.2.2)

where Jq(Fn,Fm) ' Fn × Fm × Fm1 × ... × Fmq is the jet space of order q and
fk : Jq(Fn,Fm) → F, k = 1, ..., ` are the maps defining the differential equations.
Here mr := m· (

r+n−1
r

)
is the number of jet variables corresponding to r-th order

derivatives.

One class of systems considered in this paper will be differential polynomials in
F[x1, ..., xn; vi

α : |α| ≥ 0], the ring of all polynomials over F in the infinite set of
indeterminates {x} ∪ Ω, where |α| = α1 + · · ·αn. The other case is that where the
fk are F-analytic functions in a neighborhood of a point (x0, (vi

α)0), which by our
finiteness restriction can be taken in Jq. We restrict to fk being functions of finitely
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many indeterminates. We alert the reader that although we occasionally use Jet
notation, we always work locally over some F-Euclidian space. So we don’t use the
more global geometric features of Jet Geometry, such as bundles, contact structures,
etc (see [22]).

The simple pendulum gives an example of a constrained set of differential equation
(commonly called differential algebraic equations or dae) that arise frequently in
applications. As a matter of terminology, throughout this paper we will use the
term ode to include dae. Such systems are ubiquitous in multi-body dynamics.
From CAD-like graphical descriptions of links, joints, motors, etc, there are several
software packages (e.g. Adams, Dads and WorkingModel [23]), that automatically
produce the equations of motion, using Lagrangian mechanics formulations.

EXAMPLE 4.2.1 (The Pendulum). For the pendulum of unit mass, under constant
gravity, we have

Xtt + λX = 0,

Ytt + λY = −g, (4.2.3)

X2 + Y 2 = 1.

Here

Z(f) = {(t,X, Y, λ, Xt, Yt, λt, Xtt, Ytt, λtt) ∈ J2 :

Xtt + λX = 0, Ytt + λY + g = 0, X2 + Y 2 − 1 = 0}

is a 7 dimensional submanifold of F10 ' J2.

4.3 Rankings of Derivatives

A detailed formal treatment of this subject, and the classification of all such rankings
are given in Rust et al. [18]. Rankings are fundamental in Differential Algebra [8].

Definition 4.3.1 (Ranking [18]). A positive ranking ≺ of Ω is a total ordering on
Ω which satisfies:

vi
α ≺ vj

β ⇒ vi
α+γ ≺ vj

β+γ, (4.3.1)

vi
α ≺ vi

α+γ, (4.3.2)

for all α, β, γ ∈ Nn.

Let hdf denote the greatest member in Ω in f with respect the ranking ≺.

EXAMPLE 4.3.1. An example of a ranking for the Pendulum system given in
Example 4.2.1 is:

X ≺ Y ≺ λ ≺ Xt ≺ Yt ≺ λt ≺ Xtt ≺ Ytt ≺ λtt ≺ · · · (4.3.3)
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It is easily seen that (4.3.3) is invariant under differentiation, so (4.3.1) is satisfied.
In addition any derivative of a member is greater than itself, so (4.3.2) is satisfied. In
this ranking hd(Xtt +λX) = Xtt, hd(Ytt +λY −g) = Ytt, and hd(X2 +Y 2−1) = Y .

There are many ways to specify a ranking. In this paper we use a matrix repre-
sentation following Riquier and Rust [18, 19]. First we introduce a map ψ from Ω to
Zm+n:

ψ :
∂α1+···+αnuj

∂xα1
1 · · · ∂xαn

n

7→ (0, · · · , 0, 1, 0, · · · , 0, α1, · · · , αn)t (4.3.4)

where the “1” appears in the jth coordinate.
An ordering of the elements in Zm+n denoted by < is defined by lexical order

(comparing the values at the first coordinate, then the second coordinate, and so
on).

Definition 4.3.2 (Ranking by Matrix). Suppose M is an ` × (m + n) matrix with
nonnegative integer entries and satisfies: θ 6= τ ⇒ M · ψ(θ) 6= M · ψ(τ). We
define ≺M to be a ranking with respect to M , if for θ, τ ∈ Ω, we have θ ≺M τ ⇔
M · ψ(θ) < M · ψ(τ). Here M called a matrix representation of this ranking. And
θ ¹M τ means θ ≺M τ or θ = τ .

4.4 Signature Matrix of t-Dominated Systems

using Rankings

The methods developed in this paper are applicable to a class of pde that are dom-
inated by pure derivatives in one of their independent variables.

Examples of such pde include those of Cauchy-Kovaleskya type such as hyper-
bolic equations (e.g. the wave equation utt = c2uxx). Equations of parabolic type,
such as the classical Heat equation ut = uxx are also included. In these cases the
dominating variable is the time t. pde of elliptic type are included in this class, such
as the Cauchy-Riemann equations: {ux = vy, vx = −uy}.

Our main illustrative example is:

EXAMPLE 4.4.1 (Pendulum Curtain). Consider a curtain made of many pendula
hanging under gravity g as shown in Figure 4.4.1. The Pendula are restricted to move
on the surface of the cylinder and in planes perpendicular to the s-axis displayed
in Figure 4.4.1. The pendula form a continuous curtain in the limit. For small
deviations from the vertical equilibrium position the equations for X(t, s), Y (t, s)
and Lagrange multiplier λ(t, s) for the continuous curtain are:

Xtt + λX = κXss

Ytt + λY + g = κYss (4.4.1)
1

2
(X2 + Y 2 − 1) = 0
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Figure 4.4.1: Pendulum Curtain

Note that when κ = 0 this reduces to the simple pendulum equations given in Example
4.2.1.

By a pure derivative with respect to an independent variable xi, we mean a

derivative of form
(

∂
∂xi

)k

uj where k ∈ N. By Definition 4.4.1 given later, a pde sys-

tem which is dominated by pure derivatives with respect to an independent variable
xi, must at least contain such a derivative in each of its equations. The Pendulum
Curtain system (4.4.1) satisfies this requirement with respect to t. A physically im-
portant class of pde which are dominated by pure derivatives in time consists of
evolution pde. In that case the time derivatives can be expressed as functions of
spatial derivatives.

For two independent variables t, x and for each uj, a ranking consistent with such
systems should satisfy:

uj ≺ uj
x ≺ uj

xx ≺ · · · ≺ uj
t ≺ uj

tx ≺ · · · (4.4.2)

It is easy to extend this (partial) ranking to the case when x is a vector (e.g. using
lexical order on x).

For the pendulum curtain example, the differential order of t is more important
than spatial derivatives. More generally, we can focus on a special independent vari-
able xk and for notational convenience denote xk by t. However we warn the reader
that t may not represent time for some physical t-dominated systems. For example
the elliptic Cauchy-Riemann equations (ux = vy, vx = −uy) are x-dominated.

We hide the details about the differential order of the other independent variables
by defining a weight map ϕ : Ω → R as follows:

ϕ(vi
α) :=

{
αk, if αp = 0, for any p 6= k ;
αk + ε, otherwise.

(4.4.3)

The leading derivative of each equation Ri with respect to each uj using the
ranking (4.4.2), is denoted by ld(Ri, u

j). Applying (4.4.3) to the leading derivatives
of R, we obtain an `×m matrix (σi,j) which is called the signature matrix of R (see
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Pryce [13] for the ode case):

(σi,j)(R) :=

{
ϕ(ld(Ri, u

j)), if Ri depends on uj ;
−∞, otherwise .

(4.4.4)

It is easy to show that (σi,j)(DtR) = (σi,j)(R) + 1`×m, where 1`×m is a matrix
with all entries equal to 1.

We define the leading class of derivatives by

lcd(R) := {ld(R, uj) : 1 ≤ j ≤ m} .

These are the highest derivatives of uj appearing in R.

If for each equation of R, the leading class of derivatives are pure t-derivatives,
then regarding the other independent variables as parameters the pde has an ode-
like structure. Then we can consider the other independent variables as parameters
to regard the pde as an ode. To study the pde with this structure, we introduce a
new concept:

Definition 4.4.1. We say R is dominated by pure derivatives in the independent
variable t if there is no ε appearing in (σi,j)(R). For notational simplicity, we also
call R a t-dominated system.

Such t-dominated systems are not as special as they appear.

Proposition 4.4.1. [Genericity of t-dominated Systems]
A generic F-analytic or polynomially nonlinear pde system R with order k is t-
dominated. Any F-analytic or polynomially nonlinear pde system R with order k
is t-dominated after a random linear coordinates transformation in the independent
variables with coefficients in F.

Proof. Let R be a generic pde. So each Ri contains all pure t derivatives with
order k, which are the leading class of derivatives with respect to Ranking (4.4.2).
For any nonlinear pde R, after a random linear coordinate change, any derivative
with order k becomes a linear combination of all the kth order derivatives. So R
contains all pure kth order t derivatives which are the leading class of derivatives. ¤

Remark 4.4.1. A symbolic random linear coordinates transformation often destroys
the sparsity of the original system, which causes a dramatic increase in size of the
system if subsequent eliminations are applied. However our numeric transformation
in fixed precision lessens expression growth. Also, as we will show, no eliminations
are involved in our method.
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4.5 Generalizing Pryce’s Prolongation Method to

PDE

Let R be a square (i.e. #equations = #unknowns) and t-dominated system. From
Section 4.4, the signature matrix (σi,j)(R) contains information on differential order
and ignores details on the degrees and coefficients of a system R. We introduce a
fast method based on (σi,j)(R) to differentiate (prolong) R with respect to t. Pryce’s
prolongation method for square ode is a special case. It yields a local existence
and uniqueness result (equivalently all local constraints in initial conditions for R
are determined). We obtain a local existence and uniqueness result for square pde
which is given in Section 4.6.

If we consider R as ode (the only independent variable is t) then Pryce’s method
[13] finds all the local constraints for a large class of square ode using only prolon-
gation. We generalize this construction to pde. To be precise, the description of this
construction is given in this section, but the detailed justification of its properties
under certain conditions is given in Section 4.6. Suppose Ri is differentiated ci times
(ci ≥ 0). The new system after differentiation is denoted by Dc

tR. Suppose the
highest order of uj appear in Dc

tR is dj. From the definition of (σi,j), clearly dj is
the largest of ci + σij, which implies that

dj − ci ≥ σij, for all i, j (4.5.1)

Obviously there are at most
∑

dj +m pure t-derivative jet variables and
∑

ci+m
equations in Dc

tR (considering independent variables and all non-t-derivatives as
parameters). We can embed Dc

tR into a
∑

dj + m dimensional space. If each
equation drops the dimension of the zero set of Dc

tR by one, then the dimension
of Dc

tR is
∑

dj −
∑

ci. Roughly speaking, to find all the constraints is equivalent
to minimizing the dimension of Dc

tR. This can be formulated as an integer linear
programming problem in the variables c = (c1, ..., cm) and d = (d1, ..., dm):





Minimize z =
∑

dj −
∑

ci,
where dj − ci ≥ σij,

ci ≥ 0
(4.5.2)

The computation of c and d which only involves the information on differential order
and is consequently very fast.

Remark 4.5.1. However, this linear programming problem may not have a solution.
If we consider its dual problem in the sense of linear programming, which is an
Assignment Problem, the task is to choose just one element in each row and column
of the signature matrix, then maximize the sum of these m elements. The maximum
is called the Maximal Transversal Value. If this value exists, then (4.5.2) has a finite
solution. Like Pryce’s method [13], we always assume that the maximal transversal
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B0 B1 · · · Bkc−1 Bkc

R
(0)
1 R

(1)
1 · · · R

(c1−1)
1 R

(c1)
1

R
(0)
2 · · · R

(c2−1)
2 R

(c2)
2

...
...

...

R
(0)
m · · · R

(cm)
m

Table 4.1: The triangular block structure of Dc
tR. For 0 ≤ i < kc, Bi has fewer jet variables than

Bi+1.

value exists in this paper.

EXAMPLE 4.5.1. Note that Example (4.4.1) is t-dominated (and also s-dominated).
Thus we can apply the method above for pde. The signature matrix for the above
system with columns corresponding to X, Y and λ from left to right is:

(σi,j) =




2 −∞ 0
−∞ 2 0
0 0 −∞




Recall that ci means the i-th equation needs to be differentiated ci times (ci ≥ 0) and
dj is the highest order of uj after the prolongation. Then (4.5.2) is





Minimize z = d1 + d2 + d3 − c1 − c2 − c3,
where d1 − c1 ≥ 2, d1 − c2 ≥ −∞, d1 − c3 ≥ 0,

d2 − c1 ≥ −∞, d2 − c2 ≥ 2, d2 − c3 ≥ 0,
d3 − c1 ≥ 0, d3 − c2 ≥ 0, d3 − c3 ≥ −∞,
c1 ≥ 0, c2 ≥ 0, c3 ≥ 0

Solving this integer linear programming problem by LPSolve in the Optimization
package of Maple 10, we obtain

c1 = 0, c2 = 0, c3 = 2; (4.5.3)

d1 = 2, d2 = 2, d3 = 0. (4.5.4)

After we obtain the number of prolongation steps ci for each equation, we can
construct the partial prolonged system Dc

tR using c.
We also point out that Dc

tR has a favorable block triangular structure which
enables us to compute points on Z(Dc

tR) more efficiently. Without loss of generality,
we assume c1 ≥ c2 ≥ · · · ≥ cm, and let kc = c1, which is closely related to the index
of system R (see [13] for more details about the index). Then we can partition Dc

tR
into kc + 1 parts (see Table 4.1).

For each Bi, 0 ≤ i ≤ kc, we denote the leading class of variables by Ui := lcd(Bi)
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and define the Jacobian Matrix

Ji :=

(
∂Bi

∂Ui

)
. (4.5.5)

Proposition 4.5.1. Let J (Dc
tR) := {Ji} be the set of Jacobian matrices of {Bi}.

For any 0 ≤ i < j ≤ kc, Ji is a sub-matrix of Jj. Moreover, if Jkc has full rank,
then any Ji also has full rank.

Proof. The first result is by the chain rule and the fact that if θ is the leading
variable of a pde F then θt is the leading variable of DtF .

Because Jkc is an m×m full rank, each row is linearly independent to the others.
Since Ji is a sub-matrix of Jkc , we can assume it consists of the first p rows and
first q columns of Jkc , where q is the number of elements in Ui. If q = m, then
rank(Ji) = p. If q < m, then the entries in first p rows and last m− q columns must
be 0. So rank(Ji) = p. ¤

In the following section we will show that the output of the t-prolongation im-
plicitly yields a Riquier Basis for which an associated existence theorem is available.

4.6 The Formal Riquier Existence Theorem

In this section, we state Theorem 4.6.1 for the existence and uniqueness of formal
power series solutions of a Riquier Basis. This theorem is the result of a Gröbner
style development and extension of Riquier’s classical existence results for pde. The
details can be found in the works of Rust et al. [18, 19]. The corresponding exact
symbolic differential elimination algorithms were implemented [27] in distributed
Maple. Reference [27] also discusses applications of the algorithms.

Given a ranking of partial derivatives, such bases are in solved form with respect
to leading derivatives. They are symbolically determined by successively including
integrability conditions and performing eliminations on the resulting systems. The
solved form requirement means that in the exact case they are essentially restricted
to pde which are linear in their highest derivatives. Closely related to Riquier Bases
are Schwarz’s Janet Bases [20].

We say that f is ≺-monic with respect to a ranking ≺ if f has the form f =
hdf + g, with hdg ≺ hdf . For example the equation X2 + Y 2 − 1 = 0 of the
Pendulum system of (4.2.3) is not ≺-monic with respect to the ranking given in
(4.3.3) since it is nonlinear in Y , its highest derivative.

Definition 4.6.1. [M, V] In the remainder of the paper, fix a finite set M of ≺-
monic functions of which are F-analytic functions on some subset V of Jr(Fn,Fm) for
some finite r. The subset is connected and open in the usual F-Euclidean topology.
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Definition 4.6.2. [Principal and Parametric Derivatives] The principal derivatives
of M are defined as

PrinM := {u ∈ Ω|∃f ∈M and α ∈ Nn with u = hdDαf}

The parametric derivatives of M, which we denote ParM, are those derivatives that
are not principal.

The parametric and principal derivatives enable us to specify initial data, that
will be important in the existence and uniqueness theorem.

Definition 4.6.3. A specification of initial data for M is a map

φ : {x} ∪ Par M→ F

For x0 ∈ Fm, we say that φ is a specification at x0 if

φ(x) := (φ(x1), φ(x2), · · · , φ(xm)) = x0.

For an analytic function g on jet space, let φ(g) be the function of the principal
derivatives obtained from g by evaluating x and the parametric derivatives using φ:

φ(g) := g(φ(x), (φ(u))u∈ParM).

Definition 4.6.4. M is called a Riquier Basis if for all α, α′ ∈ Nm and f, f ′ ∈ M
with hdDαf = hdDα′f ′, the integrability condition Dαf −Dα′f ′ is reduced to zero
by a sequence of one-step reductions by members of M.

See [19] for the definition of one-step reduction used above. Recall that M and
V are as given in Definition 4.6.1.

Theorem 4.6.1 (Formal Riquier Existence Theorem). Let M be a Riquier Basis
such that each f ∈ M is polynomial in the principal derivatives. For x0 ∈ Fn, let
φ be a specification of initial data for M at x0 such that φ(f) is well-defined for all
f ∈ M. Then there is formal power series solution u(x) ∈ F[[x − x0]]n to M at x0

such that Dαui(x0) = φ(ui
α) for all ui

α ∈ ParM. Furthermore, every formal power
series solution to M at x0 may be obtained in this way for some φ.

Note that the set of integrability conditions given by Definition 4.6.4 is generally
infinite. This infinite number of conditions is shown in [18] to be a consequence of
a finite set of integrability conditions given below; thus enabling finite implementa-
tion [27]. Further more refined redundancy criteria for integrability conditions are
given in [27].

Definition 4.6.5. Let f, f ′ ∈M with hdf = Dαui and hdf ′ = Dα′ui′, and β be the
least common multiple of α and α′. Then if i = i′, define the minimal integrability
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condition of f and f ′ to be ic(f, f ′) = Dβ−αf −Dβ−α′f ′. If i 6= i′, then ic(f, f ′) is
said to be undefined.

See [19] for the definition of reduction used below.

Theorem 4.6.2. Suppose that for each pair f, f ′ ∈ M with ic(f, f ′) well-defined
we have ic(f, f ′) is reduced to 0 by a sequence of one-step reductions. Then M is a
Riquier Basis.

4.6.1 Implicit Riquier Existence Theorem

We know that for ode if the Jacobian matrix is non-singular, Pryce’s method can
successfully construct the unique local solution at a given consistent initial point.
Now let us consider the pde case. We show that if J is non-singular at some point
p, which satisfies system Dc

tR, then any order derivative of each uj is determined by
p. So the Taylor series coefficients of the solution passing through p can be computed
to arbitrary order.

For each dependent variable we have a ranking of type (4.4.2). To apply the
Riquier Existence Theorem, we need to merge these partial rankings (4.4.2) to a
total ranking which is consistent with all the partial rankings.

Proposition 4.6.1. Let the leading class derivatives of R be {θ1, ..., θm} and let B
be the set of all the other derivatives of R. Then there exists a positive ranking ≺
which satisfies the partial ranking (4.4.2) and θ1 Â θ2 Â · · · Â θm and each θi is
greater than any b ∈ B.

Proof. Case 1: m ≥ n. Suppose the dependent variable index of θi is i and t =
x1. If the dependent and independent variable indices do not satisfy this condition,

then it can be satisfied after a permutation of the variables. Let

(
Im×m

Xn×m

)
=

(ψ(θ1), ..., ψ(θm)). Suppose c is the maximum entry of X. Then let M ′ = c · 1m×m−(
X
0

)m×m

. Finally we construct an (m+1)× (m+n) matrix M =

(
M ′ In×n

v 0

)
,

where v = (m,m−1, · · · , 1). All the entries of M are non-negative. Suppose θ, τ ∈ Ω
and θ 6= τ . One case is they have different dependent variables, then at least the
last coordinates of M · ψ(θ) and M · ψ(τ) are different. The other case is that they
have the same dependent variable. Then their ranks are determined by the last n
columns of M , which is the lexical order over independent variables. In this case,
M · ψ(θ) 6= M · ψ(τ). So M is a matrix representation of a ranking which satisfies
Ranking (4.4.2).

Suppose i < j, we can check θi Â θj. Since

(
γi

m− i + 1

)
= M · ψ(θi) >

M · ψ(θj) =

(
γj

m− j + 1

)
, where γj = M ′

j +

(
Xj

0

)
= c · 1m×1 = γi.
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Suppose τ ∈ B with dependent variable ui, we can show θj Â τ , for any j. Since
≺M satisfies Ranking (4.4.2),(

γτ

m− i + 1

)
= M · ψ(τ) < M · ψ(θi) =

(
γi

m− i + 1

)
, which implies γτ < γi. So

γτ < γj = γi, for any 1 ≤ j ≤ m.

Therefore, M ·ψ(τ) < M ·ψ(θj), which implies for any θj and any τ ∈ B we have
τ ≺M θj.

Case 2: m < n. In the proof, we only need to change the construction slightly
by setting M ′ = c · 1n×m −X. Similarly we construct an (n + 1) × (m + n) matrix

M =

(
M ′ In×n

v 0

)
. ¤

Lemma 4.6.3. Let C =

(
An×m

B`×m

)
and n + ` ≤ m. If C is a full rank matrix, then

any rank n square sub-matrix of A can be extended to a rank n+ ` square sub-matrix
of C.

Proof. Because C is a full rank matrix and n + ` ≤ m, rank(C) = n + `.
Suppose the first n columns of A form a full rank matrix, so the first n columns of
C are linearly independent. A set of linearly independent columns can be extended
to a basis of the column space of C. Hence we can find ` columns which generate a
basis for the column space of C together with the first n columns. ¤

Lemma 4.6.4. Let R be a square F-analytic system of pde. Suppose the maxi-
mal transversal value of (σij)(R) exists. Let Dc

tR be the system obtained by the t-
prolongation method of Section 4.5. If Jkc is nonsingular at some point p in Z(Dc

tR),
then there exists a positive ranking ≺ that determines a local solved form w(i) = f (i)(z)
for each block Bi, such that Dtw

(i−1) ⊆ w(i).

Proof. Because Jkc is nonsingular at p, each Ji is full rank by Proposition
4.5.1. So B0 is full rank and we can find an invertible sub-matrix M0 of J0, and
solve for the corresponding leading variables w(0) locally, which are t-derivatives of
the dependent variables, by using the Implicit Function Theorem. Let the solved
form be w(0) = f (0)(z). Let S0 be the set of the dependent variables of w(0). For the
next block B1 we can choose an invertible sub-matrix M1 of J1 which contains M0

by Lemma 4.6.3. Let Si is the set of dependent variables of w(i) \(S0 ∪ · · · ∪ Si−1).

Continue the process until the last block Bkc . We can check that the union of all
Si is the set of all dependent variables.

Suppose that Ukc = {θ1, · · · , θm} and (after appropriate re-indexing) satisfies the
condition: for any 1 ≤ i < j ≤ m, if the dependent variables of θi and θj belong
to Sp and Sq respectively then p ≤ q. We can define a positive ranking ≺ by the
Proposition 4.6.1 such that the solved term is leading variable for each solved form
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in {w(i) = f (i)(z)}. ¤

For background on the Implicit Function Theorem and related results needed
in what follows please see [5, 9]. Let w0 ∈ Fk, z0 ∈ F` and U ⊂ Fk × F` be a
neighborhood of (w0, z0).

Let F : U → Fk be an analytic function with F (w0, z0) = 0 and rank∂F
∂w

= k at
(w0, z0) ∈ U . That is, the Jacobian of F has maximal rank with respect to w at
(w0, z0). Then by the Implicit Function Theorem there exists an analytic function
f : F` → Fk, such that the zero set of {(w, z) : F (w, z) = 0} is equivalent to
{(w, z) : w = f(z)} in a neighborhood of N of (w0, z0).

We have the following simple consequence.

Remark 4.6.1. There exists a neighborhood of N of (w0, z0) and an analytic function
H : N → Fk×k such that

F (w, z) = H(w, z)(w − f(z)) (4.6.1)

and H(w, z) is invertible in N .

Theorem 4.6.5. Let R be a square F-analytic system of pde. Suppose the max-
imal transversal value of (σij)(R) exists. Let Dc

tR be the system computed by t-
prolongation method. If Jkc is nonsingular at some point p in Z(Dc

tR), then Dc
tR is

an Implicit Riquier Basis.

Proof. By Proposition 4.6.1, there is a ranking in which all leading derivatives
are pure t-derivatives. And by Lemma 4.6.4, there exists a solved form w = f(z)
of Dc

tR in a sufficiently small neighborhood Np, where w is the union of all w(i)

defined in Lemma 4.6.4. We will show that w = f(z) is a Riquier Basis in Np. First
note that the principal derivatives of w = f(z) are given by w. Thus w = f(z) is
certainly polynomial in w as required by Theorem 4.6.1. Secondly, it remains to
prove that the integrability conditions of w = f(z) are satisfied. So without loss
of generality, we consider two particular equations ŵ − f̂(z) = 0 and w̃ − f̃(z) = 0
with (Dt)

γŵ = w̃. By Theorem 4.6.2, the corresponding integrability condition is
(Dt)

γ(ŵ − f̂(z)) − (w̃ − f̃(z)). By the more refined redundancy criterion given in
Corollary 5.3.2 of [18], this can be reduced to case γ = 1:

Dt(ŵ − f̂(z))− (w̃ − f̃(z)) (4.6.2)

where ŵ− f̂(z) = 0 and w̃− f̃(z) = 0 are two particular equations out of the solved
forms w(i−1) = f (i−1)(z) and w(i) = f (i)(z) respectively, with Dtŵ = w̃.

Remark 4.6.1 implies that w(i)− f (i)(z) = H−1
i ·Bi in Np. Thus w̃− f̃(z) = h̃ ·Bi

in Np, for some analytic function vector h̃. Similarly ŵ − f̂(z) = ĥ · Bi−1 in Np, for

some analytic function vector ĥ. Then (4.6.2) is

Dt(ĥ ·Bi−1)− h̃ ·Bi (4.6.3)
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which has the general form

Dtĥ ·Bi−1 + ĥ ·DtBi−1 − h̃ ·Bi (4.6.4)

Because DtBi−1 ⊆ Bi, (4.6.2) is zero on Np∩Z(Dc
tR), which is equivalent to {(w, z) :

w = f(z)} ∩ Np. So (4.6.2) is zero when w = f(z) in Np, which means (4.6.2) can
be reduced to zero by w = f(z) locally. Therefore Dc

tR is an implicit Riquier Basis
in Np. ¤

Remark 4.6.2. Suppose the maximal transversal value of a signature matrix exists.
Then the prolongation step vector c is determined only by the signature matrix rather
than the algebraic degree and coefficients. So a signature matrix corresponds to a
class of t-dominated pde. For a square polynomially nonlinear pde system R in
such a class, if the coefficient of each term is generic, then at a generic point in the
variety defined by Dc

tR in Jet space, the Jacobian matrix Jkc is non-singular. This
means the t-prolongation method can be applied to a large class of pde together with
Proposition 4.4.1.

4.7 Approximating Points on Zero Sets of PDE

The method we have developed depends on finding a point p on the zero set Z(R)
of the pde system R to test that the relevant Jacobians are non-singular. Their
non-singularity at a point (and thus in a neighbourhood) ensures that the conditions
for local existence and uniqueness are satisfied for Theorem 4.6.5.

We consider polynomially nonlinear pde as polynomial systems in Jet space. Our
tool to numerically solve polynomial systems is homotopy continuation. In [24], a new
field “Numerical Algebraic Geometry” was described which led to the development of
homotopies to describe all irreducible components (all meaning: for all dimensions)
of the solution set of a polynomial system by witness sets. These methods have been
implemented in PHCpack [25].

Following Pryce’s idea in [13], we can compute p ∈ Z(R) by exploiting the tri-
angular block structure of the pde system after the partial prolongation (see Table
4.1).

Remark 4.7.1. In the case of ode, we can compute the witness points of B0, which
is the projection of the variety to the subspace, then substitute the solutions into B1

to extend the solutions to higher dimensional space. Continuing this process, we can
find the the witness points of non-singular components. This way is more efficient
than solving the whole polynomial system directly. Let R be a polynomially ode
{R1, ..., Rm} with total degree d. Then the Bezout bound of Dc

t(R) in Jet space is
dCdm, where C =

∑
ci. However if we solve it by bottom up substitution it only has

at most dm homotopy continuation paths to track, since any nonlinear equation will
be linear with respect to highest Jet variables after prolongation.
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Usually applications involve finding real solutions. For real differential polynomial
systems using our approach, we need to find points on a real variety. Real algebraic
geometry is a rapidly developing area with many recent developments detailed in the
book [3]. There are several techniques for compact varieties while approaches are less
well-developed in the non-compact case. Lu [12] uses homotopy continuation in C to
decompose varieties first over C, then obtains points on the real curves embedded in
the 1-dimensional complex components. In our experiments, we heuristically selected
some proper real linear equations to slice the variety to obtain real points on the zero
set of the pde.

4.8 Examples

The t-prolongation procedure for ode and pde was implemented in Maple 10. The
integer linear programming involved using Maple10’s LPSolve command. As a fea-
sibility test we applied the code to a Test Set of Visconti [26] containing 27 dae
representing diverse applications, with index ranging from 1 to 6. The procedure
successfully identified index consistent with Visconti’s results for 21 of the dae. The
LP problems were solved in less, and often much less, than one second. Our 6 failures
were due to: 3 non-square system; 3 systems with singular Jacobians. Like other
standard dae approaches, Visconti required the user to supply an initial guess for a
consistent initial point, and then Gauss-Newton iteration was applied. An example
is given below.

EXAMPLE 4.8.1 (ODE for a Crane). This model which is illustrated in Figure
4.8.1, is discussed in [4]. The problem is to determine the horizontal velocity u1(t) of
a winch of mass M1, and the angular velocity u2(t) of the winch so that the attached
load M2 moves along a prescribed path.

The equations of motion are given by [4] and also by Visconti [26] with unknowns
{x, x′, z, z′, d, d′, r, r′, θ, τ, u1, u2}:

xt − x′ = 0, zt − z′ = 0, dt − d′ = 0, rt − r′ = 0
M2 x′t + τ sin(θ) = 0, M1 d′t + C1 dt − u1 − τ sin(θ) = 0

M2 z′t + τ cos(θ)−mg = 0, J r′t + C2 rt + C3 u2 − C3
2τ = 0

r sin(θ) + d− x = 0, r cos(θ)− z = 0
H1(x, z, t) = 0, H2(x, z, t) = 0.

The prescribed path of the mass M2 is described by an algebraic equations {H1 =
0, H2 = 0}. The winch has moment of inertia J and is attached with a cable of length
r(t), making an angle θ(t) to the vertical.

Substitute sin(θ) and cos(θ) by s(t) and c(t) respectively to convert the ode to
an algebraic differential system, and introduce an extra equation s(t)2 + c(t)2 = 1.
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Figure 4.8.2: Control of a Crane

Applying the t-prolongation method and our Maple program, we obtain

d1 = 4, d2 = 3, d3 = 4, d4 = 3, d5 = 2, d6 = 1, d7 = 2,

d8 = 1, d9 = 2, d10 = 0, d11 = 0, d12 = 2, d13 = 2;

c1 = 3, c2 = 3, c3 = 1, c4 = 1, c5 = 2, c6 = 2, c7 = 0,

c8 = 0, c9 = 2, c10 = 2, c11 = 4, c12 = 4, c13 = 2.

Since d10 and d11 are equal to zero, we need to prolong one more time to reduce the
system to ode. For this example we have index 5 in agreement with Visconti. Note
that the result does not depend on the coefficients and degrees of H1, H2 since the
signature matrix only requires the differential orders of H1, H2 which are both 0.

To simply illustrate how to use the output, we choose a path {H1 = 0, H2 = 0}
of the mass M2 which is described by a parameterized system x (t) = 1 − t2, z (t) =
1− t. After the partial prolongation we obtain 13 ode and 39 algebraic constraints.
The total Bezout degree of the constraints is 65536, however it has block triangular
structure which enable us to solve it by bottom up substitution.

Let the initial time t be .396, we obtain 4 witness points using PHCpack. We
choose one as the initial point which is x(.396) = .843, z(.396) = .604, d(.396) =
.601, s(.396) = .371, c(.396) = .928, r(.396) = 0.650. Note that if the degree of
H1, H2 is d, there are at most 4d2 witness points during the computation by Re-
mark 4.7.1. The computational difficulty of this problem for the symbolic differential
elimination algorithm Rifsimp explosively increases with the degree d of H1, H2 in
comparison with the t-prolongation method.

Finally we numerically solve the ode together with this initial condition using
dsolve in Maple10 with its implicit option. The integral curve of x(t), z(t) is very
close to the curve (1− t2, 1− t).
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EXAMPLE 4.8.2 (Pendulum Curtain PDE). Applying the t-prolongation method
to Example 4.5.1 gives:

c1 = 0, c2 = 0, c3 = 2; (4.8.1)

d1 = 2, d2 = 2, d3 = 0. (4.8.2)

The main point is that the analysis for this pde example is virtually identical
to that for the classical pendulum (see Pryce [13] for those details). Essentially the
analysis indicates that the constraint should be differentiated twice to yield an implicit
Riquier Basis:

Xtt + λX = κXss

Ytt + λY + g = κYss

XXtt + Y Ytt + X2
t + Y 2

t = 0 (4.8.3)

XXt + Y Yt = 0

X2 + Y 2 − 1 = 0.

The top block B2 of the system is the first three equations of (4.8.3). The blocks B1

and B0 are the 4th and 5th equations of (4.8.3) respectively.

Then the system has Jacobian matrix with respect to Xtt, Ytt, λ which is full rank.
This is also obvious by inspection, without using the generalization of Pryce’s method.
We include it here, so that the reader can see it working on an example, which is
closely related a one of the fundamental examples of dae theory. We note that a
change of coordinates to cylindrical coordinates X = sin(θ(s, t)), Y = − cos(θ(s, t)),
considerably simplifies the problem. However, in general, such coordinate changes
cannot be algorithmically made to eliminate all constraints for pde.

In summary we obtain an explicit hyperbolic system on a system of constraints.
Just as an explicit ode is uncovered in the analysis of the classical pendulum, an
explicit Hyperbolic System of pde is obtained in the Pendulum Curtain example. We
solved this system using Wittkopf’s finite difference code in Maple10. We performed
experiments with various initial and boundary conditions and values of κ. One of
these was for an exponential bump located in the middle of the s-range, where the
curtain is released from rest. As expected this forms two waves, moving in opposite
directions. If the coefficient κ of the Xss and Yss terms are set close to zero (i.e.
κ ≈ 0) then as expected the pendulum motion rather than the wave motion dominates.

EXAMPLE 4.8.3 (Changing the Coordinates). The equation below is both x and
y dominated. However for small ε1, ε2, the resulting Jacobians in our method are
poorly conditioned.

ε1uxx + uxy + ε2uyy = 0 (4.8.4)

The problem is well conditioned after a coordinate change (see Proposition 4.4.1).
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4.9 Discussion

A significant problem in the development of symbolic-numeric differential elimination
methods is to create methods to control the growth of prolongations. Although
much progress has been made on the symbolic case [1], little has been done for the
symbolic-numeric case.

In the current work we define a class of systems for which only prolongations with
respect to a single independent variable t are needed.

We generalized Pryce’s technique in the framework of Riquier Bases. Riquier’s
classical approach has fallen out of favor in recent times, since for a purely symbolic
implementation it is limited to systems linear in their highest derivatives, and modern
symbolic alternatives now exist [2, 27]. However in our article, Riquier’s approach
makes a comeback, by using the Implicit Function Theorem, which requires points on
the zero set of the system. For systems of differential polynomials over C, we can use
homotopy methods from Numerical Algebraic Geometry to compute approximations
to such points [24]. For systems of differential polynomials over R, there are also
rapidly evolving methods [12, 3]. For analytic systems, methods are less systematic
but progress can be made using Gaussian-Newton iteration from initial guesses close
enough to a solution.

It may seem strange that such implicit representations could be useful, especially
since the representations given by such symbolic elimination methods as [2] provide
output systems in much closer to explicit solved or triangular form. However such
eliminations can often cause severe expression swell. The Pryce method appears
to find a balance between working implicitly, and at the same time uncovering and
exploiting the block structure of a system. Finally we note that such implicit rep-
resentations are usually the choice in the numerics community. Solving a constant
matrix system, at the intermediate steps of a numerical integration, is often pre-
ferred over first symbolically inverting, then evaluating the explicit solution at those
intermediate steps.

The disadvantages of our method include its limitation to square and t-dominated
systems. It also has the disadvantage that it is a local method, and not a universal
method, and does not pursue all singular cases as is possible using [2, 7]. For example
when the method is applied to (ut)

2 + tut − u = 0 it locates a generic initial point,
and does not identify the fact that this equation has a singular solution. In addition,
a linear combination of the input system will destroy the sparse structure of the
signature matrix. However this can be detected by a rank test and the hidden
equations can be constructed by the methods we give in [28].

The implicit Riquier Bases obtained by our method are a type of formally inte-
grable system. Such bases only give local, and sometimes unnatural, boundary and
initial conditions. We direct the reader to Krupchyk et al. [10, 11] for very interest-
ing work on linking formal properties (such as formal integrability and involutivity)
to elliptic BVP.



100

Our method provides a bridge between ode techniques and pde techniques. In
this paper we generalized a method of Pryce and Pantiledes, to pde. An obvious
future work, is to attempt the same with other ode methods. We are investigating
pde models arising as more realistic cases of dae system, for which our t-prolongation
method promises to be practically useful.
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Chapter 5

On Approximate Triangular
Decompositions in Dimension Zero

Triangular decompositions for systems of polynomial equations with n variables,
with exact coefficients are well-developed theoretically and in terms of implemented
algorithms in computer algebra systems. However there is much less research about
triangular decompositions for systems with approximate coefficients.

In this paper we discuss the zero-dimensional case of systems having finitely
many roots. Our methods depend on having approximations for all the roots, and
these are provided by the homotopy continuation methods of Sommese, Verschelde
and Wampler. We introduce approximate equiprojectable decompositions for such
systems, which represent a generalization of the recently developed analogous concept
for exact systems. We demonstrate experimentally the favourable computational
features of this new approach, and give a statistical analysis of its error.

5.1 Introduction

Ritt initiated the algebraic study of differential polynomial systems through charac-
teristic sets [28]. Their modern study was revitalized by the work of Wu. In [41], he
adapted the work of Ritt for solving algebraic systems: he showed that the zero set
of such a system could be decomposed as finitely many characteristic sets, leading
to the notion of a triangular decomposition of an algebraic variety. Considerable de-
velopments have followed by many authors; among them: Aubry et al. [1], Chou [7],
Dahan et al. [11], Gao et al. [15], Kalkbrener [19], Lazard [20], Moreno Maza [25],
Schost [29], Wang [40], and others. These works have led to efficient algorithms for
triangular decomposition of an algebraic variety given by an exact input polynomial
system.

Often, in applications we are interested in producing a useful triangular form
where some of the variables are functions of others. Such systems frequently have
approximate coefficients that are inferred from experimental data. This means that
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the stability, or sensitivity to coefficient changes, of such triangular decompositions
is a concern. While considerable progress in both theoretical and algorithmic as-
pects has been made for exact input polynomial systems, much less is known about
generalizations of these methods to input systems which are approximate.

However, in recent years, motivated by many realistic problems, some related
work has been made, for example: numerical Gröbner Bases by Stetter [35] and the
study about approximate radical of zero-dimension ideals by Szántó et. al. [18].

In this paper, we present some initial results in this direction, for the case of an
algebraic variety V over C. We rely on the methods of Sommese, Verschelde, and
Wampler [31, 38, 24, 32] which use Homotopy continuation to determine so-called
generic points on the components of the numerical decomposition of V . We are
interested in the set V0 of the isolated points of V (the 0 dimensional case). Each point
of V0, and more generally every irreducible component of V , is trivially a triangular
set, although not generally rationally constructible from rational input. This is in
contrast to the usual forms of exact triangular decomposition, which are modeled
on equi-dimensional decomposition over Q rather than irreducible decomposition
over C.

Following [10, 11], we consider the equiprojectable decomposition of V0. Then,
we use the interpolation formulas of Dahan and Schost [12] for computing an ap-
proximate triangular set for each equiprojectable component of V0, leading to an
approximate triangular decomposition of V0 in Section 5.3.

We provide a stability analysis of the interpolation formulas of Dahan and Schost
in Section 5.4. One of our main tools is Lindeberg’s theorem [30] that is described
in the Appendix. In Sections 5.5 and 5.6, we report on experiments that illustrate
the efficiency of our approach and support the accuracy of our stability analysis.

In [27], we study the simplest class of positive dimensional systems: linear homo-
geneous systems. Our aim in that article is to explore local structure of non-linear
problems with linearized approximate triangular decompositions. The combination
of the two approaches allows us to form an accessible bridge to the study of the fully
non-linear case which we will describe in a forthcoming paper.

5.2 Triangular decompositions

A triangular decomposition of a zero-dimensional algebraic variety V is a family of
polynomial sets, called triangular sets, that describe symbolically the points of V [20].
Triangular decompositions extend to algebraic varieties of arbitrary dimension, see
for instance [19, 25]. In [12] it is shown that the height of a coefficient in a triangular
set T can be bounded by the height of the variety represented by T . Combined with
the notion of equiprojectable decomposition introduced in [10], this motivated the
work of [11], in which the authors obtained a very efficient method for computing
triangular decompositions of zero-dimensional varieties over Q given by an input
polynomial system with exact coefficients.
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On top of these good computational properties, triangular sets and triangular
decompositions have natural geometrical interpretations. In Section 5.3, we will rely
on these properties to introduce a notion of an approximate triangular decomposition
of a zero-dimensional variety given by approximate coordinates of its points. In the
present section, we recall some results for triangular decompositions in the exact case
and refer to [12, 10, 11] for more details. For the reader’s convenience, we sketch the
proof of Propositions 5.2.1 and 5.2.2, which play a central role in this paper. See [12]
for their complete proofs.

Let K be a perfect field, let L be an algebraic closure of K and let X1 ≺ · · · ≺ Xn

be n ≥ 1 ordered variables.

Definition 5.2.1. A set T = {T1, . . . , Tn} of n polynomials in K[X1, . . . , Xn] is a
triangular set if the ideal 〈T 〉 generated by T is radical and if for all 1 ≤ i ≤ n
the polynomial Ti is not constant, the greatest variable occurring in Ti is Xi, and
its leading coefficient w.r.t. Xi is invertible modulo the ideal 〈T1, . . . , Ti−1〉. The
triangular set T is normalized if for all 1 ≤ i ≤ n the leading coefficient of Ti w.r.t.
Xi is one.

Clearly, a triangular set generates a zero-dimensional ideal and a normalized
triangular set is a reduced lexicographical Gröbner basis. In [20], it is shown that
every maximal ideal of K[X1, . . . , Xn] can be generated by a triangular set. Hence,
a natural question is to characterize the zero-dimensional varieties over K that can
be generated by a triangular set. The answer is given by [3]. We report on it here
by means of Definition 5.2.2 and Theorem 5.2.1, after introducing some notation.

Let i and j be integers such that 1 ≤ i ≤ j ≤ n. We denote by Ai(L)
the affine space of dimension i over L. For V ⊆ An(L) we denote by I(V ) the
ideal of K[X1, . . . , Xn] composed by the polynomials which vanish on V . For F ⊆
K[X1, . . . , Xn] we denote by V (F ) the set of the points of An(L) where every element
of F vanishes. Finally, we denote by πj

i the natural projection map from Aj(L) to
Ai(L), which sends (X1, . . . , Xj) to (X1, . . . , Xi).

Definition 5.2.2. A zero-dimensional variety V ⊆ Aj(L) over K is said to be

(1) equiprojectable on Vi = πj
i (V ), its projection onto Ai(L), if there exists an

integer c such that for every M ∈ Vi the cardinality of (πj
i )
−1(M) ∩ Vi is c.

(2) equiprojectable if V is equiprojectable on V1, . . . , Vj−1.

Theorem 5.2.1. A zero-dimensional variety V ⊆ Aj(L) over K is equiprojectable
if and only if there exists a triangular set T of K[X1, . . . , Xj] such that T generates
I(V ).

Given an equiprojectable variety V ⊆ An(L) the normalized triangular set T
generating I(V ) can be constructed as follows from the coordinates of the points of
V (see [12] for details). Let K be a field such that K ⊆ K ⊆ L and such that
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every point of V has its coordinates in K. We define Vi = πn
i (V ). Let 1 ≤ ` < n.

Following [12], we describe how to interpolate T`+1 from the coordinates (in K) of
the points of V`+1. Let α = (α1, . . . , α`) ∈ V`. Define:

V 1
α = {β = (β1, . . . , β`, β`+1) ∈ V`+1 | β1 6= α1},

V 2
α = {β = (α1, β2, . . . , β`, β`+1) ∈ V`+1 | β2 6= α2},

V 3
α = {β = (α1, α2, β3, . . . , β`, β`+1) ∈ V`+1 | β3 6= α3},
· · · · · · · · ·
V `

α = {β = (α1, . . . , α`−1, β`, β`+1) ∈ V`+1 | β` 6= α`},
V `+1

α = {β = (α1, . . . , α`, β`+1) ∈ V`+1.}

(5.2.1)

The sets V 1
α , V 2

α , V 3
α , . . . , V `

α , V `+1
α partition V`+1. We consider also the projections:

v1
α = π`+1

1 (V 1
α ) = {(β1) ∈ V1 | β1 6= α1},

v2
α = π`+1

2 (V 2
α ) = {(α1, β2) ∈ V2 | β2 6= α2},

v3
α = π`+1

3 (V 3
α ) = {(α1, α2, β3) ∈ V3 | β3 6= α3},

· · · · · · · · · · · · · · ·
v`

α = π`+1
` (V `

α) = {(α1, . . . , α`−1, β`) ∈ V` | β` 6= α`}

(5.2.2)

For 1 ≤ i ≤ ` + 1, we define

Tα,i = Ti(α1, . . . , αi−1, Xi) and eα,i =
∏

β∈vi
α

(Xi − βi). (5.2.3)

Observe that for 1 ≤ i ≤ ` + 1 we have Tα,i ∈ K[Xi] and eα,i ∈ K[Xi]. Finally, we
define

Eα =
∏

1≤i≤`

eα,i (5.2.4)

and note that Eα ∈ K[X1, . . . , X`] holds.

Proposition 5.2.1. For 1 ≤ i ≤ ` we have

Tα,i =
∏

(α1,...,αi−1,βi)∈Vi

(Xi − βi) = eα,i (Xi − αi), (5.2.5)

Tα,`+1 =
∏

β∈V `+1
α

(X`+1 − β`+1), (5.2.6)

T`+1 =
∑
α∈V`

EαTα,`+1

Eα(α)
. (5.2.7)

Proof. Relations (5.2.5) and (5.2.6) follow easily from (5.2.1), (5.2.2) and (5.2.3).
In order to prove (5.2.7) we observe that:

(∀β ∈ V`) Eα(β) = 0 ⇐⇒ β 6= α. (5.2.8)
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Indeed, for 1 ≤ i ≤ `, we have eα,i(α) 6= 0 leading to Eα(α) 6= 0. Now let β ∈ V`

with β 6= α. Then, there exists i ≤ ` such that

(π`
i )
−1(β) ∈ vi

α.

Hence, for this index i we have eα,i(β) = 0, which proves (5.2.8). From there,
establishing (5.2.7) is routine. ¤

In [12], another triangular set N is obtained from the coordinates of the points
of V , see Proposition 5.2.2. The authors show that it has much smaller coefficients
than the normalized triangular set given by the formulas of Proposition 5.2.1. We
will be generalizing this second triangular set to the approximate case.

Proposition 5.2.2 (Interpolation formulas). Let D1 = 1 and τ1 = N1 = T1. For
2 ≤ ` ≤ n, define

D` =
∏

1≤i≤`−1

∂Ti

∂Xi

mod 〈T1, . . . , T`−1〉 (5.2.9)

and
N` = D`T` mod 〈T1, . . . , T`−1〉. (5.2.10)

Then, for 1 ≤ i ≤ ` we have

N`+1 =
∑

α∈V`

EαTα,`+1. (5.2.11)

Proof. Indeed, for 1 ≤ i ≤ `, we have

Tα,i = eα,i (Xi − αi) ∈ K[Xi]

leading to

∂T

∂Xi

(α) = T ′
α,i(α)

= e′α,i(α) (αi − αi) + eα,i(α)

= eα,i(α).

By definition, we have

N`+1 =

( ∏

1≤i≤`

∂T

∂Xi

)
T`+1 mod 〈T1, . . . , T`〉.
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Hence, we have

N`+1(α) =

( ∏

1≤i≤`

∂T

∂Xi

(α)

)
T`+1(α)

=

( ∏

1≤i≤`

eα,i(α)

)
T`+1(α)

= Eα(α) T`+1(α)

where T`+1(α) = Tα,`+1 holds. Finally we obtain

N`+1 =
∑
α∈V`

EαN`+1(α)

Eα(α)

=
∑
α∈V`

EαT`+1(α).

¤
Clearly, not all zero-dimensional varieties over Q are equiprojectable. Consider,

for example, with n = 2 the variety consisting of the three points A, B, C with
respective coordinates (1, 0), (0, 0) and (0, 1). However, we do have the following
result, see for instance [20].

Proposition 5.2.3. For every zero-dimensional radical ideal I of K[X1, . . . , Xn]
there exists finitely many triangular sets T 1, . . . , T e such that I is the intersection
of the ideals 〈T 1〉, . . . , 〈T e〉. If, in addition, the ideals 〈T 1〉, . . . , 〈T e〉 are pairwise
relatively prime, then the set {T 1, . . . , T e} is called a triangular decomposition of the
ideal I.

Triangular decompositions of algebraic varieties (with arbitrary dimension) are
discussed in depth in [25] together with an algorithm for computing them, which
is implemented in [22]. Observe that a radical ideal may admit several triangular
decompositions. For instance, there are four different triangular decompositions
for the ideal I({A,B,C}). Choosing a canonical triangular decomposition for the
radical I with the variable ordering X1 ≺ · · · ≺ Xn is achieved by the following
combinatorial construction. We refer to [11] for a more formal definition.

Definition 5.2.3. Consider a zero-dimensional variety V and denote by π = πn
n−1

the projection which removes the last coordinate. To a point x in V , we associate
N(x) = #π−1(π(x)), that is, the number of points lying in the same π-fiber as x.
Then, we split V into the disjoint union V1 ∪ · · · ∪ Vd, where for all i = 1, . . . , d, Vi

equals N−1(i), that is, the set of points x ∈ V which have N(x) = i. This splitting
process is applied recursively to all varieties V1, . . . , Vd, taking into account the fibers
of the successive projections πn

i , for i = n− 1, . . . , 1. In the end, we obtain a family
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of pairwise disjoint, equiprojectable varieties, whose reunion equals V ; they form the
equiprojectable decomposition of V .

5.3 Approximate Equiprojectable Decomposition

in Dimension Zero

In this section, we consider a zero-dimensional variety V ⊆ An(C) over Q. Each
point of V is given by approximate coordinates in a sense that we make precise in
Definition 5.3.1. We aim at defining and computing an approximate triangular de-
composition of V . To do so, we extend the construction given by Definition 5.2.3 and
introduce a notion of an approximate equiprojectable decomposition of V in Defini-
tion 5.3.4. Then, to each approximate equiprojectable component, we associate an
approximate triangular set, leading to Definition 5.3.5 of an approximate triangular
decomposition of V .

Therefore, an approximate triangular decomposition of V is obtained by inter-
polating the points of V given by approximate coordinates. We provide a stability
analysis for this interpolation in Section 5.4. Moreover, we report on experiments
that illustrate the accuracy of our stability analysis in Sections 5.5 and 5.6.

Definition 5.3.1. Let ε > 0 and r ≥ 0 be real numbers. Let x̄ = (x̄1, . . . , x̄n) be
a point of V and let x = (x1, . . . , xn) ∈ An(C) with x 6= 0. We say that (x, r) is
an approximate point for x̄ with tolerance ε, denoted by x̄ 'ε (x, r), if the following
conditions hold for all 1 ≤ i ≤ n:

(i) | x̄i − xi | ≤ r,

(ii) r ≤ ε | x |.
where | x |= max(| x1 |, . . . , | xn |).

With the notations of Definition 5.3.1 let (x, r) be an approximate point for x̄
with tolerance ε. Let 1 ≤ i ≤ n be fixed. If x̄i and xi are complex numbers and x̄i 6= 0
then a frequently-used measure of the number of correct significant decimal digits in
the approximate coordinate xi is the logarithm of the relative error lre(xi, x̄i) given
by

lre(xi, x̄i) = −log10

| x̄i − xi |
|x̄i| . (5.3.1)

Properties (i) and (ii) of Definition 5.3.1 lead to

lre(xi, x̄i) ≥ −log10 ε− log10

|x|
|x̄i| . (5.3.2)

In practice, one requires ε < 1 and thus Formula (5.3.2) gives a good measure of the
approximation of coordinate x̄i by means of coordinate xi. Similarly, Formula (5.3.3)
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below gives a good measure of the approximation of point x̄ by means of point x, for
x 6= 0:

lre(x, x̄) = −log10

| x̄− x |
|x̄| . (5.3.3)

As we shall see now, another good measure of this approximation is

lb(x̄, x) = −log10

| x̄− x |
|x| . (5.3.4)

Indeed, one can easily check that the following holds:

∣∣∣∣log10

| x̄− x |
|x| − log10

| x̄− x |
|x̄|

∣∣∣∣ =

∣∣∣∣log10

|x̄|
|x|

∣∣∣∣ . (5.3.5)

Moreover, we claim that when ε is close to zero:

∣∣∣∣log10

|x̄|
|x|

∣∣∣∣ ≈ ε . (5.3.6)

Thus, lre(x, x̄) and lb(x̄, x) are very close when ε is very small. To prove our claim,
we start from

||x̄| − |x|| ≤ | x̄− x | ≤ ε |x|, (5.3.7)

which holds by assumption (points (i) and (ii) of Definition 5.3.1). We deduce

∣∣∣∣
|x̄|
|x| − 1

∣∣∣∣ ≤ ε. (5.3.8)

Since ε is meant to be very small, using log10(1 − ε) ≈ −ε and log10(1 + ε) ≈ ε, we
finally obtain Formula (5.3.6).

A representation (using approximate points in the sense of Definition 5.3.1) of
the isolated roots of the variety V ⊆ An(C) of an input polynomial system F =
{F1, . . . , Fn} ⊂ Q[X1, . . . , Xn] can be obtained by numerical homotopy construction.
In particular, we used the PHC software [38]. Indeed, for each point x̄ of V , the
corresponding solution x returned by PHC is given with the condition number of
the Jacobian matrix of F at x, denoted by cond. The value cond can be used to
estimate the distance between x̄ and x (see [24] for details). More precisely, because
we use double precision floating-point numbers in the computation, a reasonable
formula is: | x̄i − xi | /|xi| ≈ cond · 10−16 for all 1 ≤ i ≤ n (see Table 5.4). Given
ε > 0, with this estimate, one can check whether each isolated point x̄ of V admits
approximate points within tolerance ε. Theoretically, the homotopy continuation
method can obtain approximate points arbitrarily close to the exact roots for any
tolerance ε. So, if the multiplicity of each point is 1, a one-to-one map between
approximate roots and exact ones can be computed. Note that none of the systems
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used in Section 5.6 have multiple roots (see Table 5.2).

Remark 5.3.1. The definition of approximate points of a polynomial systems is
related to alpha-theoretic concepts of approximate zero [5]. Although alpha theory
can determine a basin in which Newton’s method is guaranteed to converge, we note
that our approximate zero is not necessarily in the basin of attraction of the given
root. Another related concept is that of “pseudozero domains”, as introduced by
Stetter to make a general study of the data to result maps in the context of the
Numerical Polynomial Algebra [35]. In particular, we consider only local properties
(especially in the stability analysis) specifically aimed at the tasks for our paper.

Let ε > 0. From now on, we assume that for each point x̄ ∈ V we are given
x ∈ An(C) and r > 0, such that x̄ 'ε (x, r) holds. Then, we denote by Ṽ the set of

all (x, r), and we write V 'ε Ṽ .
We now return to the construction given by Definition 5.2.3. Again let π = πn

n−1

be the natural projection from An(C) to An−1(C) which removes the last coordinate.
Given two points x̄ and x̄′ of V we have to decide if they lie in the same π-fiber.
Since x̄ and x̄′ are given by approximate points we need the following.

Definition 5.3.2. Let i and j be integers such that 1 ≤ i ≤ j ≤ n. Let x̄, ȳ ∈ πn
j (V ).

Let x = (x1, . . . , xj) (resp. y = (y1, . . . , yj)) and (x, r) (resp. (y, r′)) be approximate
coordinates of x̄ (resp. ȳ) with tolerance ε. We say that x̄ and ȳ lie approximately
in the same πj

i -fiber with tolerance ε if for all 1 ≤ k ≤ i we have

| xk − yk | ≤ r + r′. (5.3.9)

Proposition 5.3.1. With the notations of Definition 5.3.2, if the points x̄, ȳ ∈
πn

j (V ) are in the same πj
i -fiber, that is, if πj

i (x̄) = πj
i (ȳ) then, the points x̄ and ȳ lie

approximately in the same πj
i -fiber with tolerance ε.

Proof. Since x̄ and ȳ are in the same πj
i -fiber and suppose (x, r) (resp. (y, r′)) are

the approximate coordinates of x̄ (resp. ȳ) with tolerance ε. Then, for any 1 ≤ k ≤ i,
this leads to:

|xk − yk| = |xk − yk − x̄k + ȳk| ≤ |x̄k − xk|+ |ȳk − yk| ≤ r + r′. (5.3.10)

¤

Remark 5.3.2. Suppose 1 ≤ i ≤ j ≤ n. For the points of πn
j (V ), the relation “lying

approximately in the same πj
i -fiber with tolerance ε” may not be an equivalence

relation, since the transitivity axiom does not hold here. We need to exclude this
situation in order to adapt the construction of Definition 5.2.3 for the points of V to
approximate points of V . In theory, for exact systems, this situation may be avoided
by reducing the tolerance ε, and thus the radius r at each point of V . However,
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Figure 5.3.1: x1, x2, x3 are exact points, x1,x2,x3 are the approximate points respectively. Here,
x1, x2 lie in different fibers, but are approximately in the same fiber, and Ṽ satisfies
the weak equivalence condition.

in practice, for some systems it is hard to obtain approximate roots when ε is very
small. For example, for systems possessing a cluster of points, it can be difficult to
compute these roots with high precision [23]. Additionally, for input systems with
limited accuracy, a tolerance beyond this limit could not be achieved. So for such
systems, we would not be able to meet the requirements of Definition 5.3.4. These
precautionary remarks being made, we will propose in Definition 5.3.4 a notion of
an approximate equiprojectable decomposition of V , where the points of V are given
by approximate points in the sense of Definition 5.3.1.

For any zero-dimensional system, using some random linear coordinates change,
each fiber has only one point. However, changes of coordinates will generally destroy
the sparsity of the original systems. An alternative approach to avoid unfavorable
projections is to view a cluster as a perturbed multiple solution (e.g. see the recent
work of Szántó et. al. [18] ).

Definition 5.3.3. We say that Ṽ satisfies the weak equivalence condition with toler-
ance ε if for all 1 ≤ i ≤ j ≤ n, the relation “lying approximately in the same πj

i -fiber

with tolerance ε” is an equivalence relation in πn
j (V ). Furthermore, we say that Ṽ

satisfies the strong equivalence condition with tolerance ε if for every x̄, ȳ ∈ V with
approximate points (x, r), (y, r′) ∈ Ṽ , with tolerance ε, for all 1 ≤ j ≤ n the following
conditions are equivalent:

• we have πn
j (x̄) = πn

j (ȳ),

• the points x̄ and ȳ lie approximately in the same πn
j -fiber.

Here we illustrate Definition 5.3.3 through Figures 1, 2 and 3 where we consider
different Ṽ ’s for the same V . In Figure 5.3.1, the set Ṽ satisfies the weak equivalence
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Figure 5.3.2: Refining x3 we get a smaller radius. Here, both pairs x1, x2 and x1, x3 lie approxi-
mately in the same fiber, but x2, x3 do not lie approximately in the same fiber. The
set Ṽ does not satisfy the weak equivalence condition.

Figure 5.3.3: Refining x1 we get the correct result. Here, x1, x2 lie in different fibers and both weak
and strong equivalence conditions for this ε are satisified.
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condition; observe that x1, x2 lie approximately in the same fiber, but x1 and x2 lie in
different fibers. In Figure 5.3.2, the points x1, x2 and x1, x3 are pairs of points lying
approximately in the same fiber, but x2, x3 do not lie approximately in the same
fiber. Hence, in this case, the set Ṽ does not satisfy the weak equivalence condition.
In Figure 5.3.3, we refine the three approximate roots until the weak equivalence
condition is satisfied again (the strong equivalence condition is also satisfied); we see
that x1, x2 lie in the different fibers.

In practice, the “exact” points of V are unknown, so we cannot determine whether
the strong equivalence condition is satisfied or not. However, we can detect whether
the weak equivalence condition holds or not. In our experiments reported in Sec-
tion 5.6, however, the exact points are known for each variety V , and we could decide
whether or not Ṽ satisfies the strong equivalence condition.

If the weak equivalence condition is satisfied but the strong equivalence condition
is not (e.g. see Figure 5.3.1), then there exists two distinct points x̄, ȳ ∈ V , with
respective approximate points (x, r), (y, r′), and an index 1 ≤ i ≤ n such that x̄i and
ȳi are different but very close to each other; more precisely |x̄i− ȳi| < 2r + 2r′ holds
(generally the distance |x̄i − ȳi| will be less than 10−13, see Table 5.4). Due to (for
example) roundoff errors in numerical computation, we cannot always avoid these
rare cases.

Finally, we note that introducing the notion of “weak equivalence condition” is
needed by Definition 5.3.4.

Definition 5.3.4. Assume that Ṽ satisfies the weak equivalence condition with tol-
erance ε. Define π = πn

n−1. To every point x̄ in V , we associate N(x̄) the number of
points in V which lie approximately in the same π-fiber as x with tolerance ε. For all
i ≥ 1, we denote by Vi the set of points x ∈ V satisfying N(x) = i. Then, we split V
into a disjoint union V1∪ · · · ∪Vd, for some d ∈ N large enough. This splitting process
is applied recursively to all V1, . . . , Vd, taking into account the fibers of the successive
projections πn

i , for i = n−1, . . . , 1. In the end, we obtain a family of pairwise disjoint
subsets of V , whose union equals V ; they form an approximate equiprojectable de-
composition of V with tolerance ε. If this approximate equiprojectable decomposition
of V (with tolerance ε) consists of only one subset, that is, V itself, we say that V
is equiprojectable with tolerance ε, otherwise the parts of the approximate equipro-
jectable decomposition of V (with tolerance ε) are called approximate equiprojectable
components of V with tolerance ε.

Note that each approximate equiprojectable component of V is equiprojectable
with tolerance ε. To each approximate equiprojectable component of V with toler-
ance ε we can associate an approximate triangular set by means of Definition 5.3.5.
This leads to a notion of an approximate triangular decomposition for the variety V .

Definition 5.3.5. Assume that the zero-dimensional variety V is equiprojectable
with tolerance ε. Then, by means of the interpolation formulas of Proposition 5.2.2



116

one can compute a triangular set {N1, . . . , Nn} called an approximate triangular set
of V with tolerance ε.

Now, assume that V is not approximately equiprojectable with tolerance ε. A
family of approximate triangular sets of approximate equiprojectable components of
V (with tolerance ε) forms an approximate triangular decomposition of V , with
tolerance ε.

5.4 Stability Analysis

In this section, we explore the relation between the relative error on the coordinates of
the approximate points of V and the relative error on the interpolated polynomials of
the approximate triangular decomposition given by Definition 5.3.5. The coefficients
of a polynomial continuously depend on its roots. However, a small error in a root
may result in a large error in the coefficients, motivating some of stability analysis.

For the relation between the errors mentioned above to be useful in practice, we
must face the following fact: the relative error of a root cannot be computed when
the exact root is unknown. In order to overcome this difficulty, for a point x̄ of V
given by an approximate point (x, r), we view the exact coordinates x̄ = (x̄1, . . . , x̄n)
as a random variable which takes values in the region defined by the following: for
all 1 ≤ i ≤ n

| xi − x̄i | ≤ r. (5.4.1)

In this paper, we used the word bias instead of relative error in order to avoid
conflicting terminology.

Definition 5.4.1. For x̄, x ∈ C, we call the the bias of x w.r.t. x̄ the fraction

δx =
x̄− x

x
(5.4.2)

simply denoted by δ, when no confusion may occur.

Remark 5.4.1. We would like to observe at this point that none of the results of
this section require knowledge of the exact coordinates of the points of V . Hence,
our results apply also in practice to the situation where V is initially given by a
polynomial system with inexact coefficients rather than a polynomial system with
exact coefficients. Note that the PHC software [38, 24] can process both types of
polynomial systems.

We define now the bias for the coefficients of a polynomial. Our definition applies
to univariate polynomials as well as to multivariate ones. Let e = (e1, . . . , en) ∈ Nn

be an exponent vector. We denote by Xe the monomial Xe1
1 · · ·Xen

n of C[X1, . . . , Xe].
We write p =

∑
e∈S feX

e a polynomial of C[X1, . . . , Xe] with (finite) support S. For
every e ∈ Nn with e 6∈ S we set to zero the coefficient fe, i.e. we define fe = 0. Hence
we can simply write p =

∑
e feX

e.
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Typically, in our stability analysis, the polynomial f of Definition 5.4.2 will be
a polynomial interpolating the approximate coordinates of the points of V , whereas
f̄ will be the corresponding polynomial obtained from the exact coordinates of the
points of V .

Definition 5.4.2. Let p̄ =
∑

e f̄eX
e and p =

∑
e feX

e be polynomials in C[x1, . . . , xe].
For every e ∈ Nn, the bias of coefficient fe w.r.t. p̄ is defined by

δe =
f̄e − fe

fe

. (5.4.3)

The bias of the polynomial p w.r.t. p̄ is the bias of the coefficient of p w.r.t. p̄ which
has the largest norm.

The interpolated polynomials given by Proposition 5.2.2 are multivariate polyno-
mials that are constructed as univariate ones over a suitable coefficient ring. Because
of these formulas, we can focus on the univariate case. Let p̄ ∈ C[X] be a univariate
monic polynomial of degree b given by approximate values x1, . . . , xb of its roots with
respective radii r1, . . . , rb.

p =
i=b∏
i=1

(x− xi). (5.4.4)

Let δ1, . . . , δb be the respective biases of x1, . . . , xb such that the exact roots of p̄ are
x1 + x1 δ1, · · · , xb + xb δb. Hence we have

p̄ =
i=b∏
i=1

(x− xi − xi δi). (5.4.5)

Notation 1. In the remainder of this section, we assume that δ1, . . . , δb are indepen-
dent random (complex) variables, each of them with uniform distribution in a disk
centered at 0 and with respective radii r1/|x1|, . . . , rb/|xb|. We define the bias bound
and we denote it by ρ the maximum of r1/|x1|, . . . , rb/|xb|.

In the proofs of Propositions 5.4.1, 5.4.2, and 5.4.3, we will denote by O(δ2) any
term in δiδj. When ρ is very small, we can ignore such higher order terms and keep
only the linear terms.

We will consider the bias of the polynomial p̄ w.r.t. p as a random variable
denoted by γ. We direct the reader to the Appendix for a brief review of the standard
probability results which will be used.

There are essentially three steps in computing the interpolated polynomials of
Proposition 5.2.2:

(I1) compute the univariate polynomials eα,i,

(I2) compute the multivariate polynomials Eα, which are products of univariate
polynomials eα,i,
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(I3) compute the multivariate polynomials N` which are sums of some multivariate
polynomials.

For each step, we provide properties on the stability analysis of the corresponding
calculations. For our study of the relation between p̄ and p, we need the following
notation.

Notation 2. For 1 ≤ k ≤ b, the k-th elementary symmetric function of x1, . . . , xb is
given by

σk =
∑

1≤a1<a2<...<ak≤b

xa1· · ·xak
, (5.4.6)

and let σ0 := 1. Observe that we have:

p =
b∏

i=1

(x− xi) =
b∑

k=0

(−1)kσkxb−k. (5.4.7)

Let 1 ≤ j ≤ b. We denote by σk
j the element of C[x1, . . . , xn] obtained from σk by

specializing xj to 0, that is σk
j = σk |xj=0. Let lj be the j-th Lagrange interpolation

polynomial. Observe that we have:

lj =
b∏

i=1,i6=j

(x− xi) =
b−1∑

k=0

(−1)kσk
j x

b−k−1. (5.4.8)

Proposition 5.4.1. The bias γ of p w.r.t p̄ is bounded by

max

(∑b
i=1 | σk

i xi |
| σk+1 | , k = 0, . . . , b− 1

)
ρ. (5.4.9)

We define

$k =

√
3
∑b

i=1 | σk
i xi |2

3 | σk+1 | ρ (5.4.10)

ω = max($k, k = 0, . . . , b− 1). (5.4.11)

If b is big enough, then γ is bounded by the normal distribution N(0, ω). (For the
precise meaning of the statement being bounded by a distribution, please refer to
Definition 5.7.1 in the Appendix.)
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Proof. By the definitions of p̄ and p, we have

p̄− p =
b∏

i=1

(x− xi − xiδi)−
b∏

i=1

(x− xi)

=
b∏

i=1

(x− xi)−
b∑

i=1

b∏

j=1,j 6=i

(x− xj)xiδi + O(δ2)−
b∏

i=1

(x− xi)

= −
b∑

i=1

lixiδi + O(δ2)

≈ −
b∑

i=1

(
b−1∑

k=0

(−1)kσk
i xiδi)x

b−k−1

= −
b−1∑

k=0

(−1)k(
b∑

i=1

σk
i xiδi)x

b−k−1,

and

p =
b∏

i=1

(x− xi) =
b−1∑

k=−1

(−1)k+1σk+1xb−k−1.

Thus, the absolute value of the bias for each coefficient γk, for k = 0, . . . , b − 1, is
given by

| γk |= | ∑b
i=1 σk

i xiδi |
| σk+1 | ≤

∑b
i=1 | σk

i xi |
| σk+1 | ρ.

Hence, to order O(δ2)

γ ≤ max

(∑b
i=1 | σk

i xi |
| σk+1 | , k = 0, . . . , b− 1

)
ρ.

Recall that, by assumption, the random variables δ1, . . . , δb are independent. Also
observe that, to order O(δ2), the bias of each coefficient of p is a linear combination
of these variables. Hence, we can compute the variance ω2

k of the bias γk of the
coefficient xb−k−1 , for k = 0, . . . , b − 1, by means of the properties given in the
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Appendix:

ω2
k = V ar

(
b∑

i=1

σk
i xiδi/σ

k+1

)

= V ar

(
b∑

i=1

σk
i xiδi

)
/|σk+1|2

=

∑b
i=1 |σk

i xi|2
|σk+1|2 V ar(δi)

≤
∑b

i=1 |σk
i xi|2

3|σk+1|2 ρ2

= $2
k.

When b is big enough, the distribution of γk will tend to a normal distribution
N(0, ωk), by the results in the Appendix. Let ω= max($k, k = 0, . . . , b − 1), then
γk is bounded by N(0, ω) for each k. Finally, γ is bounded by N(0, ω). ¤

Remark 5.4.2. If γ follows the normal distribution N(0, ω) and x = 2ω then we have
P (| γ |< x) ≈ 0.95. In fact, our experiments show that for b ≥ 10, the probability
P (| γ |< x) is close to 0.95. Thus we can use Formula (5.4.10) to estimate the bias in
the coefficients even if b is not very big. From the output of PHC we can estimate δ
using condition numbers, compute ω, and finally estimate the bias for the coefficients
with confidence level 0.95. In this section assuming b is big enough, then we have:

Proposition 5.4.2. Given n univariate polynomials, pi(xi) =
∑

k ai,kx
k
i , i = 1, . . . , n,

if each δi (the bias of pi) satisfies N(0, ω), then the bias of
∏n

i=1 pi is bounded by
N(0,

√
nω) to order O(δ2).

Proof. Write the product of the univariate polynomials as a sum of monomials :

p1 · · · pn =
∑

feX
e,

where
fe = fe1,...,en = a1,e1· · ·an,en .

Denote the exact coefficient by

f̄e = (a1,e1 + a1,e1δ1)· · ·(an,en + an,enδn).
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By the same arguments as above:

γe =
f̄e − fe

fe

=
a1,e1· · ·an,en(δ1 + · · ·+ δn)

a1,e1· · ·an,en

+ O(δ2)

≈ δ1 + · · ·+ δn.

Because each δi satisfies N(0, ω), their sum is also normally distributed (see the
Appendix) with distribution function N(0,

√
nω). So, to order O(δ2) the bias of∏n

i=1 pi is bounded by N(0,
√

nω). ¤
Proposition 5.4.3. Let pi(X) =

∑
fi,eX

e, i = 1, . . . , N , be multi-variate polyno-
mials such that δi (the bias of pi) is normally distributed with distribution N(0, ω).
Let

ωe =

√∑N
i=1 f 2

i,e

| ∑N
i=1 fi,e |

ω

ω′ = max(ωe).

(5.4.12)

Then, to order O(δ2), the random variable γ for
∑N

i=1 pi(X) is bounded by N(0, ω′).

Proof. Examine the coefficients of the monomials:

p1 + · · ·+ pN =
∑

feX
e

fe = f1,e + · · ·+ fN,e.

Let the exact coefficient be denoted by

fe = (f1,e + f1,eδ1) + · · ·+ (fN,e + fN,eδN).

Again, by the same arguments, the bias γe is:

fe − fe

fe

=
f1,eδ1 + · · ·+ fN,eδN

f1,e + · · ·+ fN,e

+ O(δ2).

Because each δi is normally distributed by N(0, ω), the distribution of γe is still
normal and equal to N(0, ωe) (see the Appendix). So γ for the sum is bounded by
N(0, ω′) (again, see the Appendix for the meaning of bounded here). ¤
Definition 5.4.3. Given an approximate triangular set T and the bias bound ρ of
the approximate roots, let the bias of T be bounded by N(0, ω). Denote the standard
deviation of T by sd where sd = ω/ρ.

Remark 5.4.3. Let V 'ε Ṽ . Assume that Ṽ satisfies the strong equivalence condi-
tion with tolerance ε, in the sense of Definition 5.3.3. Then, it follows from Proposi-
tions 5.4.1, 5.4.2, and 5.4.3 that we can determine sd and the bias of the approximate
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triangular sets (in the approximate equiprojectable decomposition) of Ṽ with a given
probability. Moreover, for an approximate system, given a perturbation of the ap-
proximate roots, we can estimate the change of the coefficients of the associated
approximate triangular sets.

For further computations, using the approximate triangular sets will likely be dif-
ficult because of accumulation of errors. However our discussion above also provides
a statistical way to estimate this accumulation.

5.5 An illustrative example

Here, we use a simple example to illustrate our concept of an approximate triangular
set and our algorithm for determining the standard deviation. Let us consider:

sys = [zx2 − zy, x2 − 4y + y2 + 2,−3zy + zy2 + 3z − 3]. (5.5.1)

The exact triangular set of this system with order z ≺ y ≺ x :

[z − 3, y2 − 3y + 2, x2 − y]. (5.5.2)

1. Solving the system by PHC, we get 4 isolated points:
[z = 3.0, y = 2.0, x = 1.41421356237309, rco = 0.01511]
[z = 3.0, y = 1.0, x = 1.0, rco = 0.02089]
[z = 3.0, y = 2.0, x = −1.41421356237309, rco = 0.01511]
[z = 3.0, y = 1.0, x = −1.0, rco = 0.02089].
Here rco is the inverse of the condition number of Jacobian matrix at this
point.

2. We remark, as we did in the Introduction, that each solved form [z = 3.0, y =
2.0, x = 1.41421356237309], [z = 3.0, y = 1.0, x = 1.0], [z = 3.0, y = 2.0, x =
−1.41421356237309], [z = 3.0, y = 1.0, x = −1.0] is an approximate triangular
set.

3. We use the condition numbers to estimate dmax: δ = 1/rco × 10−16 = 6.62 ×
10−15 and call this the estimated value of ρ. For this example, we know the
exact solutions, and the exact distance between roots. In particular ρ should
be
√

2− 1.41421356237309 = 5.1× 10−15. In practice we don’t know the exact
solution of the input system, and we only can give an estimated value for ρ.
But we need to point out that this estimation works well for many examples.
Comparisons are given in next section.

4. By the definition of an approximate equiprojectable decomposition, the projec-
tion of the first and third points above are numerically equal since |2.0−2.0| <
(2.0/0.01511 + 2.0/0.01511)× 10−16.
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# roots # tests % of trials: % of trials: % of trials:
rel. err. > 1 sd rel. err. > 2 sd rel. err. > 3 sd
(0.32 expected) (0.05 expected) (0.003 expected)

10 1000 0.328 0.0503 0.0168
20 1000 0.312 0.0425 0.0050
30 1000 0.350 0.0579 0.0023
40 800 0.335 0.0517 0.0067
50 500 0.342 0.0474 0.0042

Table 5.1: Experiments for our probabilistic analysis (sd = standard dev., rel. err. is relative
error).

Also the projections of the first and second points are not numerically equal
since
|2.0− 1.0| > (2.0/0.01511 + 1.0/0.02089)× 10−16 = 1.8× 10−14.
In the same way, we get two different projected points p1 = (3.0, 2.0), p2 =
(3.0, 2.0) on zy-plane, and there are two points on each fiber. The projections
of p1, p2 onto the z axis is just one point z = 3.0. So the variety of sys is ap-
proximately equiprojectable. From the cardinality of the fibers, we know that
the degree sequence is [1, 2, 2] with respect to the main variables of each poly-
nomial in the triangular set. The degree sequence can be equivalently written
as 1 · 22.

5. By formula 5.2.7, we get the approximate triangular set of sys:

[−.999999999999986y + 1.0x2, y2 − 3.0y + 2.0, z − 3.0]. (5.5.3)

The biggest relative error of coefficients is 1.4×10−14. By formula (5.4.10) and
(5.4.12) the standard deviation (sd) is 2.89.
So sd × ρ = 1.9 × 10−14 > 1.4 × 10−14 is a good estimate for the relative
error. In the next section we will give more nontrivial examples to support our
statement. Due to both input and round off errors in numerical computation,
there will be some monomials of approximate triangular sets with very small
coefficients that do not appear in the exact triangular sets. Then the biggest
relative error of coefficients is 1. So in practice we will consider coefficients
which are smaller than a given tolerance as 0.

5.6 Experimental Results

We have conducted two sets of experiments. The first one illustrates the probabilistic
analysis of Proposition 5.4.1. Experiments are described in Section 5.6.1, and the
results appear in Table 5.1.
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Sys Name n d h H Ĥ Reference
1 Issac97 4 2 2 71 1498 [37]
2 L3 3 3 1 1 1678 [2]
3 Sendra 2 7 7 59 2421 [37]
4 fabfaux 3 3 13 72 2650 [14]
5 L4 3 4 1 2 3977 [2]
6 Cylohexne 3 4 3 9 4361 [37]
7 Weispfenning94 3 5 0 10 7392 [37]
8 UteshevBikker 4 3 3 88 7908 [37]
9 Fee-1 4 2 2 34 23967 [37]
10 Reimer-4 4 5 1 14 56013 [37]
11 S91 8 2 2 33 58116 [37]
12 eco6 6 3 0 12 105718 [37]
13 Geneig 6 3 2 82 114466 [37]
14 gametwo5 5 4 8 674 158075 [37]
15 dessin-2 10 2 7 436 360596 [37]
16 eco7 7 3 0 26 387754 [37]
17 Methan61 10 2 16 227 452756 [37]

Table 5.2: Input systems (n =# polys.; d = degree system; h = height input coeffs; H = height
output coeffs; Ĥ = estimated height output coeffs.).

Sys Exact equiproj Degree configuration #C-roots Time to isolate #R-roots
dec. tim. (secs) R-roots (secs)

1 164 16 13 16 < 1 0
2 < 1 (1 3 1), (8 1 1), (8 2 1) 27 < 1 5
3 33 46 1 46 5 6
4 28 27 12 27 1 3
5 1 (24 2 1), (16 1 1) 64 < 1 8
6 6 (4 1 2), (8 1 1) 16 < 1 12
7 72 54 121 54 < 1 0
8 29201 36 13 36 7 10
9 24 26 13 26 2 6
10 10097 18 2 12 36 5 4
11 26 10 17 10 1 4
12 50 16 15 16 < 1 4
13 18 10 13 10 2 10
14 24320 44 14 44 45 12
15 527 1 42 18 42 15 1
16 2742 32 16 32 4 8
17 6251 27 19 27 28 13

Table 5.3: Exact equiprojectable triangular decomposition with the RegularChains library.
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Sys #C-roots #C-roots by PHC PHC tim.(secs) Estimated ρ Exact ρ

1 16 16 1 0.448e-14 0.239e-14
2 27 27 1 0.186e-14 0.337e-14
3 46 46 4 0.159e-11 0.274e-14
4 27 27 2 0.224e-14 0.154e-14
5 64 64 1 0.143e-14 0.331e-14
6 16 16 < 1 0.835e-14 0.181e-14
7 54 49 5 0.183e-13 0.336e-14
8 36 36 6 0.767e-12 0.781e-14
9 26 26 5 0.229e-11 0.759e-14
10 36 36 3 0.739e-13 0.544e-14
11 10 10 3 0.107e-13 0.125e-14
12 16 16 3 0.292e-13 0.287e-14
13 10 10 2 0.629e-13 0.105e-13
14 44 43 6 0.665e-12 0.144e-13
15 42 41 11 0.585e-7 0.271e-14
16 32 32 14 0.760e-13 0.264e-14
17 27 13 10 0.846e-6 0.563e-13

Table 5.4: Approximate roots by PHC where the estimate ρ = condition number ×10−16 and exact
ρ = largest 2-norm of distance between exact and approx root divided by the 2-norm of
approx root.

Sys sd Exact ρ · sd δcoeff < sd? < 2sd? Residual
1 403.3 0.9639e-12 0.197e-12 yes yes 0.444e-15
2 7.492 0.2529e-13 0.211e-13 yes yes 0.125e-13
3 1729.2 0.4736e-11 0.542e-11 no yes 0.89e-11
4 1056.7 0.1625e-11 0.463e-12 yes yes 0.201
5 59188.4 0.1959e-09 0.248e-09 no yes 0.555e-7
6 23835.5 0.4314e-10 0.179e-11 yes yes 0.7e-13
7 NA NA NA NA NA NA
8 383.8 0.2996e-11 0.942e-12 yes yes 0.163e-8
9 151.6 0.1151e-11 0.181e-12 yes yes 0.504e-13
10 3928.4 0.2137e-10 0.397e-12 yes yes 0.193e-18
11 45.77 0.5708e-13 0.133e-13 yes yes 0.188e-15
12 121.7 0.3488e-12 0.184e-12 yes yes 0.216
13 551.7 0.5815e-11 0.761e-13 yes yes 0.314e-17
14 NA NA NA NA NA NA
15 NA NA NA NA NA NA
16 317.7 0.8397e-12 0.154e-11 no yes 0.218e20
17 NA NA NA NA NA NA

Table 5.5: Approximate Triangular Sets: sd = standard dev. defined in Section 5.4; exact ρ =
largest 2-norm distance between exact and approx root divided by the 2-norm of approx
root; δcoeff = largest relative error of coeffs of approx triangular set compared with the
exact one.
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The second set of experiments deals with the computation of exact and approxi-
mate triangular decompositions. Section 5.6.2 presents the exact case whereas Sec-
tion 5.6.3 reports on the approximate one. Most of the test polynomial systems that
we use (see Table 5.2) are well known problems [2, 11, 37]. They are zero-dimensional
square systems defined by multivariate polynomials over Q generating radical ide-
als. Table 5.3 shows data for the exact triangular decompositions of these systems,
the output by PHC is collected in Table 5.4, and Table 5.5 shows their approximate
triangular decompositions computed from the PHC output. The main results for the
purposes of this paper are given by this latter table.

5.6.1 Normal distribution test

Let b be a number of roots given in the column # roots. We randomly generate b
roots, and view them as the exact roots of a polynomial p̄ of degree d. Then, we
perturb each of these roots by a uniformly distributed random variable, leading to an
approximate polynomial p. The two polynomials p̄ and p are expanded in order to ob-
tain ε, the largest relative error for a coefficient. We compute the standard deviation
sd by formula (5.4.10), and compare it with ε. These experiments are repeated many
times (between 500 and 1000, see the column # tests) for b = 10, 20, 30, 40, 50. The
third column is the percentage of times for which the relative error is bigger than one
standard deviation. If the relative error is normally distributed, then this percentage
should be 0.32, which we verify in our tests.

5.6.2 Exact triangular decomposition

The test polynomial systems are given in Table 5.2. For each input system F , we
give n the number of variables, d the total degree of F , the logarithm h of the largest
coefficient, the number of digits H appearing in the largest coefficient in the (exact)

equiprojectable decomposition of F , and the height Ĥ of that coefficient as estimated
by the formulas of [11].

In order to compute the exact equiprojectable decomposition, we use the trian-
gular decomposition library RegularChains written in Maple by Lemaire, Moreno
Maza and Xie [22] in which the algorithms of [25, 11]are implemented. Our com-
putations are done on a 2799 MHz Pentium 4 machine. The timings for computing
the exact equiprojectable decompositions are given in the first column of Table 5.3.
To understand these timings, we should mention that the RegularChains code is
high-level interpreted code (and not compiled). Moreover, this code is not supported
by fast arithmetic, such as FFT-based arithmetic.

Each degree configuration specifies the degree sequences of the triangular sets in
the decomposition (see [2] for similar data). Hence, the number of sequences in a
degree configuration equals the number of equiprojectable components of the system.
In Table 5.3, #C-roots and #R-roots are, respectively, the total number of complex
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and real roots of the system. The column labeled “Time to isolate R-roots”, gives
the total time in seconds to isolate all the real roots to a precision of 2−30 using
interval arithmetic.

We have also isolated each complex root. This was done by Éric Schost (École
Polytechnique, France) using Magma as follows. First, the splitting circle method of
Schönhage was used to separate the complex roots. Then, Newton iteration was used
to refine the isolation boxes. A precision of 200 digits could be achieved for our 17
test systems in less than 10 minutes on a Pentium P3 running at 1GHz.

5.6.3 Approximate triangular sets

We used the PHC package [38, 24] to compute the approximate isolated roots for each
benchmark system. Then we interpolated the approximate triangular sets and give
the results of our error analysis for each system. The computations in Tables 5.4
and 5.5 were done on a 1.5 GHz Pentium M machine, and the timings for finding
the roots using PHC are listed in PHC Timing of Table 5.4. In Table 5.4: the first
column is the exact number of roots and second column is the number of roots
found by PHC. For some systems, PHC (in black box mode) did not get every root.
This simply means that the default settings in the black box version of PHC did
not solve the system. We did not compute the approximate triangular sets for such
systems. Some of these systems could certainly have been solved by using PHCPack,
by exploiting the flexibility of its powerful user specified options, designed for more
challenging problems. But we did not do that here. The estimate ρ is defined as the
condition number ×10−16, and exact ρ = max(|xi− x̄i|/|xi|), x̄i ∈ V where the x̄i are
the ”exact” roots, the xi are the roots given by PHC, and the distance is given by the
2 norm. The results show that our estimated distance is often larger than the exact
distance.

In Table 5.5: The second column gives the standard deviation of the approximate
triangular set, as discussed in Remark 5.4.3. The third column is the product of the
exact ρ and one standard deviation. In the fourth column δcoeff is the largest relative
error of the coefficients of the approximate triangular set as compared with the exact
one. If this relative error is less than exact ρ · sd, the element of the fifth column
(labeled < sd?) is “yes”, otherwise it is “no”. Moreover, for every approximate
triangular set, the relative error is bounded by 2 sd (see column 6). The last column,
labeled residual, gives the maximum residual of an approximate triangular set at the
roots given by PHC. The results of this table support the conclusions of Remark 5.4.3.

5.7 Discussion

There are well-developed algorithms for computing exact triangular decompositions
and considerable recent improvements in their time complexity [11]. Such represen-
tations are desirable, not only because of their triangular solved-form structure, but
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also because, in comparison to other exact methods, their space complexity is well
controlled [12]. In particular, they use the minimum number of polynomials needed
to describe the equi-dimensional components of a polynomial system.

We have extended such methods to approximate systems in the dimension zero
case. We have exploited methods from the newly developing area of Numerical
Algebraic Geometry [31, 38, 32, 33], together with new techniques based on the
so-called equiprojectable decomposition [10] of a zero-dimensional variety.

Throughout this paper we have assumed that the input is zero-dimensional and
generates a radical ideal. We briefly discuss the situation where both of these restric-
tions are removed. The approximate methods in [33, 38] yield isolated points, pos-
sibly of higher multiplicity, corresponding to the zero-dimensional equi-dimensional
components. Such multiplicities can be removed (deflated) numerically using the
techniques of [13] and [23] (see [21] for a symbolic method for the exact case) and
subsequently the methods of our paper can be applied.

Our contribution, in the zero-dimensional case, has been to show that the isolated
points, given by approximate coordinates, can be interpolated in order to obtain a
triangular decomposition which is an approximation of the exact equiprojectable
decomposition. The methods [32] yield a numerical irreducible decomposition for
this case, and in particular they give a collection of triangular sets, each of them
corresponding trivially to an isolated point.

In addition, the co-dimensional one components (hypersurfaces) can be numeri-
cally interpolated by [31, 32] to obtain a single polynomial which can be considered
as a representation with triangular shape. The methods also give (non-triangular)
representations of all of the positive dimensional components using generic points on
each component. The above results, together with those in our paper on linearized
triangular decompositions [27], represent progress on the general problem of obtain-
ing approximate triangular representations for all components of a given polynomial
system.

Often, in applications, polynomial systems have parameters [33]. One is inter-
ested in behavior at generic values of the parameters. In practise, one proceeds by
selecting generic values for the parameters, and this is often how zero-dimensional
polynomial solving arises in applications. In [33], it is shown how once a solution is
computed by homotopy continuation for a specific parameter value, then solutions for
other parameter values can be obtained efficiently from the given one using a “param-
eter homotopy”. Analogously, we can follow this idea to reduce positive dimensional
systems to zero-dimensional ones by setting generic values for the parameters. Then,
a parameter homotopy is used to efficiently compute approximate triangular sets for
other parameter values. A promising approach to construct triangular sets of positive
dimensional components is to use parameter homotopies followed by interpolation
by choosing sufficiently many values for the parameters. Thus, our work on the
zero-dimensional case is a preparation for the study of the general case. The related
exact approaches go back to [39, 16] among others; also see the recent work [9, 29].
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Under some choices of interpolation points (e.g. uniformly spread points) the
interpolation formulas of [12] may be ill-conditioned [4, 17]. In the zero-dimensional
case, we have no control over this, since the locations of the points are fixed. However,
the stability analysis of our paper can identify this situation. In particular, a very
large standard deviation means that the coefficients are very sensitive to changes
in the roots. For such systems, interpolation is not a good method for obtaining
approximate triangular sets from the roots.

In [6], the authors compute an exact absolute factorization of a bivariate poly-
nomial from an approximate factorization. It is natural to ask if one could compute
an exact equiprojectable decomposition from an approximate one. One preliminary
answer is as follows. Let F be an (exact) zero-dimensional polynomial system in
Q[X1 ≺ · · · ≺ Xn] with total degree d and the maximum number of digits of the
coefficients h. Then [11], the height of any coefficient of any (exact) triangular set
in the equiprojectable decomposition of V (F ) ⊆ An(C) is O(hn dn). This suggests
that the numbers d and n must be small for this reconstruction (from approximate
to exact) to be realistic. However, the question remains open for future work. In-
deed, Table 5.2 shows that the actual coefficient size H in the triangular set is much
less than the above height upper bound Ĥ. Another approach is to lift to nearby
exact triangular systems which may have moderately sized rational coefficients, in
comparison to lifting to exact rational triangular systems. In addition, a linearized
sensitivity analysis should yield information on coefficient versus solution changes
(e.g. see [35]). This information is valuable in lifting exact results from the approx-
imate triangular decomposition. Such approaches are the topic of future work.

Traditional uses of exact triangular sets include finding the reduced or simplified
form of a polynomial with respect to a triangular decomposition, as accomplished
by a chain of pseudo-reductions. Standard deviations of the coefficients also provide
information about the accumulation of error in such operations. Provided that the
chains of reductions are short, and the degrees of the polynomials involved are not
too high, some similar uses are possible with our approximate triangular systems.
However, we caution the reader that the accumulation of roundoff error means that
such operations should be carried out with care.

The roots of a generic zero-dimensional system are equiprojectable and corre-
spond to a normalized triangular set. Following the idea in [35], we can construct
a homotopy to study the deformations of triangular sets with special shape (by the
Shape-Lemma) and the errors in the roots caused by errors in the coefficients. This
idea will also be pursued in future work.

Finally, we direct the reader to [34, 35], where fundamental theorems on backward
error analysis and sensitivity of the roots under small perturbations of the coefficients
are given for polynomials. When the input system F is approximate, although
discontinuous phenomena can occur, some continuity aspects are preserved under
perturbation [36].

The favorable properties of the equiprojectable decomposition of V (F ) under
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specialization [11] suggests that the continuity of approximate equiprojectable de-
composition needs to be studied in future application to general systems.
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Appendix - Brief review of probability theory

In our stability analysis of coefficients, a probability model was introduced. Here we
give a brief review of the relevant standard probability knowledge required.

• If δ is a random variable and c is a constant in R then V ar(cδ) = c2V ar(δ).

• If δ1, ..., δb are random variables and ξ=
∑

δi then the expectation value is
additive: E(ξ) =

∑
E(δi). Moreover, if they are independent, then the variance

of the sum of these random variables is also additive: V ar(ξ) =
∑

V ar(δi).

• Suppose δ = δre + δim

√−1 and δre, δim are independent random variables
with the same distribution with c ∈ C. Then V ar(<(cδ)) = |c|2V ar(δre) =
V ar(=(cδ)) = |c|2V ar(δim), where <(z) and =(z) are the real and imaginary
parts of z. In this paper we define V ar(δ) := V ar(δre).

• N(0, 1) is the standard normal distribution with mean 0, standard deviation 1,
probability density function p(x) = 1√

2π
e−x2/2 and cumulative density function

Φ(x) =
∫ x

−x
p(x)dx. Note that Φ(1) ≈ 0.68, Φ(2) ≈ 0.95.

• Suppose that δ1, ..., δb are independent random variables with distribution func-
tions F1, ..., Fb and E(δi) = 0, 0 < V ar(δi) < ∞, s2

b =
∑

V ar(δi). The Lin-
deberg condition for a sum of independent random variables is that for any
t > 0:

1
s2
b

∑b
k=1

∫
|x|>tsb

x2dFk(x) −→ 0 when b −→∞ (5.7.1)
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From our assumptions about the roots, the bias is uniformly distributed and because
0 < V ar(δi) < ∞ we have s2

b →∞ as b −→∞. So for any t > 0, there always exists
L, when b > L the integral above is 0.

Proposition 5.7.1 (uniform distribution and Lindeberg condition). If δ1, ..., δb are
independent random variables which are uniformly distributed, and E(δi) = 0, if the
variance of each δi is nonzero and finite, then this family of random variables satisfies
the Lindeberg condition.

Proposition 5.7.2 (Lindeberg’s central limit theorem [30]). Suppose δ1, ..., δb are
uniformly distributed independent random variables, E(δi) = 0 and δi satisfies the
Lindeberg condition. Let Sb =

∑b
i=1 δi and s2

b =
∑b

i=1 V ar(δi) then when b −→ ∞,
the sum of variables divided by its standard deviation is convergent (in distribution)
to a standard normal distribution:

Sb

sb
−→ N(0, 1) as b −→∞ (5.7.2)

Definition 5.7.1. We say a random variable ξ or |ξ| is bounded by N(0, ω) if the
probability P (|ξ| < xω) > Φ(x).

When ω is bigger, the probability will also be bigger. In particular if ω′ > ω then
P (|ξ| < xω′) > P (|ξ| < xω), so ξ is also bounded by N(0, ω′).



Bibliography

[1] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets.
J. Symb. Comp., 28(1,2):45–124, 1999.

[2] P. Aubry and M. Moreno Maza. Triangular sets for solving polynomial systems:
A comparative implementation of four methods. J. Symb. Comp., 28(1-2):125–
154, 1999.

[3] P. Aubry and A. Valibouze. Using Galois ideals for computing relative resolvents.
J. Symb. Comp., 30(6):635–651, 2000.

[4] J.P. Berrut and L.N. Trefethen. Barycentric lagrange interpolation. SIAM Rev.,
vol 46(3): 501-517, 2004.

[5] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and real computation.
Springer, New York, 1997.
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Chapter 6

Computing the Rank and
Null-space of Polynomial Matrices

Rank and Null-space computation are considered for polynomial matrices i.e. for
matrices whose entries are multivariate polynomials. In particular it is shown that
several well-known definitions of the rank of a matrix over a polynomial ring are
equivalent. An efficient and probabilistic method to evaluate the rank of a polynomial
matrix is given. A generalized Sylvester matrix method is presented to compute the
null-space of a polynomial matrix numerically by using Singular Value Decomposition
(SVD). Null-space bases and syzygy modules of polynomial matrices are discussed.
Applications to computation of GCDs of multivariate polynomials and elimination
ideals of “quasi-linear” systems are presented in this article.

6.1 Introduction

A classical and important area in linear algebra concerns the solution of linear equa-
tions with coefficients in a field (often in R or C). Rank and null-space computation
for matrices are central operations in this area. When the coefficients of a homo-
geneous systems are multivariate polynomials, the set of all polynomial solutions is
called the syzygy module of the system (the difference to the null-space is that the
null-space is a vector space in rational functions). This subject has been studied for
decades by researchers in commutative algebra and various methods such as Gröbner
bases have been proposed to compute a basis of the syzygy module [5]. The paper
[11] studied the syzygy module using the theory of n-dimensional linear systems.

This paper is more concerned about the problem of rank and null-space basis
computation for polynomial matrices. However the connection between the null-
space and the syzygy module of a polynomial matrix will be discussed in this paper.

For such problems, much progress on both symbolic (exact) and numerical com-
putation methods has been made. McClellan [12] gave algorithms to compute general
solutions of linear equations with polynomial or rational function coefficients by mod-
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ular methods. In [21] the problem of computing the rank and a null-space basis of
a univariate polynomial matrix is reduced to polynomial matrix multiplication. The
authors use Hensel lifting and matrix minimal fraction reconstruction to yield a favor-
able complexity for symbolic computation. In [25] the authors proposed a numerical
method for univariate polynomial matrices to compute the rank by evaluation of
several constant matrices and construct null-space bases by Sylvester methods.

In this paper, the method of null-space computation in univariate case [25] is
extended to multivariate cases. In addition rank evaluation of a polynomial matrix
is reduced to the constant matrix case by choosing one generic (random) point.

In this paper R denotes the polynomial ring K[x1, ..., xs], where the field K can
be R (the field of real numbers) or C (the field of complex numbers). Here R is
an integral domain and also a unique factorization domain [7]. In addition Q(R)
denotes the quotient field of R (i.e. rational functions in variables x1, ..., xs).

6.2 The Rank of a Matrix

In this section, first we will review the aspects of matrix theory which are still true
over a polynomial ring R. Many properties can be generalized to any commutative
ring [1]. Then we discuss a probabilistic method to detect the rank of a polynomial
matrix.

Definition 6.2.1. [Polynomial Matrix] The set of all m × n matrices with en-
tries from R will be denoted by Mm×n(R). Each member in Mm×n(R) is called a
polynomial matrix over R.

For A ∈ Mm×n(R), in this paper [A]ij is used to denote the (i, j)-th entry of
A. Often (aij) is used to denote A. Also the multiplication is defined in usual way:

A ∈ Mm×`, B ∈ M `×n, then AB ∈ Mm×n(R) and [AB]ij =
∑`

k=1[A]ik[B]kj.

Let A = (aij) ∈ Mm×n(R). The i-th row of A will be denoted by Rowi(A),
Rowi(A) = (ai1, ..., ain) for i = 1, ..., m. Similarly j-th column of A will be denoted
by Colj(A), Colj(A) = (a1j, ..., amj)

t for j = 1, ..., n.

To save the space the following notation is used:

A =




Row1(A)
Row2(A)

...
Rowm(A)


 =: (Row1(A); Row2(A); ...; Rowm(A)) (6.2.1)

Analogously A is partitioned into column vectors as follows:

A = (Col1(A)|Col2(A)|...|Coln(A)) (6.2.2)
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The classical theory of determinants plays an important role in linear algebra
which can be generalized to matrices over a polynomial ring. Additionally the
Laplace Theorem for determinants is still valid over a polynomial ring [1].

Let us consider the column vectors of a polynomial matrix A = (α1|α2|...|αn) ∈
Mm×n(R) and assume yk ∈ R for k = 1, ..., n. If

∑m
k=1 ykαk = 0m×1 implies yk = 0

for k = 1, ..., n, then these vectors are said to be linearly independent. Otherwise
these vectors are said to be linearly dependent. The linear dependence and linear
independence of the row vectors of a polynomial matrix are defined similarly.

Definition 6.2.2. [Rank] The (column) rank of polynomial matrix A ∈ Mm×n(R)
is the maximum number of linearly independent column vectors of A.

It is easy to extend this definition to a set of vectors. Let B be a set of polynomial
vectors in Rm, we define rank(B) to be the maximum number of linearly independent
vectors of B.

The following theorem is well known.

Theorem 6.2.1. Let A ∈ Mm×n(R). Then rank(A) = k if and only if any t × t
minor of A is zero when t > k and there exists some k × k nonzero minor.

Remark 6.2.1. Define the algebraic rank as the largest t which satisfies the condi-
tion in Theorem 6.2.1. This theorem shows that the algebraic rank is equivalent to
(geometric) rank defined in this paper (see Definition 6.2.2). Note that this is true if
and only if R is an integral domain. In the book [1], the algebraic rank is generalized
to arbitrary commutative rings. There is another frequently used definition of rank
for linear systems. Over R, it is also equivalent to the two definitions above.

Theorem 6.2.2. Let A ∈ Mm×n(R).

rank(A) =max
p∈Ks

rank(Ap) (6.2.3)

where Ap is matrix A evaluated at point p.

Proof. Assume rank(A) = k. By Theorem 6.2.1, all the t × t minors of A
are zero when t > k, they are also zero when evaluated at any point p. Thus
max
p∈Ks

rank(Ap) ≤ k. Since there exist some k × k nonzero minors which are nonzero

polynomials in R. Then there exists a point p such that the nonzero polynomials do
not vanish at this point. Consequently max

p∈Ks
rank(Ap) ≥ k. Hence max

p∈Ks
rank(Ap) = k.

¤
A probabilistic method shows that the rank evaluation of a polynomial matrix

can be reduced to a constant matrix by choosing a random point in K.

Proposition 6.2.1. For a random point p0 ∈ Ks, the probability that rank(A) =
rank(Ap0) is 1.
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Remark 6.2.2. This proposition follows Schwartz-Zippel theorem [16] which is a
frequently used tool in probabilistic polynomial identity testing. The result above only
requires that the coefficient field contains an infinite number of points. So K could be
Q or even Z. Therefore the (exact) rank of a polynomial matrix is equal to the rank
of the matrix evaluated symbolically at some random point (in Q) with probability 1.
This method reduces the cost of rank computation dramatically.

If we apply numerical computation to the rank evaluation at a point, because of
round off error the “numerical rank” is more subtle. Sometimes the symbolic result
is consistent with the numerical one. However, for some exact matrices, the answers
may be different.

EXAMPLE 6.2.1. Consider an n× n constant matrix:

A =




1 0 0 · · · 0√
99 1 0 · · · 0

0
√

99 1 · · · 0
... · · · . . . · · · 0

0 0 · · · √
99 1




(6.2.4)

Obviously the rank of A is n. But if we replace
√

99 by 9.949874371 then when n = 10
the last (smallest) singular value will be 10−9. When n = 17, the last singular value
will be less than machine epsilon. This matrix has full rank but is very close to a
lower rank unstructured matrix in the 2 norm.

As Rob Corless (private communication) pointed out that the structure and sym-
metry of a matrix also play important roles. Now if we only consider the matrices
with bi-diagonal structure, the minimal distance to a lower rank structured matrix
is 1. In general it can be difficult to determine the minimal distance to lower rank
structured matrices. Arising from diverse applications Structured Low Rank Approx-
imation is hot topic in numerical linear algebra [15, 2, 8].

Now let the diagonal element be x, and the sub-diagonal element be y. If we choose
x, y ∈ R randomly, then there is 50% chance such that y > x. In this case, when
n is large enough the numerical rank of A will be n − 1. This also unveils a very
important fact: although the singular region often has measure 0, the numerically
difficult region (close to singular), which depends on the structure of the input, can
be unacceptably large for numerical computation.

6.3 Rank of Approximate Polynomial Matrices

In last section, the rank of a polynomial matrix is defined by the maximum number
of linearly independent vectors of the matrix. However this definition is not so
meaningful for the polynomial matrices with approximate coefficients since a tiny
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perturbation on the input almost always leads to a full rank matrix. To adapt the
definition to the approximate case, we introduce a concept of ε-rank in this section.

Definition 6.3.1. Let A ∈ Mm×n(R) and ε > 0. The ε-rank of A with a given norm
is

min{r : rank(Ā) = r, ‖A− Ā‖ < ε} (6.3.1)

which is denoted by rank(A, ε).

To define a norm of polynomial matrix, we first introduce a norm of a polynomial
with monomial basis. Here the norm of a polynomial f =

∑
i∈I cix

i is defined to be∑
i∈I |ci|. Note that ‖fg‖ ≤ ‖f‖ · ‖g‖, so it is sub-multiplicative. There many norms

to measure a matrix. In this paper the norm of a polynomial matrix is a Frobenius
norm. More precisely, let A ∈ Mm×n(R). The norm of A is defined by:

‖A‖ :=

√√√√
m∑

i=1

n∑
j=1

‖Aij‖2 (6.3.2)

It is easy to check that this norm is also sub-multiplicative.
By this definition, it is difficult to directly compute the ε-rank of an approximate

polynomial matrix. In the exact case, the rank at a random point can be used to
detect the rank of a polynomial matrix with probability 1. In the approximate case,
it also can provide us some information about the ε-rank.

Remark 6.3.1. In the following proof, we have to compute the SVD in C. So the
orthogonal matrix in the SVD computation is replaced by a unitary matrix. The
truncated SVD is still minimizing the Frobenius norm of the difference between A
and Ā in Cm×n, where Ā has a given rank exactly.

Theorem 6.3.1. Let A ∈ Mm×n(R) and ε > 0. Suppose p0 = (a1, ..., as) ∈ Cs

with |ai| = 1 for each 1 ≤ i ≤ s and {σi} are the singular values of Ap0. Let

ωr =

√∑min(m,n)
i=r σ2

i . If ωr > ε > ωr+1, then rank(A, ε) ≥ r.

Proof. Suppose rank(A, ε) = r′ ≤ r − 1. Then there exist Ā ∈ Mm×n(R)
such that rank(Ā) = r′ and ‖Ā − A‖ < ε. Then rank(Āp0) ≤ rank(Ā) = r′ and
the Frobenius norm of Āp0 − Ap0 is greater than or equal to ωr since ωr is the
minimal distance to lower rank matrices [6]. So ε < ωr ≤ ‖Āp0 − Ap0‖. Because
p0 = (a1, ..., as) and |ai| = 1, for any polynomial f(x1, .., xs) =

∑
i∈I cix

i, it is easy
to show that |f(p0)| ≤

∑
i∈I |ci| = ‖f‖. Hence ε < ‖Āp0 − Ap0‖ ≤ ‖Ā − A‖. This

contradicts with the fact that‖Ā− A‖ < ε. Therefore rank(A, ε) ≥ r. ¤
If A is a constant matrix, it is easy to show that rank(A, ε) = r. However one

difficulty is that we may obtain different lower bounds when the rank of a non-
constant matrix is evaluated at different points.
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EXAMPLE 6.3.1. Let us consider a polynomial matrix given by approximate data:




(2 x− 1) (−1.0088 + 1.9958 x + 0.0029 y) (−1.000091 + 2.000011 x− 0.00001 y)

(−3 y + x) (−0.0041 + 0.9908 x− 3.0046 y) (0.000070 + 0.999959 x− 3.000045 y)

(y + 1) (1.0093 + 0.0027 x + 1.0018 y) (0.999916− 0.000002 x + 1.000067 y)




Suppose we choose ε = 0.01. At (x, y) = (−.960 − .279 i, .529 + .849 i) the singular
values are [8.90, 0.00710, 0.000077] yielding the numerical rank 1. But the singular
values are [5.56, 0.016, 0.000074] at (x, y) = (.667 + .745 i,−.178 + .984 i), where the
numerical rank is 2, which is a lower bound of ε-rank. If we let the third column
equal the first column, then this new matrix has the distance to the input matrix less
than ε and it has rank 2 exactly, which is an upper bound on the ε-rank. So ε-rank
for this matrix is 2. In general it can be difficult to construct a matrix close to the
input matrix with rank deficiency.

The basic reason for failing at the first point is that the distance of this matrix
to rank 1 matrices (let the second and third columns equal the first column, then the
distance to the input matrix less than 0.027) is only slightly larger than the tolerance
0.01. And it is also difficult to know the minimal distance to the matrices with a
given rank.

However for random matrices with some small perturbation, our experiments
show that numerical rank with tolerance ε at a random point is equal to r.

EXAMPLE 6.3.2. In the experiments, exact matrices with n rows and r columns
were generated randomly in Maple 10. In particular the entries of the matrices were
random real polynomials of 3 variables with degree d and coefficient range c. We
used random linear combinations of existing columns and appended them to make a
square matrix A. Then a full rank random perturbation matrix with norm ε, denoted
by ∆A was generated. Obviously the upper bound on the rank of A + ∆A is r. We
compute the numerical rank r− of A + ∆A with tolerance ε at a random point p by
using the SVD, and compare r− with upper rank bound r.

The experiments were repeated for 1000 times for each combination of different
values of n, r, d, c (we choose n = 3, 4, .., 10, d = 3, 5, c = 1, 10 and all the possible
values of r for each n). In the experiments, r− = r and no exceptions occurred. The
results indicate that numerical rank at a random point can be a good estimate of the
ε-rank of an approximate polynomial matrix.

As we showed in Example 6.3.1, this method can fail. So after we obtain a lower
rank bound r of an input matrix A by Theorem 6.3.1, we need to check whether
the method fails or not. If r is underestimated, then the dimension of the null-space
will be overestimated. The construction of the approximate null-space is carried out
using the Sylvester Method, which is given in Section 6.5. If we cannot construct
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the null-space with dimension n− r or the output Ñ (an approximation of the null-
space) is not acceptable, it means the norm of the remainder A · Ñ is larger than the
tolerance. Then the method fails. So this method is a heuristic way to estimate the
ε-rank of an approximate polynomial matrix. And more rigorous probability analysis
should be studied in the future work.

6.4 Null-space and Syzygy Module

In this section the null-space and syzygy module of a polynomial matrix are discussed.
Given a polynomial matrix A ∈ Mm×n(R), let

Null(A) := {f ∈ Q(R)n|Af = 0m×1} (6.4.1)

and call Null(A) the null-space of matrix A. If there is no confusion, it is denoted
by N in this paper. Because Q(R) is a field, the null-space N is a vector subspace.
The rank-nullity theorem asserts rank(N) + rank(A) = n in the usual way.

A related concept in commutative algebra and algebraic geometry [5] is the syzygy
module. In particular

Syz(A) := {g ∈ Rn|Ag = 0m×1} (6.4.2)

is called the syzygy module of the matrix A.
Because R is an integral domain and by the distributivity of the ring, it is easy

to prove that:

Proposition 6.4.1. Given a nonzero vector f ∈ Syz(A) with f = ag, where a ∈ R,
a 6= 0 and g ∈ Rn, then g ∈ Syz(A).

Now let us consider the syzygy module of a polynomial matrix A. In fact,
rank(Syz) and rank(A) also have this relation:

Theorem 6.4.1. Let A ∈ Mm×n(R). Then

rank(Syz(A)) + rank(A) = n (6.4.3)

Proof. Assume rank(A) = k, then it is always possible to choose k linearly
independent columns from A. Without loss of generality, let {Col1(A), ..., Colk(A)}
be such a set.
Then {Col1(A), ..., Colk(A), Colk+i(A)} is linearly dependent, where 1 ≤ i ≤ n − k.
So for each i, there exist ci,1, ..., ci,k, ci,k+i such that

∑k
j=1 Colj(A)ci,j+Colk+i(A)ci,k+i =

0 and ci,k+i 6= 0. Let fi = (ci,1, ..., ci,k, 0, ..., 0, ci,k+i, 0, ..., 0)t 6= 0, then Afi = 0. It
is easy to check that G := {f1, ..., fn−k} is linearly independent and each fj is in
Syz(A). Hence rank(Syz(A)) ≥ n− k.
If rank(Syz(A)) > n − k and rank(A) = k, then by Proposition 6.2.1 there must
exist a generic point p, such that rank(Syz(A)p) > n − k and rank(Ap) = k. But
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this contradicts with Rank-Nullity Theorem for constant matrices.
Therefore rank(Syz(A)) + rank(A) = n− k + k = n. ¤.

Given a set of polynomial vectors F = {f1, ..., fr}, define

span(F,R) =

{
r∑

i=1

aifi ∈ Rn : ai ∈ R, fi ∈ F

}
(6.4.4)

Then span(F,R) is the set of all linear combinations of F in R. It is the R-submodule
of Rn generated by F in R.

Similarly, the linear subspace generated by F in Q(R) is

span(F, Q(R)) =

{
r∑

i=1

cifi ∈ Q(R)n : ci ∈ Q(R), fi ∈ F

}
(6.4.5)

If F is linearly independent, then span(F, R) and span(F, Q(R)) are denoted by
〈F 〉R and 〈F 〉Q(R) respectively.

Let N be the null-space of A and Syz(A) be the syzygy module of A. If
span(F, Q(R)) = N (or span(F, R) = Syz(A)), we call F a set of generators of
N (or Syz(A) ). In fact it is possible to choose a set of linearly independent vectors
G from F to generate N . In particular G is called a basis of the null-space, and
N = 〈G〉Q(R).

In Commutative Algebra, if a module M has a linearly independent set of gener-
ators G (M = 〈G〉R) , then G is called a module basis and the module is free module.
It can be difficult to determine whether the syzygy module Syz(A) is free. But the
generators of Syz(A) can be obtained by computing the module Gröbner basis of
A [5]. However it is expensive (it can be of double exponential cost) and unsuitable
for inexact input. The reason is that computing the Gröbner basis requires an input
order of the variables. This may cause trouble when we determine that the leading
coefficient is very small. Another reason that may also cause trouble is numerical
polynomial division (to reduce the S-polynomial by existing polynomials) may not
be stable even for univariate polynomials.

Suppose rank(Syz(A)) = r. It is always possible to choose G = {g1, ..., gr} from
Syz(A), which is a set of r linearly independent column vectors. It is also easy to
see that 〈G〉R ⊆ Syz(A). The set of all the vectors which are linearly dependent on
G is also a R-module, denoted by 〈〈g1, ..., gr〉〉. The following proposition shows it is
equal to the syzygy module.

Proposition 6.4.2. Suppose Syz(A) is the syzygy module of a polynomial matrix
A ∈ Mm×n(R) with rank r and G = {g1, ..., gr} is a set of r linearly independent
column vectors of Syz(A). Then 〈〈G〉〉 = Syz(A).

Proof. For any g ∈ Syz(A), the set {g, g1, ...gr} must be linearly dependent
(otherwise rank(Syz) > r). So Syz(A) ⊆ 〈〈g1, ..., gr〉〉.
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Conversely, for any g ∈ 〈〈g1, ..., gr〉〉, there exists a linear combination such that∑r
i=1 aigi + a0g = 0. So a0g = −∑r

i=1 aigi ∈ Syz(A). Also linear independence of
G implies a0 6= 0. By Proposition 6.4.1, this implies g ∈ Syz(A). Hence Syz(A) =
〈〈G〉〉 ¤

Suppose A is a polynomial matrix and G is a basis of the null-space of A. Then
〈G〉R ⊆ 〈〈G〉〉 = Syz(A) ⊆ 〈G〉Q(R) = Null(A) and G may not be a module basis of
Syz(A) over R. But it is a basis of the null-space over the quotient field Q(R). In
this paper “basis” does not mean module basis.

EXAMPLE 6.4.1 ([5] Exercise 25, page 193). Let R = K[x, y] and consider the
matrix A = (1 + x, 1− y, x + xy) ∈ M1×3(R). Let

f1 =




1− y
−1− x

0


 , f2 =




x + xy
0

−1− x


 , f3 =




0
x + xy
−1 + y




It can be checked that F = {f1, f2, f3} generates the syzygy module Syz(A). But
rank(A) + rank(Syz) = 3, so rank(F ) = 3 − 1 = 2. This generating set is linearly
dependent. If we choose G = {f1, f2}, then rank(G) = 2 and Null(A) = 〈G〉Q(R). On
the other hand f3 ∈ 〈〈f1, f2〉〉. Hence Syz(A) = 〈〈f1, f2〉〉. Actually by the Quillen-
Suslin Theorem [5], Syz(A) is free since the ideal generated by {1 + x, 1− y, x + xy}
is the whole polynomial ring. It means there exist g1 and g2, such that Syz(A) =
〈g1, g2〉R. Such a row is often called unimodular row. Quillen and Suslin showed that
the syzygy module of a unimodular row is free.

6.5 Generalized Sylvester Method

In this section, a numerical method is given to compute the null-space of any poly-
nomial matrix approximately. It is a generalized Sylvester Matrix method together
with the SVD.

6.5.1 Sylvester Matrices and the Algorithm

Let R = K[x] be a polynomial ring with variables x1, ..., xs. There is a natural bijec-
tion: Mm×n(K[x]) ↔ Mm×n(K)[x], where K is the coefficient field of the polynomial
ring. Here Mm×n(K) is the set of matrices with entries in K. Hence, equivalently
a polynomial matrix can be considered as a polynomial with matrix coefficients, a
so-called matrix polynomial.

Let T (d) =
(

s+d
d

)
where for notational simplification the parameter s which is

number of variables in the polynomial ring is omitted. A polynomial matrix A can
be written in terms of increasing total degree order of monomials of x: A(x) =∑T (d1)

i=1 Aix
αi . Here d1 is the maximum total degree of the entries of A and T (d1)
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is maximum number of terms of A(x). Assume f ∈ Syz(A) with degree d2, then

similarly we obtain f(x) =
∑T (d2)

j=1 fjx
βj . Hence

A(x)f(x) =

T (d1+d2)∑

k=1

Ckx
γk = 0m×1 (6.5.1)

where Ck :=
∑

αi+βj=γk

Aifj. This equation is equivalent to each coefficient Ck = 0.

Naturally, the coefficients of f(x) are written as a vector: vf := [f1, ..., fT (d2)]
t.

It is not hard to find a matrix MA, a so-called convolution matrix or generalized
Sylvester matrix, whose entries are the coefficients of A(x), such that

M
mT (d1+d2)×nT (d2)
A · vnT (d2)×1

f = 0mT (d1+d2)×1 (6.5.2)

To reduce polynomial algebra to linear algebra by choosing certain polynomial
basis is a frequently used technique in both symbolic and numerical computations [9,
3].

The relations above are illustrated by the diagram below:

A
φ−→ A(x)

ψd2−−→ Md2
A , A

ωd2−−→ Md2
A , Md2

A

ω−1
d2−−→ A (6.5.3)

where φ and ψd2 are bijections as described above, ωd2 = ψd2 ◦ φ and ω−1
d2

is the
inverse map of ωd2 . Note that this map depends on d2 the degree of f .

The SVD is used to compute the null-space Nd2
A of the generalized Sylvester

matrix (convolution matrix) Md2
A . Each vector in Nd2

A corresponds to a polynomial
vector with degree less than or equal to d2. Let Syz(A)d2 be the set of all the
polynomial vectors with degree less than or equal to d2 in Syz(A). It is easy to show
that Syz(A)d2 = ω−1

d2
(Nd2

A ). But the images of linearly independent vectors in Nd2
A

are not necessarily linearly independent in Syz(A)d2 .

Let N be the null-space of A and r = rank(N). The process to approximate
a basis starts from degree 0 polynomial vectors, G = ω−1

0 (N0
A). Then the degree

d2 is increased by one at each iteration. For each iteration, it is always possible to
choose vectors from ω−1

d2
(Nd2

A ) which are linearly independent of all the vectors in G.
The vectors that are chosen are then appended into G. If G has r vectors, then the
process stops and the G is an approximate basis for the null-space.
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EXAMPLE 6.5.1.

A =




0 0 0 0 0 (2 x + 1)

0 −1 0 (2 x + 1) (2 x + 1) 0

−1 1 (2 x + 1) 0 0 0

1 0 0 0 0 0




(6.5.4)

The rank of A can be estimated using a random point to obtain rank(A) = 4. Note
that we use random point in R to detect the rank rather than the ε-rank. In this
example, when the degree of polynomial vector f is 0, there is one vector (column 3)
in Null(A), and when the degree is increased to 1, another two vectors, the first two
columns of the following matrix are obtained.




0 0 0

(−0.3317− 0.6635 x) (0.2093 + 0.4185 x) 0

0.3317 −0.2092 0

−0.543 −0.4934 −0.7071

0.2114 0.7027 0.7071

0 0 0




. (6.5.5)

Since rank(N) = 2, the second and third columns can be chosen from this matrix to
form a basis for Null(A).

Will the algorithm terminate after finitely many steps? Henrion in his Ph.D.
Thesis “Reliable Algorithms for Polynomial Matrices” gave a degree bound for such
null-space bases. Using the Laplace Theorem a similar result is given here.

Proposition 6.5.1. Given a polynomial matrix A ∈ Mm×n(R), let rank(A) = k < n,
r = n−k and let deg(Coli(A)) be the maximum degree of all the elements in the i-th
column of A. The order of columns can always be changed to satisfy deg(Col1(A)) ≥
deg(Col2(A)) ≥ · · · ≥ deg(Coln(A)).Then there exists G which is a basis of the
null-space of A, such that

degree(G) ≤ dA =
k∑

i=1

deg(Coli(A)) . (6.5.6)

Proof. From the proof in Theorem 6.4.1, let G = {g1, ..., gr} be a basis of the
null-space of A. Now it only remains to estimate the degree bound for each gi. By
the Laplace Theorem, each gi can be constructed from k × k minors of A whose
degrees are bounded by dA. Hence the degree of G is bounded by dA. ¤
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This yields Algorithm 6.5.1 to compute a basis of the null-space of a polynomial
matrix approximately. The subroutine Choose is to choose the independent vectors
from ω−1

i (N i
A) using rank computation and append them to G one by one. When

the input is exact, we can choose a random exact point p to compute the rank of Ap

symbolically. Otherwise we apply SVD to compute the numerical rank rank(Ap, ε).
If rank(A, ε) is underestimated, it means that the number of independent vectors in
the null-space is overestimated. If we could not find such vectors within the degree
bound dA or the norm of the remainder (A ·G) is larger than the tolerance then the
algorithm will return ‘FAIL’.

Algorithm 6.5.1. G = NullSpace(A, ε)

Input : A, a polynomial matrix
ε, tolerance

Output: G, a set of column vectors
fail, when rank(A, ε) is underestimated

p := random(a1, .., as) a random point in Cs with |ai| = 1
k := rank(Ap, ε) for exact input, replaced by rank(Ap)
r := n− k
d := max{deg(Coli(A))}
dA :=

∑k
i=1 deg(Coli(A)) dA ≤ (n− 1)d

G := {}
Repeat from i = 0 to dA

M i
A := ωi(A) size of matrix L ≤ mT (dA + d)

N i
A := SVD(M i

A) cost: O(L3)
G := choose(ω−1

i (N i
A), G)

if |G| = r then
if ‖A ·G‖ < ε then

return G
else

return fail
end if

end if
end loop
return fail.

Now let us review Example 6.3.1.

EXAMPLE 6.5.2 (Detect the underestimation of the ε-rank). When ε = 0.01. We
obtain numerical rank 1 at (x, y) = (−.960−.279 i, .529+.849 i) which underestimates
the ε-rank of input matrix A. In this case we construct the (approximate) null-space
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N , which has two vectors: 

−0.406 −0.708

0.815 0.00335

−0.412 0.705


 (6.5.7)

However

A ·N =



−0.008 x− 0.005 + 0.0023 y −0.00029 x + 0.0000026 y

0.003 y − 0.0098 x− 0.0033 −0.00009 y − 0.000073 x + 0.000035

−0.0007 y + 0.005 + 0.0022 x −0.000035 y − 0.0001 + 0.0000076 x




(6.5.8)
The norm of the remainder is 0.0238 (> 0.01) which indicates the method fails.

Given a polynomial matrix A, Algorithm 6.5.1 will find the minimal degree basis
of the null-space of A. This basis is not necessarily a module basis of the syzygy
module. But if rank(N) = 1, then the output G of this algorithm is a module basis
of Syz(A) because R is a unique factorization domain.

Proposition 6.5.2. Given a polynomial matrix A ∈ Mm×n(R), let Syz(A) be the
syzygy module of A and rank(N) = 1. Then a polynomial vector {f} can be found
by algorithm NullSpace, which is a module basis of Syz(A). This basis is unique
up to multiplication by numbers in K.

Proof. Let f be the output of NullSpace. It is a vector in Syz(A) with the
minimal degree otherwise the algorithm will stop earlier and the output is not f .
For any g ∈ Syz(A), the polynomial vectors f and g must be linearly dependent.
So there exist a, b ∈ R such that GCD(a, b) = 1 and af = bg. Hence every entry of
f must have factor b. If deg(b) > 0, then f is not the vector with minimal degree.
Therefore deg(b) = 0 and g is generated by f . This means 〈f〉R = Syz(A). To show
the uniqueness, if 〈g〉R = Syz(A), then there exist a, b, f = bg and g = af , so ab = 1
and a, b ∈ K. ¤

In general, a basis of the null-space may not be a module basis. In [11], the
author proves that the syzygy module being free is equivalent to the existence of a
basis of the null-space, which generates a minor right prime matrix. The following
result provides a method for checking whether or not a basis is a module basis.

Proposition 6.5.3. Given a polynomial matrix A, let the null-space Null(A) =
〈g1, ..., gr〉Q(R) and the matrix G = (g1|...|gr). If all the r × r minors of G are
relatively prime, then Syz(A) = 〈g1, ..., gr〉R

Please see the Proposition 6 in [11] for a proof.
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6.5.2 Algorithmic Analysis

Given a polynomial matrix A ∈ Mm×n(R), if each deg(Coli(A)) = d and rank of A
is k, then dA = kd. So the maximum size of the Sylvester (convolution) matrix MA

is m
(

s+d+kd
s

) × n
(

s+kd
s

)
. Assume m ≈ n and kd À s. Then the size of this matrix

is bounded by n(k + 1)sds. Since k < n, it follows that the bound is ns+1ds. When
s = 1, the paper [21] reports that the cost to compute the rank and null-space is
Õ(n2.7d) and it is same as the cost of multiplication of matrices. Here Õ indicates
missing logarithmic factors of form α(log n)β(log d)γ for three positive real constants
α, β, γ. In the numerical case, we know that the Sylvester matrix MA is always
sparse with block Toeplitz structure. Zuniga and Henrion [25] give an algorithm
with complexity O(n3d) using blocked LQ factorization.

However when s > 1, the block Toeplitz structure of MA is much more com-
plicated. To design an efficient and numerical stable algorithm for computing the
null-space basis of multivariate polynomial matrix is an important problem and needs
further study.

For random dense matrices, the degree bound and size bound is sharp. But for
sparse matrices, the cost may be much less. In Example 6.5.1, the degree bound
dA = 4, but a basis is obtained at degree 1. This means when entries of A are sparse
polynomials and A is a sparse matrix, all the linear independent polynomial vectors
could be found when the degree of f is much lower than the degree bound.

6.6 Applications

6.6.1 Approximate GCD of two multivariate polynomials

As surveyed in [23], GCD-finding is one of the basic operations in algebraic com-
putation with a wide range of applications. For example the multivariate GCD can
be applied to engineering problems such as image restoration where the given poly-
nomials contain noise. However the existing symbolic GCD-finders are usually not
be suitable for inexact polynomials since GCD computation is infinitely sensitive to
perturbations. Therefore, many researchers propose various methods to compute a
well-defined GCD and also give the associated error analysis [3, 23, 10]. This is not
the main point of the current paper. Only a brief discussion and a simple example
(example 3 in [24]) are given here to illustrate the basic idea.

Since R, a polynomial ring over a field, is a unique factorization domain (UFD),
any two multivariate polynomials p and q in R have a GCD.

Let A = (p, q) ∈ M1×2(R) and N be the null-space of A. Obviously rank(N) = 1,
so N has basis (a; b) such that GCD(a, b) = 1 and ap = −bq. This vector can be
computed by the algorithm NullSpace. Again let B = (p, b). The method yields
a basis of Null(B), which is (1; g). Alternately a least squares method can be used
to obtain g. Hence g = −p

b
= q

a
= GCD(p, q). Note that numerical division of
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polynomials may not be stable.

EXAMPLE 6.6.1. For n = 10, 20, 30, 40, let un be a dense bivariate polyno-
mial of degree n with random coefficients in R. Let p = un(1 + x + y + xy) and
q = un(1− x + y− xy + y2). So with probability 1, GCD(p, q) = un . First construct
a matrix A = (p, q) ∈ M1×2(K[x, y]) and then compute a basis by NullSpace:

( −0.3333− 0.3333 y + 0.3333x− 0.3333 y2 + 0.3333xy − 8.326× 10−17 x2

0.3333 + 0.3333 y + 0.3333x + 3.122× 10−17 y2 + 0.3333xy + 1.387× 10−17 x2

)

Then let B = (p, b), where b = 0.3333 + 0.3333 y + 0.3333 x + 0.3333 xy and
compute a basis of Null(B). This numerical method obtains a good approximation
of the exact GCD of p, q, which is expected to be un. In particular, when n = 40 the
largest matrix to process in our algorithm is 1034× 12.

6.6.2 Projection of the Variety of Quasi-linear Polynomial
Systems

A special class of polynomial systems, so-called quasi-linear polynomial systems is
considered. In [17], such equations are called parametric linear systems. These
systems have variables {x1, ..., xs, y1, ..., yn}, and can be written as AY + b = 0,
where A ∈ Mm×n(C[x1, ..., xs]), Y = [y1, ..., yn]t and b ∈ Mm×1(C[x1, ..., xs]) is a
column polynomial vector. The matrix A, which contains the key information, is
called the coefficient matrix of the quasi-linear polynomial systems.

Let I = 〈Row1(A) · Y + b1, ..., Rowm(A) · Y + bm〉 ⊆ C[x1, ..., xs, y1, ..., yn] and
V = V (I). We consider the projection of the variety into X space: Vx = πx(V ) and
the elimination ideal Ix = I ∩ C[x1, ..., xs]. It is well known that V (Ix) = Vx.

The projection can be obtained by computing the Gröbner basis of I or using
triangular decomposition with an appropriate order of variables [4]. For the solutions
of quasi-linear polynomial systems, a symbolic algorithm based on the minors of the
coefficient matrix is given in [17]. That algorithm identifies all cases (including
degenerate cases) in parametric space (the X space) and constructs the uniform
solution in Q(R) for each case.

Here we will show that the null-space of At gives us an alternative way to do
the elimination. But this method cannot always guarantee success. However, the
following theorem gives us a way to check whether or not the correct projection is
successfully determined. Some techniques of the “numerical algebraic geometry”,
(e.g. witness sets) are used here.

The concept of generic point over C plays an essential role in “Numerical Al-
gebraic Geometry”. Suppose some property P is satisfied everywhere except on a
proper algebraic subset U of an irreducible variety V . We call the points in V \U
generic points. Then dim V > dim U , so V \U is dense in V (with the standard
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Lebesgue measure 1). So we say P holds with algebraic probability one for a random
point of V .

In [20] Sommese and Wampler introduce the concept of Witness Sets of an alge-
braic variety V , denoted by W (V ), which is the key data in a numerical irreducible
decomposition. A witness set for a k-dimensional solution component consists of k
random hyperplanes and all isolated solutions in the intersection of the component
with those hyperplanes. The degree of the solution component equals the number of
witness points. If each point in W (V ) is contained in other variety V ′, then V ⊆ V ′

with probability 1. This nice property can be used to execute numerical radical ideal
membership testing [14].

Theorem 6.6.1. Let {g1, ..., gr} be a basis of Null(At) and I ′ := 〈gt
1 · b, ..., gt

r · b〉
then:

1. V (Ix) ⊆ V (I ′)

2. ∀ p ∈ W (V (I ′)), rank(Ap) = rank([Ap, bp]) ⇒ V (Ix) = V (I ′)

Proof. Proof of (1): Because each gi ∈ Null(At), it follows that gt
i · (AY +b) =

gt
i · b ∈ I. Also gt

i · b only involves the variables x1, ..., xs, so gt
i · b ∈ Ix. Hence

I ′ ⊆ Ix, which implies (1).
Proof of (2): it is only necessary to prove that V (I ′) ⊆ V (Ix). For any generic
point p ∈ V (I ′) in X-space, rank(Ap) = rank([Ap,bp]). It means that this linear
equation after fixing the value of x must have at least one solution yp in Y -space. So
(p, yp) must be in V . This implies p ∈ V (Ix). This is true at generic point of each
component of V (I ′), so (2) is true. ¤

Remark 6.6.1. In [19, 20], a new field “Numerical Algebraic Geometry” was de-
scribed which led to the development of homotopies to describe all irreducible compo-
nents of the solution set of a polynomial system.

The key tool to numerically solve polynomial systems is homotopy continuation.
Homotopy methods define families of systems, embedding a system to be solved in a
homotopy, connecting it to a start system whose solutions are known. Continuation
methods are then applied to track the paths defined by the homotopy, leading to the
solutions. By random choices of constants in the homotopy one can prove that, except
for an algebraic set of bad choices of constants, singularities and diverging paths can
only occur at the end of the paths, when the system to be solved has singular solutions
or fewer solutions than the generic root count.

The paper [13] shows that the projection of a variety can be constructed by
combining an interpolation and a homotopy method. They first compute the witness
set of the variety by using some random linear equations only involving the variables
of X space. Then they use enough projected points of witness set to interpolate the
polynomials which only involve the variables of X space. But the difficulty of this
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approach is that as the number of equations increase the number of homotopy paths
will grow exponentially.

More equations in the system means more rows in A (more columns in At ).
Suppose d does not change. Based on the analysis in section 6.5.2, when the number
of rows in A changes from m to m1, the bound of the size of the Sylvester matrix
changes from ms+1ds to ms+1

1 ds. The cost of the algorithm in this paper grows
polynomially. However, the method in the paper cannot identify degenerate cases.

EXAMPLE 6.6.2. Let us consider a quasi-linear polynomial system with 3 equa-
tions 4 variables and degree 3:




a1 b1

a2 b2

a3 b3




(
z1

z2

)
=




c1

c2

c3


 (6.6.1)

where ai, bi, ci, i = 1, 2, 3 are some polynomials in the variables x, y. These polyno-
mials are chosen randomly with degree 2 (with coefficients in R). The method of
this paper is used to compute a null-space basis and construct a projected polyno-
mial f(x, y) with degree 6. Maple 10 is used to compute a Gröbner basis of the ideal
〈a1z1 +b1z2−c1, a2z1 +b2z2−c2, a3z1 +b3z2−c3〉 with the order x ≺ y ≺ z1 ≺ z2. The
elimination ideal is generated by one polynomial g. We find that the distance between
f, g (both have leading coefficient 1) is less than 10−9. For this example, the largest
constant matrix processed in our algorithm is 56 × 45 and the time for computing
the SVD is less than 0.1 second. However the computer (CPU 1.5GHZ and RAM
512MByte) used 72.3 seconds to calculate the Gröbner basis for this system.

6.7 Discussion

Several equivalent definitions of the rank of polynomial matrices have been studied. A
simple probabilistic algorithm is proposed to evaluate the rank only using one generic
point. For an exact matrix, it can provide the correct answer with probability 1. In
the approximate case, we only estimate the lower bound of the ε-rank. Further work
is needed to study the rank of polynomial matrices given by approximate data.

Using generalized Sylvester methods, the computation of the null-space basis of
a polynomial matrix is reduced to computing the SVD of some constant matrices.
A degree bound for the null-space basis is given and termination of the method is
demonstrated.

Another result of this article is that the relation between null-space basis and
syzygy module is given explicitly. In the special case of null-space with rank one, the
null-space basis is the syzygy module basis and it can be obtained by the algorithm
presented in this paper.

Two applications to GCD and elimination ideals are mentioned briefly. A de-
tailed discussion about its application to differential elimination method for partial
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differential equations is given in another paper by Wu and Reid [22].
The complexity and stability of the method will be studied in future work. Since

the Sylvester matrices have block Toeplitz structure, hopefully Zúñiga and Henrion’s
methods can also be applied to speed up the required multivariate polynomial matrix
solving.
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Chapter 7

Conclusion and Future Work

General (e.g. under and over-determined) systems of polynomially nonlinear pde
are rapidly becoming more common in diverse applications. Analyzing such systems
requires prolonging them, and detecting and including their integrability conditions.
Existing symbolic methods are very expensive and only apply to exact input systems
and not the approximate ones occurring in applications.

In this Thesis, new symbolic-numeric completion methods have been introduced
and their fundamental mathematical properties have been investigated. We have
introduced two different types of general methods for completion of pde: hybrid
symbolic-numeric methods and pure numerical methods. In general the hybrid
method can be applied to large and sparse exact systems. The pure numerical
method is more suitable for small dense systems with approximate input. For a
special class of pde, called t-dominated systems, we proposed a fast t-prolongation
method to compute a Riquier Basis of the input system in an implicit form. A com-
mon feature of these new methods is the strong use of geometry to obtain numerically
stable methods.

7.1 Conclusion and Main Results

Let us conclude by stating the main results we have obtained:
As the first symbolic-numeric completion method, HybridRif divides the com-

pletion task into two complementary parts: determining the leading linear and lead-
ing nonlinear subsystems. These subsystems are updated finitely many times during
the application of HybridRif. The basic idea is that the leading linear pde are
processed by a symbolic method (a modified version of rifsimp) and the leading
nonlinear part is processed by a numerical method (homotopy continuation). A key
improvement in the method is that the radical ideal membership testing required by
HybridRif can be tested by only using the witness points on components. This
can be very expensive in symbolic approaches, because it requires computing the
Gröbner basis of a radical ideal. The other key method is the Diagonal Homotopy
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Method. This allows an incremental equation by equation strategy, which allows one
to exploit system structure and compute with dramatically fewer continuation paths.

For dense systems with approximate input, it is usually numerically unstable
to apply symbolic methods directly. We presented a pure numerical method for
fully non-linear approximate pde, which exploited a polynomial matrix theory. The
first main result of this method is to provide a simple criterion for completion by
comparing the ranks of the Symbol Matrix and Augmented Symbol Matrix at generic
points. The second main contribution is the construction of projected constraints in
a numerically stable way by computing the (left) null-space of the Symbol Matrix.
The main idea is to transform the polynomial matrix to a matrix polynomial and
then reduce it to constant matrix by looking at the coefficients of all monomials.
However this method is very difficult to apply to large system, since the size of the
Sylvester matrix increases exponentially with the number of independent variables.
Note that the Sylvester matrix is highly structured and exploiting this to improve
efficiency is an important task for future research.

More recently we developed an extremely efficient method for a certain class of
pde, called t-dominated systems. This class is a general and natural type of pde/dae
system with many applications in multi-body mechanics and chemical dynamics.
We propose the first numerically stable method to find all the hidden constraints of
square t-dominated pde without expression explosion and complicated differential
elimination. From a theoretical point of view, this work is also related to the fa-
mous Jacobi Conjecture of Differential Algebra. Another contribution is to provide
a general framework to generalize numerical techniques for dae/ode to t-dominated
pde.

At the end of each chapter (paper), some future research directions have been
discussed separately. The geometric study of pde by using symbolic-numeric com-
putations as carried out in this Thesis forms part of a new area called “Numerical
Jet Geometry”.

Unlike algebraic systems, differential systems can generate more and more (new)
equations after prolongations. But such differential problems can be reduced to
algebraic ones after we obtain the involutive forms, and this should be the central task
of Numerical Jet Geometry. In numerical algebraic geometry, the solutions (including
isolated and positive dimensional components) can be represented by witness sets.
Following Sommese and Wampler’s idea, we can use witness points on the zero sets
of an involutive form to represent all the solutions. In particular each witness point
gives an approximation of a (truncated) formal power series solution of the original
pde at a given point x0 after specifying some initial data (the number of the initial
data is equal to the local dimension at this point).

So the key data structure of Numerical Jet Geometry is [Invol, A, ID, x0] where:
Invol is the involutive form of an input system; A is a set of witness points on a
component of the zero set of Invol; ID is the specified initial data at a point x0.

Involutive form is a local concept. For different components we may obtain
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different involutive forms. Usually to compute the generic case is easier (e.g. the
methods in Chapter 3 and 4 only pursue the generic cases). However the singular
cases are also very important but more challenging.

7.2 Future Research Directions

In general, differential problems are more complicated and more interesting than
algebraic ones and lead to many deep research questions. Finally, we choose some
of the most important research directions of this new area and sketch them in an
informal way.

Involutivity and Regularity As discussed in Chapter 1 and Chapter 3, the invo-
lutivity of the Symbol is the key for termination of Cartan-Kuranishi method.
Cartan’s test and Spencer’s Cohomology method both have their own advan-
tages and disadvantages. One direction is to combine them together to yield a
stable and efficient method to check the involutivity of the Symbol.

Another direction is more related to the concept of “Castelnuovo-Mumford
Regularity” in Commutative Algebra, which is a very important invariant in
Commutative Algebra and Algebraic Geometry. As we discussed in Chapter 1,
at a point of the zero set of a pde system R with m dependent variables and n
independent variables, the Symbol can be considered as A-module, a submodule
of Am, where A is the polynomial ring F[x1, ..., xn]. Eisenbud [5, 6] defined
the Regularity of a module by using “Minimal Free Resolutions” which is an
exact sequence by computing syzygy modules. Mansfield [9] proposed a simple
criterion for involutivity by using the dual of the δ sequence of the Symbol which
essentially is also computing syzygies. Certainly involutivity and regularity
are closely related [4, 3]. Recently, Malgrange shows that Cartan involutivity
is equivalent to Mumford regularity in [8]. Regularity is a hot topic in the
areas of commutative algebra and algebraic geometry and many approaches
have been developed [2, 1]. One research project is to adapt Bayer-Stillman’s
criterion for detecting m-regularity to numerical computation. Hopefully, we
can “transplant” these techniques into our area to study pde.

Non-square t-dominated systems The current fast t-prolongation method can
only be applied to square t-dominated system. A natural question will be how
can we extend it to non-square systems.

For an under-determined system (` < m), we can choose ` dependent variables
and consider the others as parameters to produce a square system. There are(

m
`

)
different choices, but a feasible choice must satisfy the condition: existence

of maximum transversal value for the chosen `× ` sub-matrix of the signature
matrix. This problem can also be formulated as an integer linear programming
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problems with two stages. At the first stage, we look for a feasible choice of
dependent variables:





Maximize D =
∑

i,j σijξij,

where
∑

j ξij = 1, for each i

0 ≤ ∑
i ξij ≤ 1, for each j

ξij ≥ 0.

(7.2.1)

The value of D will give us the maximum transversal value and the values of
ξij will indicate which columns we need to choose (if

∑
i ξij = 1, then column

j is chosen). After the first stage we will have a square system, the methods
we have discussed in Chapter 4 can be applied to solve it.

The case of over-determined systems (` > m) is more challenging. One idea
is to seek square sub-systems and apply the fast prolongation method to them
separately. Then the output needs to be intersected with the remaining equa-
tions (perhaps by some type of generalized diagonal differential homotopy).

Singular Components of Differential Systems The methods introduced in Chap-
ter 3 and Chapter 4 only pursue the generic components of differential systems.
An important question in Numerical Jet Geometry is to compute the singular
components. Let us consider Hubert’s example: u2

x + xux − u = 0 with un-
known function u(x). It has a family of general solutions: u = cx + c2 (c is
a parameter depending on the initial value) and a singular solution: −1/4x2,
which is an envelope. For square systems, one idea is to add the Symbol equa-
tion (2ux +x)vxx = 0 to the original system and compute the witness points of
the embedding system in the higher dimensional space, J2 × S2T ∗. If the vxx

coordinate of a witness point is nonzero (equivalently the Symbol matrix is sin-
gular), then the projection of the component containing this point is singular
in J2 with probability 1. Otherwise it is nonsingular.

Unlike the binary tree splitting in algebraic exact methods (e.g. Rifsimp and
DiffAlg), the decomposition in Jq × SqT ∗ discussed above has more flavor of
geometry and it is more natural and consequently more stable.

Approximate Polynomial Algebra The spirit of this Thesis is to study stable
methods for approximate computation with pde. So approximate computation
in polynomial algebra is a subfield of Numerical Jet Geometry .

A property of a system is said to be stable, if it retains this property under small
perturbations. In other words, all the systems in an “open set” containing this
system also have this property. So this given system must be in some kind
of generic position. This is why genericities are so important in numerical
solving. For example, a generic hyperplane can drop the dimension of an
algebraic set by one. In addition, a generic choice of all the nonzero coefficients
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of a square polynomial system guarantees the number of roots is equal to the
mixed volume of the system. In Chapter 4, we also see that genericity is the
key for t-dominated systems and the fast t-prolongation method.

On the other hand, consider the case where a given system satisfies some un-
stable properties, (e.g. two univariate polynomials have nontrivial GCD, or an
n × n matrix has rank less than n). Such systems are said to be degenerate.
The numerical computation of such degenerate systems will be difficult and
unstable. And the problem itself is ill-posed!

However sometimes we are interested in unstable properties (e.g. the existence
of nontrivial GCD, see Zeng [10] for a numerical approach). In particular we
might say that a system approximately has such an unstable property up to
some tolerance. By our use of the term “approximately” here, we mean that
there exists a “nearby” system which exactly has such property. In fact, this
is the backward stability problem. Now let us describe how to transform an
ill-posed problem to a well-posed one by using the following general approach.

Let Σ be a parameter space in which any system can be embedded. Suppose
we can introduce a metric dist(· , ·) in Σ. Suppose we are interested with a
family of properties [P1, P2, ...]. Let Φ(Pi) be the set of all the systems which
has property Pi. Each Φ(Pi) is a closed set in Σ, since Pi is a unstable property.
Consequently Φ(P1 ∩ · · · ∩ Pi) = Φ(P1) ∩ · · · ∩ Φ(Pi) =: Ci is also a closed set.
So given a system s, we can define dist(s, Ci) := mins′∈Ci

dist(s, s′).

Given an input system s and tolerance ε, let

k := max{i : dist(s, Ci) < ε, and dist(s, Ci+1) > ε}. (7.2.2)

Then we say the system s has properties {P1, ..., Pk} approximately with tol-
erance ε. Now this definition is well-defined, because a sufficient small pertur-
bation will not change the value of k.

A future research direction is to apply the general approach that we introduced
above to particular classes of approximate problems.

Sparse structured matrices From a computational point of view, problems in
Approximate Polynomial Algebra need to be reduced to linear algebra. There
are two ways to transform a nonlinear system into a linear system. The first
way is by linearization (only retaining local information). The second way is
to embed the problem into a higher dimensional vector space (e.g. monomial
basis), whereby more degrees of freedom are introduced. Without losing non-
linear information, the embedded system is highly structured (e.g. represented
by Sylvester matrices).

We know the SVD gives a measurement and construction of the low rank
approximation of a given matrix [7]. But it is challenging to find a low rank
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approximation of a given structured matrix with the same structure.

The second problem is that the dimension of the embedding space is often
very large. Obviously, the general methods in (numerical) linear algebra can-
not apply to such large systems. However, it is so sparse that it generates a
linear subspace with low dimension! Structure preserving techniques need to
be developed to guarantee computation in these linear subspaces.
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of Chinese Academy of Sciences, 2002 (Chinese). Advisor: Prof. Lu Yang.

Work in Progress

• Wenyuan Wu, Greg Reid: On Approximate Ideal and Approximate Ideal Mem-
bership Test.

• Wenyuan Wu: Computing the Rank and Null-space of Polynomial Matrix.

Academic Honors

• Fields Institute Postdoctoral Fellowship in Applied Mathematics at the Uni-
versity of Western Ontario, 2007.

• Chinese Government Award for Outstanding Students Abroad, $5000. Awarded
at General Chinese Consulate in Toronto, on April 25, 2007.

• General Membership of Institute for Mathematics and its Applications, Uni-
versity of Minnesota, Sept - Dec 2006, research funding $4000.

• Western Graduate Thesis Research Award of the University of Western On-
tario, 2006, research grant $1500.

• Distinguished student paper award, ACM ISSAC 2005, Beijing China.

• Best Poster Award, ACM ISSAC 2005, Beijing China.

• Special University Scholarship, Graduate Research Assistantship, Teaching As-
sistantship, Western Graduate Research Scholarships and International Grad-
uate Student Scholarship from the Dept. of Applied Mathematics, University
of Western Ontario starting Sept. 2003 till now, approx. $29000/year .

• PhD Entrance Research Award, University of Western Ontario, 2004, $4732.
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Presentations

1. “Symbolic-numeric Computation of Implicit Riquier Bases for PDE”, AMS
Special Session on Differential Algebra, New York, April 2007.

2. “On Approximate Triangular Decomposition in Dimension Zero”, IMA, the
University of Minnesota, Nov 15, 2006.

3. “Application of Numerical Algebraic Geometry and Numerical Linear Algebra
to PDE”, ISSAC 2006, Genova Italy. July 9-12 2006.

4. “Numeric Algebraic Geometric Methods for PDEs”, invited talk at University
of Technology in Helsinki Institute of Mathematics, April 12, 2006.

5. “Introduction to Application of Numerical Algebraic Geometry to PDE”, For-
mal theory of partial differential equations and their application Workshop at
University of Joensuu, Finland, April 2-9, 2006.

6. “Differential elimination for approximate PDE systems”, AMS Special Session:
Symbolic-Numeric Computation and Applications on January 15 2006 at San
Antonio, Texas.

7. “Progress on Symbolic and Numeric Differential Elimination Methods for Dif-
ferential Systems”, invited talk at Chengdu Institute of computer applications,
Chinese Academy of Sciences, Aug 2005.

8. “On Approximate Triangular Decompositions I: Dimension Zero”, SNC 2005,
Xi’an, China. July 19-21 2005.

9. “Determination of the dimension of a variety and some applications”, AMS
Special Session on Solving Polynomial Systems, October 23-24 2004, North-
western University, Chicago.

Poster Presentations

1. “Differential elimination of PDEs by numerical algebraic geometry and numer-
ical linear algebra”, Blackwell-Tapia Conference, Minnesota, 2006.

2. “Symbolic and numerical methods for partial differential equations”, Software
for Algebraic Geometry Workshop, IMA, Minnesota, 2006.

Teaching Experience

1. Winter term 2007: Organized a seminar on “Regularity of Ideals” and gave a
series of lectures.



167

2. Winter term 2007: Teaching assistant for AM325 Optimization and AM213
Linear Algebra II. Gave two AM213 lectures.

3. Winter term, 2006: Teaching assistant for AM325 Optimization.

4. Winter term, 2006: Gave a series of 5 lectures in course of AM586 Geometric
and Algebraic Aspects to PDEs.

5. Fall term, 2005: Teaching assistant for AM315 Partial Differential Equations
and AM301 Complex Variables with Applications. Gave one AM315 lecture.

6. Winter term, 2005: Teaching assistant for Advanced Calculus II.

7. Fall term, 2004: Teaching assistant for Applied Mathematics for Engineers.

8. Fall term, 2003: Teaching assistant for Advanced Calculus I.

Programming Experience

• 2006.9 - 2007.1: DAE/PDAE solving using fast completion method and Linear
Programming, in Maple.

• 2006,1 - 2006.4: Course Project on Scientific Parallel Computation using C and
LaPack on Sharcnet (http://www.sharcnet.ca).

• 2005.8 - 2006.7: Project of Numerical Differential Elimination using homotopy
methods and polynomial matrix, in Maple.

• 2005.1 - 2005.5: Project of Approximate triangular set by polynomial interpo-
lation and PHCpack, in Maple.

• 2004.10 - 2005.1: Symbolic-numerical Completion using homotopy methods, in
Maple.

• 2004.8 - 2004.10: Regular Chain Maple package for symbolic triangular decom-
position using modulo and lifting method.

• 2002.1 - 2002.5: Hopfield Neutral Network simulation for solving reachability
of Petri net, in Matlab.

• 2000.9 - 2001.5: industrial software development of automated reasoning engine
for elementary geometry, in Lisp.


