
LATEX Seminar Summer Semester, 2011

Clifford E. Weil

Contents

1 Introduction. 1

2 Some TEX Basics. 1
2.1 Special Keystrokes. 2
2.2 Example . 3
2.3 Commands. 3
2.4 Commands with Arguments. 5
2.5 The Hyphen Key. 5
2.6 Quotation Marks. 5
2.7 Spacing between Words and Sentences. 6

3 Entering Characters in a LATEX Document 6
3.1 Constructing a Simple LATEX Document. 6
3.2 Entering Text and Other Characters/Symbols into a LATEX Doc-

ument. 7
3.3 Math Mode: Fractions and Roots 8
3.4 Changing the Look of Text . 8
3.5 Character Sizes. 10
3.6 Other Popular Class Options. 11
3.7 Document Divisions. 11
3.8 Counters . 12
3.9 Labeling. 12
3.10 Creating a Title . 13
3.11 The Auxiliary and Log Files. 14
3.12 Footnotes. 15

4 Managing the Text and Characters. 15
4.1 Page Style. 15
4.2 Line and Page Breaking. 16
4.3 Page Numbering. 17
4.4 Page Layout. 17
4.5 Document Horizontal and Vertical Lengths. 19
4.6 Creating New Commands . 21
4.7 Boxes . 22

4.7.1 In Line Boxes. 22

i

CONTENTS ii

4.7.2 Rule Boxes . 23
4.7.3 Paragraph Boxes. 23

5 Introduction to Packages. 24
5.1 The xcolor Package. 24
5.2 The hyperref Package. 25
5.3 The url Package. 25

6 Introduction to Environments. 26
6.1 The abstract Environment. 26
6.2 The center Environment . 26
6.3 The quotes and quotation Environments. 27
6.4 The verbatim Environment. 28
6.5 Lists . 28
6.6 The minipage Environment. 30

7 More Packages 30
7.1 The setspace Package. 31
7.2 The milticol Package . 31
7.3 The graphicx Package . 32
7.4 The picinpar Package . 35

8 Additional Environments 36
8.1 Tabbing and Tables. 36

8.1.1 The tabbing Environment. 36
8.1.2 The tabular Environment. 38
8.1.3 The tabular* Environment 42
8.1.4 Long Tables; the supertabular Package. 42
8.1.5 Color in Tables . 43

8.2 The table Environment . 43
8.3 The thebibliography Environment 45

9 The Bibliography Using BibTEX 46
9.1 How the BibTEX System works 47
9.2 Bibliography Styles . 47
9.3 BibTEX Databases . 48

9.3.1 Templates and Some Typical entry Types 50
9.3.2 Abbreviations and Preamble 52
9.3.3 The author or editor Field 52
9.3.4 The title Field . 53
9.3.5 Cross Referencing . 53
9.3.6 Multiple Bibliographies 53

LIST OF TABLES iii

10 Long Documents. 54
10.1 Table of Contents. 55

10.1.1 Depth. 55
10.1.2 Adding Items. 56

10.2 Index. 56
10.2.1 The Command \index. 57
10.2.2 Creating the Index File. 58

11 Typesetting Mathematics. 58
11.1 Binomials and Modulo. 59
11.2 The amssymb and eucal Packages. 59
11.3 The amsthm Package. 60
11.4 The amsmath Package. 62

11.4.1 Multi-Lined Expressions and Numbering. 62
11.4.2 Matrices. 67
11.4.3 Additional Useful Structures. 68

11.5 Additional Font Families for Math Mode. 71

12 Commutative Diagrams. 71

13 Commands 73

References 76

Author Index 76

Index 76

List of Tables

1 Entering the “Special Keystrokes” 3
2 Examples of Font Family Shapes 9
3 The structure of a LATEX table 40
4 Entry types, required and optional fields 49

List of Figures

1 Page Layout Parameters . 18

1 INTRODUCTION. 1

Abstract

This document presents basics and some advanced topics about TEX
and LATEX. It ends with items aimed specifically at those in mathematics,
the natural sciences and engineering.

1 Introduction.

A brief history will give the reader some insight into why LATEX is designed
the way it is. In 1977 Donald Knuth, of Stanford University, was motivated to
use the power of computers to produce professional typesetting including the
very technical kind needed for mathematics, engineering, science and others. He
wrote a “markup language” that he called TEX for Tau Epsilon Chi. The TEX
user creates a “source file” containing text and “commands”, employing only
the keystrokes that appear on a standard typewriter keyboard (the so-called
ASCII characters). The file is then compiled by the TEX program producing
an “output” file, usually a .pdf file. The use of commands rather than keys
strokes present on today’s keyboards, permits an essentially limitless number of
symbols and special structures that can appear in the output file. And indeed
new commands are still being added today as the need arises. After more than
a decade of adjusting and expanding the program, in the early 1990s Knuth
announced that, in the interest of stability, he would make, nor permit, further
development of the TEX program.

In 1985 Leslie Lamport developed a companion to TEX that he called LATEX,
A Document Preparation System[3], which expanded and simplified the use
of TEX. It consisted of a large number of macros that made producing a
professional-looking document much easier. His motivation was the philoso-
phy that an author should be concerned only about the content of a document
and not about formatting. The first version was called version 2.09 (perhaps
because it’s the start of the decimal expansion for e) but a serious problem de-
veloped. As changes and additions were made, users were forced to continually
update their LATEX implementations. Failure to do so might mean that they
wouldn’t be able to compile a file that used structures or symbols present only
in the latest version. One such addition was the use of one of several European
languages in addition to English. To solve this problem the LATEX2ε project was
launched in 1993 and released in 1996. It is the version still in use today, which
is a testimony to its stability. The idea was to create a version of LATEX (called
the kernel) that wouldn’t be altered. Any extensions were to be acomplished
by the use of “packages”. Just how these packages are used will be explained
as we work through the structure of a LATEX document. But first some basics
of TEX will be introduced.

2 Some TEX Basics.

First, if your computer doesn’t have one, install a Tex Implementation. For
Mac users running OS X, go to http://pages.uoregon.edu/koch/texshop/

http://pages.uoregon.edu/koch/texshop/obtaining.html

2 SOME TEX BASICS. 2

obtaining.html. In the second paragraph click MacTeX.mpkg.zip if you have
the required room. If not, get the current version of TeXShop from the first
paragraph. If you’re a Windows go to http://www.miktex.org and download
MikTEX. If you already have a version of MikTEX you should update it to
the current version, 2.9. It contains an editor which earlier versions did not. It
should be noted that some users prefer the editor called TexnicCenter, which can
be downloaded from http://www.texniccenter.org. Unix and Linux users
can get information at http://www.tug.org/texlive/.

To produce a document using TEX or LATEX , the user (you) produces
a “source file” using your text editor from your Tex Implementation. The
source file contains text and commands using only standard (ASCII) typewriter
keystrokes. Compiling the source file with the compiler provided by your Tex
Implementation produces the “output file” as well as a log file and an auxiliary
file. Any “errors” in the source file are listed in the log file with help finding
the errors and hints to correct them. Examples will follow after covering some
TEX basics.

The existence of commands in a TEX source file is what distinguishes TEX
and LATEX from generic word processing programs such as Microsoft Word.
Some commands determine the overall formating of the document such as text
height, text width, margins etc., while others produce standard characters with
accents or underlining, while still others are used to enter special content ele-
ments such as Greek letters and mathematical symbols.

2.1 Special Keystrokes.

The keystrokes, \, $, _, ^, &, ~, %, {, }, and # are not interpreted
as text by TEX, but rather have special meaning. The keystroke, \ tells the
TEX compiler that what follows is a command; not text. The use of the $ is
to toggle between in line text mode and in line math mode. In math mode
the characters are in “math italics”. For example, to produce f ′(x) = x, type
$ f’(x)=x $. Another feature of math mode is that all space bar keystrokes
are ignored. Consequently typing $ f ’ (x) = x $ produces the same
output as $ f’(x)=x $. Two $$ toggles between in line text mode and displayed
style math mode. The & is the alignment character. It is used to separate
columns in a list such as a table or a matrix, or to set the point of alignment
in a multi-line mathematical calculation. You may already be familiar with the
use of _ to denote subscript and ^ for superscript. Both can be used only in
math mode. The ~ is called a “sticky space”. It produces a space, but TEX
isn’t allowed to break a line at a sticky space. Typing % tells TEX to ignore all
of the following text until the next carriage return. The two braces {} are used
to enclose mandatory arguments for some types of commands. TEX will issue
an error message if they don’t come in matching pairs. The # key is used when
creating some types of user-designed commands.

Each of these characters can be inserted as text in the output document as
indicated in the following table.

http://pages.uoregon.edu/koch/texshop/obtaining.html
http://pages.uoregon.edu/koch/texshop/obtaining.html
http://www.miktex.org
http://www.texniccenter.org
http://www.tug.org/texlive/

2 SOME TEX BASICS. 3

To produce Type
\ \backslash or \textbackslash
$ \$

_

ˆ \^{}

& \&

˜ \~{}

% \%

{ \{

} \}

\#

Table 1: Entering the “Special Keystrokes”

The ˆ and the ˜ are actually accents that must appear over a specific char-
acter. That character can’t be a space; thus the pair of braces, which enclose
nothing, but allowing the accent mark to appear over what’s enclosed; namely
nothing.

2.2 Example

A simple example will illustrate the use of some of these special keystrokes. The
following text could easily appear in any elementary geometry textbook.

The Pythagorean Theorem states that the length of the hypotenuse, h, of
a right triangle is related to the lengths, a and b of the other two sides by the
formula, h2 = a2 + b2.

It is produced by typing the following text in the source file.

The Pythagorean Theorem states that the length of the hypotenuse,

h, of a right triangle is related to the lengths, a and b

of the other two sides by the formula, $h^2=a^2+b^2$.

The important aspect of this example is how the formula h2 = a2 + b2 is pro-
duced. Note that the characters h, a and b are also produced in math mode
because they are symbols rather than letters.

2.3 Commands.

The power and versatility of TEX is derived from the use of commands. They
come in several different types. The simplest type is a backslash followed by a
single non-alphabetic character. Nine examples can be seen in Table 1 on page
3. Other examples are illustrated in Subsection 2.7 on page 6. In addition many
accent marks are produced using a command of this type. (See “Accents”, page
73 for the list.) For example à is produced by typing \‘a. (The same output
results from typing \‘{a}, which may help to explain the necessity of typing
\~{} to get ˜.) A noteworthy example of a command of this simple type is a

2 SOME TEX BASICS. 4

backslash followed by a space; that is, \ (A space is denoted by .). In text
mode, TEX interprets several consecutive spaces as just one space. In math
mode, TEX ignore spaces completely. But the command \ will produce a space
in the output file no matter what comes before it. It short, it produces a space
that isn’t ignored.

Because only ASCII characters can be used, there are 42 possible commands
of this type. Those possibilities that aren’t already used, can be given a meaning
by the user. See the material in Subsection ?? below on the use of the command
\newcommand.

The second variety of simple command starts with a \ followed by one or
more alphabetic characters; no non-alphabetic characters are permitted. In par-
ticular a space isn’t permitted. In fact a space or any non alphabetic character
is needed to indicate the end of the command. Moreover these commands are
case-sensitive. For example all of the Greek and several Hebrew letters are pro-
duced with such commands. (For a list of them again see page 73.) For example
to produce σ , type σ while Σ is produced by typing Σ. (The
summation symbol,

∑
is produced by typing \sum.) Note that all Greek

and Hebrew letters must be produced in math mode. Epsilon, theta and phi
have two forms. Neither form of epsilon is used to denote membership in a set.
For example x ∈ A is produced by typing $x\in A$. Special letters such as æ,
and all mathematical symbols are produced with such commands. (See pages
73–76.) Another such command worthy of special attention is \dots, which is
used in such expressions as 1, 2, . . . , n. Do not produce these dots with a string
of 3 periods. Two additional commands of this type that are of special interest
are \i and \j . They produce the corresponding letter, but without the dot
allowing any accent mark is placed over either letter. For example, typing =̌ı̆=
produces ı̆, which looks better than ĭ. In mathematical expressions rather than
using l for the letter, it’s better to use ℓ. The first produces l, while
the second produces `.

Another example of a command that is quite useful and, in fact, has been
used several times in this document, is the command \verb , by which text
can be made appear in the output document exactly as it is typed from the
keyboard. First select a keyboard character that won’t be included in the special
text. Then type \verb followed by this character, the text to appear as typed,
and concluded by the special character. For example, type \verb~\ell~ to
produce \ell. The command \today enters the current date into the output
document.

Warning. Using a space to end a command of this type can cause a problem if
a space is desired after the command. Rather than typing just a space, instead
type the command \ introduced above. It not only signals the end of the
command, but also inserts a space. On the other hand if the command is to
end the sentence, just type a period. It signals the end of the command and
produces the period. The same is true of the other sentence-ending characters;
! and ?.

All of the special mathematical symbols and characters are produced with

2 SOME TEX BASICS. 5

commands of the type discussed above. For a partial list see pages 74–76.

2.4 Commands with Arguments.

These commands also begin with a \ followed by a string of letters, but in
addition they require one or more mandatory arguments. Also optional argu-
ments may be permitted. Mandatory commands are placed inside of a pair
of braces, { }, while the optional ones are placed between a pair of brackets,
[]. The order in which the arguments are listed can be important. Additional
accents are produced with elementary commands of this type. For example to
produce o̧, type \c{o} while typing \r{o} produces o̊. Again see page 73 for a
complete list of accents. Another example is the command, \underline used
to underline text. For example text to be underlined is produced by typing
\underline{text to be underlined}.

For the two special commands, _ and ^ arguments are sometimes necessary
but not always. For example to produce x1 it suffices to type x_1, but to
produce xn+1 it’s necessary to type x_{n+1}.

A useful example of a command with two mandatory arguments and one
optional is \hrule[lift]{width}{height}. It produces a solid line of length width
and height height. The bottom of the line will coincide with the current baseline
unless a value (positive or negative) given in the optional argument lift. For

example typing \rule[3mm]{2cm}{.4mm} will produce even if the
line runs into the right margin. Notice that TEX automatically adds vertical
space to accommodate the line.

2.5 The Hyphen Key.

The hyphen key is used to produce four horizontal lines of different lengths. First
is the usual hyphen obtained by striking the hyphen key once while in text mode.
In math mode striking the hyphen key once produces a minus sign. Compare
the hyphen, -, to the minus sign,−. In regular text mode two consecutive strikes
of the hyphen key is use to indicate a range of values. For example pages 4–9
is produced by typing pages 4--9. And finally three consecutive strikes of the
hyphen key produces a dash. For example, “The Hyphen Key—A Versatile
Character”.

Even though TEX hyphenates automatically, there are cases where a hyphen
can be used, but TEX doesn’t insert one. For example, if a prefix begins a
word that TEX knows how to hyphenate, TEX will not know how to hyphenate
the result. For example, TEX knows how to hyphenate, “private”, but not,
“semiprivate”. In such cases the command \- can be used to inform TEX where
hyphens may be inserted.

2.6 Quotation Marks.

Quotation marks are often wrongly typed because on a typewriter they are
produced from just one keystroke. But, as you know, in printing there’s a

3 ENTERING CHARACTERS IN A LATEX DOCUMENT 6

difference between opening and closing quotation marks. To get the opening
quotation marks, hit the ‘ key (the lower case of the tilde key) twice, producing
“. Right quotation marks are obtained by striking the ’ key (the lower case
of the quotation marks key) twice, which produces ” or by striking the shifted
version of this key once. The single opening and closing quotation character are
important for a quote inside of a quote as well as in other situations.

2.7 Spacing between Words and Sentences.

In TEX the space between words and the space between sentences are different
and both are “rubber” spaces; that is, they can be changed slightly in order to
“justify” the text. It’s reasonable to assume that a single strike of the space
bar determines between word space. But two strikes of the space bar doesn’t
determine between sentence space because TEX interprets several consecutive
strikes of the space bar as just one strike. So TEX interprets the space following
a period as between sentences space if the letter before the period is a lower
case letter. If the period is preceded by an upper case letter, then TEX thinks
it’s just the end of an abbreviation and inserts between words space. So for
a sentence such as, “I belong to AARP.”, TEX must be told to insert between
sentences space, which is done by inserting the command \@ before the period.
In the first line below, the \@ is omitted, while in the second, it is not.
I belong to AARP. The organization give me many discounts.
I belong to AARP. The organization give me many discounts.
Note the additional space before the start of the second sentence.

On the other hand, when an abbreviation ends in a lower case letter, such as
etc., but isn’t at the end of TEX will insert between sentences. In such a case,
type \ after etc. which always inserts between words space space. Another
possibility is to use the sticky space instead of the space bar; that is, typing
etc.~ but don’t strike the space bar. In the first of the following three lines, a
space follows etc. while in the second it’s etc.\ while in the third it’s etc, .
The numbers 1, 2, 3, etc. are positive integers.
The numbers 1, 2, 3, etc. are positive integers.
The numbers 1, 2, 3, etc. are positive integers.
Note the additional, unwanted, space in the first line.

Keep in mind that TEX isn’t allowed to break a line at a stick space. So
it’s always a good idea to follow abbreviations such as Mr., Mrs., Ms., Dr., etc.
with a sticky space.

3 Entering Characters in a LATEX Document

3.1 Constructing a Simple LATEX Document.

In order to put into practice what has already be covered and what is to be
covered, it’s necessary to know how to start and end a LATEX source file. Ev-
ery source file begins with the command \documentclass{class name}. Some

3 ENTERING CHARACTERS IN A LATEX DOCUMENT 7

choices for class name are book, report, article, and letter, but for now
use article. The second necessary command is \begin{document} Now the
characters to appear in the output file are entered. At the end type \end{document}.
Now the source file can be compiled. Very specifically type
\documentclass{article}

\begin{document}

The part of the source file between these two commands is called the “preamble”.
Packages are loaded there with the command \usepackage{package name(s)}.
Text and commands are typed after the command \begin{document}. Once all
desired entries have been made, type \end{document} and give the source file
a name in the form file name.tex. (The suffix may be added automatically by
your editor.) It’s best to use only alphabetic characters in the file name. Then
compile the file. If you are using pdflatex (which the current TEX implementa-
tions do) the output file will be given the name file name.pdf. Otherwise it may
be called file name.dvi. (A program such as dvips must be run on such a file
to produce a document that can be printed.) If the source file contains an error,
the compiling process will stop and the log file will appear. It will give a hint as
to what the error is and on which line in the source file it occurred. Correct the
error and compile again. Once the file compiles successfully, read the .log file
looking for “Overfull \hbox”. These are places where the text runs into the
margin. The page number in the output document and the line(s) in the source
file that produced the overrunning text will be given. These errors should be
corrected only when the final version of the document is being typeset. Then
the text should be altered to eliminate these incursions into the margin.

3.2 Entering Text and Other Characters/Symbols into a
LATEX Document.

Standard keyboard characters, except for those Special Keystrokes discussed in
subsection 2.1 on page 2 are entered by striking the corresponding key. Other
characters are entered with commands. For example \dag gets †, \S gets §,
\pounds gets £, \P gets ¶, \ae gets æ and \copyright gets c©. See Earlier it
was demonstrated how to use commands to put accents over letters. There are
literally thousands of characters and symbols that can be entered using com-
mands similar to those above. Many (but nowhere near all) will be introduced
in the material to follow.

When preparing a source file the following typing peculiarities should be
kept in mind.

1. In text mode (not math mode) all consecutive strikes of the space bar
after the first are ignored.

2. In math mode all strikes of the space bar are ignored. (TEX automatically
enters the proper amount of space between letters and symbols, of course,
with some exceptions.)

3 ENTERING CHARACTERS IN A LATEX DOCUMENT 8

3. One strike of the return key is the same as one space bar. It is advanta-
geous to enter a return as a space often in the source file for ease in finding
specific text and for error correction. In the log file errors are identified
by line number in the source file.

4. Two strikes of the return key begins a new paragraph. All consecutive
strikes of the return key after the second are ignore.

3.3 Math Mode: Fractions and Roots

Mathematical expressions can be entered in the current line (called in-line math
mode) or displayed on a separate line (called display math mode). When typing
in either math mode all spaces are ignored as is one carriage return. But two or
more consecutive carriage returns will result in an error message. LATEX knows
how much horizontal space to put between consecutive alphabetic characters and
how much space to put before and after symbols as <, >, =, etc. One exception
is the small amount of space that the user should insert before a differential
such as in

∫
f (x) dx done by typing $\int f(x)\, dx$. It’s possible to enter

horizontal space while in math mode, such as \ . Other methods can be found
in subsection 2.7 on page 6.

Superscripts (or exponents) are produced with the ^ character. For example
typing a^n produces an, but superscript longer than one character must be
enclose in a pair of braces. For example a^{n+1} gets an+1. The braces are

also needed for a double superscript, such as an
2
, which is produced by typing

a^{n^2}. Subscripts are produced with the _ with the same rules applying
as for superscripts.

For fractions use the command \frac{numerator}{denominator}. For ex-
ample a2

b3
is produced by typing $\frac{a^2}{b^3}$. A slightly smaller char-

acter size is used for fractions. For fractions in displayed formulas, the normal
character size is used. If a fraction within text has expressions with exponents,
the smaller font may be hard to read. In that case replace \frac with \dfrac

(d for display) to get
a2

b3
. Sometimes in displayed formulas a smaller fraction is

desired. In that case type \tfrac (t for text).
Roots are created with the command \sqrt[n]{expression}. For example

\sqrt[3]{x^2+1} produces
3
√
x2 + 1 in text and

3
√
x2 + 1 in displayed formulas.

There is no \dsqrt form as might be expected, but any mathematical expression
in text can be given its displayed version with the command \displaystyle

which is a declaration type command. As would be expected there’s a corre-
sponding command \textstyle to produce text style in display mode.

3.4 Changing the Look of Text

The default font family use in the article class file is Roman. All TEX imple-
mentations provide two additional font families; typewriter and sans serif.
Examples follow.

3 ENTERING CHARACTERS IN A LATEX DOCUMENT 9

UPPERCASE ROMAN FAMILY, lowercase roman family
UPPERCASE TYPEWRITER FAMILY, lowercase typewriter family

UPPERCASE SANS SERIF FAMILY, lowercase sans serif family
The text set in typewriter family is monospaced; that is, each letter, no mat-
ter how wide it is, is alloted the same amount of horizontal space. The text
set in sans serif family lack serifs. The difference can be seen clearly by
comparing the word, family in all of the examples.

In addition to the additional fonts, four font shapes; upright (default), italics,
small caps and slant are available. The Roman and Typewriter font families are
available in all four shapes the upright, italics and slant, but Sans Serif slant
is the same as Sans Serif italics while isn’t available in small caps; it reverts to
Roman small caps. Examples of uprignt, italics, slant, and small caps

shapes are displayed in the following table.

Upright Italics Slant Small Caps
Roman Roman Roman Roman

Typewriter Typewriter Typewriter Typewriter

Sans Serif Sans Serif Sans Serif Sans Serif

Table 2: Examples of Font Family Shapes

To change from one shape to another use \textup, \textit, \textsc, or
\textsl. For example to produce Text in Small Caps type \textsc{Text in
Small Caps}. The commands to change from one family to another and those
to change from one shape to another can be nested. For example to produce
Text in sans serif italics type \textsf{\textit{Text in sans serif italics}} or
\textit\textsf{Text in sans serif italics}}.

Warning. When changing from the italics (or slant) to either of the other
two shapes, a very small amount of extra space is needed to account for the
right-leaning of the last italic character. The declaration forms don’t insert
this needed space. Compare the following two identical pieces of text, the first
produced with {\it fast talk} is to be ignored and the second, with
\textit{fast talk} is to be ignored.
fast talk is to be ignored.
fast talk is to be ignored.
In addition the declaration form can’t be nested.

Attention can be called to text by putting it in boldface. (The default
appearance is called medium.) In Roman the small caps shape isn’t available
in boldface and sans serif text can be produced in boldface only in the upright
shape. Boldface isn’t available in typewriter. To produce boldface use the com-
mand \textbf. For example to produce text in boldface type \textbf{text in
boldface}. The command \textmd can be used to insert non-bold text within a
string of bold text. Some bold face text with one word of text in medium
series. To get Some text in sans serif boldface, type \textbf{\textsf{Some
text in sans serif boldface}}.

3 ENTERING CHARACTERS IN A LATEX DOCUMENT 10

All four shapes of the Roman font family can be enhanced with boldface. For
example typing \textbf{\textit{Text in boldface italics}} produces
Text in boldface italics. However none of the four shapes of the Typewriter
font family can be enhanced with boldface and only the upright shape of the
Sans Serif font family can be produced in boldface.

3.5 Character Sizes.

All three of the font families are available in 10 different sizes listed in the
following table. The corresponding command is used in a declaration form to
produce characters of that size. The default size is \normalsize.

\tiny smallest

\scriptsize very small

\footnotesize smaller

\small small

\normalsize normal
\large large

\Large larger
\LARGE larger yet
\huge still larger
\Huge largest

For example to change a few words to a larger size for emphasis, type

{\LARGE Pay very close attention to this} which will come out asPay
very close attention to this. Note that these character sizes are
imposed using the declaration style. These sizes are computed in proportion
to the font size selected in the optional argument to \documentclass in the
preamble. Any one of these commands can be put in the preamble resulting in
the entire body of the document being produced in that size.

It’s also possible to change to font size for the entire document. By default
the font size in the book, report, and article document classes is 10 point.
It can be increased to 11 point or 12 point by using an optional argument for
the \documentclass command. If \documentclass[12pt]{article} is typed,
the font size will change to 12 point throughout the document. Changing the
font size to 12 point changes the size of text altered in size by each of the
size commands introduced in the previous paragraph. For example {\large

will produce text in 14 point type}. It’s also possible to use any of these
10 commands to alter the font size throughout the document by putting it in
the preamble, the part of the source file between the \documentclass command
and the \begin{document} command. For example typing

\documnentclass[12pt]{article}

\large

\begin{document}

will produce a document in 14 point type. Moreover, when the font size is
increased to 11 point or 12 point, the affect of all of the size command is auto-
matically adjusted upward.

3 ENTERING CHARACTERS IN A LATEX DOCUMENT 11

3.6 Other Popular Class Options.

The paper size may be changed in the optional argument to the \documentclass
command. The default setting is 8.5in × 11in, called letterpaper. Some
other choices include legalpaper and the most common Eurpoean paper size,
a4paper. In addition, it’s possible to type a document in two column form
by placing, twocolumn in the optional argument, but there’s a better way to
produce two column that will be presented in subsectionmulticol on page 31.

Long documents that are to be bound, such as a book, usually have text
printed on both sides of the paper and have a slightly larger margin on the
inner side of each page (left for odd pages and right for even pages) to facilitate
binding. For that reason in the book class the margin settings for odd and
even pages are different. It’s possible to impose this same margin structure in
the article and report classes by placing twoside in the optional argument.
(The default is oneside.) See the discussion of page styles in subsection 4.1 on
page 15 to better understand what these different selections change.

When a displayed mathematical expression is numbered, the number is
placed after the display flushed to the right margin. To move the number
to the left of the display flushed with the left margin, use the option leqno.
Displayed mathematical expressions are automatically centered. To force them
to be flushed to the left margin, use the option fleqn. A more complete list
can be found in [2, page 43].

For example, the first line of a LATEX document could be
\documentclass[12pt,a4paper,twoside,leqno]{article}.

3.7 Document Divisions.

The three LATEX document classes, book, report, and article provide the user
with the ability to organize a document into divisions, subdivisions, etc. The
primary division name for the article document class is section, followed by
subdividions subsection, subsubsection, paragraph and subparagraph. To begin
a section, the user types \section{Section Title}. When the file is compiled,
LATEX automatically does the formating of the section title putting some verti-
cal space before the title, producing the title in bold face and in a larger font
size. In addition the sections are automatically numbered consecutively. This
feature means the author doesn’t need to remember what the next section num-
ber should be and permits the insertion of a new section in a revision of the
document with the assurance that the renumbering of the sections will be done
right. Dividing a section into subsections is accomplished with the command
\subsection{Subsection Title}. As with section titles, LATEX does the format-
ting and the numbering. A subsection is numbered in the form m.n where m
is the number of the section in which the subsection appears and n means that
the subsection is the nth subsection in the section.

The document class report adds as the primary division name, chapter. A
chapter is begun with the command \chapter{Chapter Title}. A new chapter is
automatically begun on a new page and all chapters are numbered consecutively

3 ENTERING CHARACTERS IN A LATEX DOCUMENT 12

with sections numbered in the form m.n and then subsection numbered in the
form m.n.k etc. The document class book adds as its primary division name,
part. The command \part{Part Title} begins a new page and always on an
odd numbered page.

The primary divisions in a document are numbered consecutively starting
with 1. The first subdivision is numbered as m.n where m is the number of the
primary division (such as part, chapter or section depending on the document
class) and n denotes the nth subdivision in the division. Subsubdivisions are
numbered m.n.k etc.

All of these division commands have an optional argument that allows a
shortened version of the division name to be entered. For example \section[The
Body Continued.]{The Body of a LATEX Document Continued.}. When avail-
able, the short version is used in heading as in the top of this page. (See
Subsection 4.1 on page 15.)

3.8 Counters

The numbers that are assigned to Chapter, Sections, Subsections, etc. are stored
in counters. Specifically, for a report document, the initial value of the
chapter counter is 1. When the source file is compiled and the first \chapter

command is encountered, LATEXassigns the number 1 to that chapter and adds
1 to the chapter counter. In the remainder of these notes several counters will
be encountered. They all work in essentially the same fashion. In addition to
the counters that are already established, some LATEXcommands produce others.
The user can also define new counters if the need arrises.

3.9 Labeling.

Labeling is the facility by which the author may automatically refer to any part
of the document from any other place in the document. First, to refer later in
the document to the page on which some specific text appears, at the point in
the source file where that text is entered, simply type \label{marker}. Then
the command \pageref{marker} will insert the number of the page on which
the label marker appears. For example in the source file typing
this is important text \label{imp} that will be referenced later

and then later in the source file, typing, on page \pageref{imp} you will

find some important text will insert the number of the page where that
important text appears.

To refer to a specific section of the document by section number and page
number, begin the section with \section{Section title}\label{impsec}. Then
later in the document to refer to that section, type
by Section \ref{impsec} on page \pageref{impsec} and the section num-
ber will be inserted as well as the page on which it appears. Subsections and
all of the other divisions discussed above can be referenced in a similar manner.
Other items that are numbered automatically by LATEX, such as tables, figures,

3 ENTERING CHARACTERS IN A LATEX DOCUMENT 13

equations, and bibliographic entries, can be labeled and referenced similarly.
Specifics will be discussed when each topics is discussed.

3.10 Creating a Title

The title of the document is created with the command \title{title}. LATEX
will automatically center the title and start new lines in the case of title too long
to fit on one line. If the title is lengthy, a shorter version can be indicated for use
in headings or other such structures. The syntax is \title[Short Title]{Title}.

The command \author is used to enter all author information. For example
to enter the name and address of just one author, type
\author{William R. Author, 8426 North Main Street, Fairview, VA}.
The author information will be centered on the line immediately following the
title. However, the user must put in line breaks with \\ if the text runs into
the margin. A carriage return will not create a new line. Alternatively, typing
\author{William R. Author\\8426 North Main Street\\Fairview, VA}

will list the information as

William R. Author
8426 North Main Street

Fairview, VA

For multiple authors, use \author{author1 info\and author2 info} etc. If only
names are used, LATEX will display them centered on one line. If addresses are
included, they are displayed according to how they are typed. For example
typing

\author{William R. Author, 8426 North Main Street, Fairview, VA}

\and

\author{Irma A. Writer, 1842 West Adams Street, Washington, NV}

produces

William R. Author, 8426 North Main Street, Fairview, VA
Irma A. Writer, 1842 West Adams Street, Washington, NV

while typing

\author{William R. Author\\8426 North Main Street\\Fairview, VA}

\and

\author{Irma A. Writer\\1842 West Adams Street\\Washington, NV}

produces

William R. Author Irma A. Writer
8426 North Main Street 1842 West Adams Street

Fairview, VA Washington, NV

3 ENTERING CHARACTERS IN A LATEX DOCUMENT 14

Like the \title command, the \author command also has an optional ar-
gument, which is used to enter a short version of the authors. For example, if
there are five authors for a document, the short version could include only first
initials and last names. For example \author[W. Author and I. Writer]

LATEX will automatically enter the current date centered under the author(s),
unless a different date is selected by using the command \date{desired date}.
To omit the date entirely, type \date{}.

3.11 The Auxiliary and Log Files.

Each time a LATEX source file is compiled, a file named file name.aux is built
or rebuilt. Date collected from \label commands, all division commands and
much more to be introduced later is all stored in this file. Consequently, after
one run of the compiler, some question marks (?) may appear in the output
file because the information needed had yet to be put in the .aux file. They
should all disappear after the second run. If not, the data called for from the
source file wasn’t given and the error should be corrected. With longer files, if
an error occurs, it’s possible that the .aux file isn’t complete. After fixing the
error, compiling the file can result in the error message something like

Runaway argument?

!File ended while scanning use of \@writefile.

<inserted text>

\par

l.41 \begin{document}

In such a case, trash the .aux file and then compile the source file twice.
When the compiler encounters an error in the source file that prevents com-

pletion, the process stops and the log file displays on which line in the source
file the error occurred. Going to that line in the source file may display several
lines of text. To better locate the error, replace the space and the end of each
displayed line with a return and compile the file again. The error will stop the
process and the log file will display a line number where the error occurred,
but this time the displaying this line in the source file will highlight just one
line and the error can be easily found. If error messages continue on subse-
quent attempts to compile the file, try typing, s, in the log window followed by
<return>. This forces TEX to complete the compilation precess and allows you
to see the output, which will likely make the error clear.

Even if the file compiles without stopping, the log file can contain information
useful is refining the source file. Scan the log file for, “Overfull \hbox” entries
will will indicate how much the line in the output file flows into the margin,
what the text is and on what line(s) of the source file the text can be found.
It’s also possible to determine the page of the output on which the text can be
found. Each of these should be examined and changes made to eliminate them.

4 MANAGING THE TEXT AND CHARACTERS. 15

3.12 Footnotes.

To enter a footnote about some word or phrase, immediately after the text to be
footnoted, type \footnote{the text for the footnote}. LATEX will draw a short
line at the bottom of the page followed by the footnote number and footnote
text. The footnote number is obtained from the counter, footnote. To use an
number other than that provided by the counter, type
\footnote[number]{text}.

There is a variant of footnoting specifically designed for authors wishing to
thank a funding agency or a person for support. In the preamble, immediately
after the author name type \thanks{the gushing note of thanks}. The thanks
will appear as a footnote, but instead of a number, with a symbol, such as an *.
For example \author{William R. Author\thanks{Supported in part by

the NIH.}, 8426 North Main Street, Fairview, VA}

The footnote marker can be changed using the command

\renewcommand{\thefootnote}{marker style{footnote}}

where the other choices for marker style are \roman, \Roman, \alph, \Alph

and \fnsymbol. The commands \alph and \Alph refer to lowercase and upper-
case letters respectively and the last choice uses *, † and 7 other symbols.

4 Managing the Text and Characters.

4.1 Page Style.

A page may have a header and/or a footer. The information that appears in
them is determined by the pagestyle. The four possible page styles are in the
following list. The default page style for the article and report classes is
plain and for the book class, is headings.
plain The header is empty and the page number appears in the center of the

footer at the bottom of the page.
empty The header and footer are both empty. No page numbers are printed

anywhere on the page.
headings This is the page style that should be used if a heading at the top of

each page is desired. The header contains both the page number and a
page title. If the twoside option has been selected, then the page number
appears in the right side of the header on odd pages and in the left side of
the header on even pages. In both cases the heading is the section title (in
the article class) or the current chapter title (in the book and report

classes). The page style used for this document is headings.
myheading This page style is identical to the headings page style except the

user selects the headings with the command \markright{heading} for the
same heading on both odd and even pages or for different headings,
\markboth{odd_page_heading}{even_page_heading}. The heading com-
mand used should appear in the preamble, but the heading can be changed
at any point in the document by repeating the command at the point where

4 MANAGING THE TEXT AND CHARACTERS. 16

the change is to be made with the new heading(s) in the argument(s) of
the command.

To change page style from the default, type \pagestyle{style} in the pream-
ble. Typing the same command at an appropriate place in the body changes
the page style for the current page and all subsequent pages. The command
\thispagestyle{style} changes the page style for only the current page.

Warning. Part of the command \maketitle is \thispagestyle{plain}.
Consequently if the page on which the title is to appear should have no page
number at the bottom, the command \thispagestyle{empty} must be in-
serted after the \maketitle command.

If the myheadings page style doesn’t supply enough flexibility, the package,
fancyhdr provides an addition page style called fancy, which allows the user
to design the headings. Details can be found on page 224, section 4.2.2 of [4].

4.2 Line and Page Breaking.

The command \newline will fill the remainder of the current line with space
and start a new line. But it’s better to use \\ which, by itself is the same
as \newline, but has an optional argument. For example \\[2mm] will fill
the remainder of the current line with space, and then skip down 2mm before
starting the next line. This feature is useful and can be employed anywhere the
\\ command is used. It also has a cousin, * which prevents a page break from
occurring before starting the new line. The same optional argument [2mm] is
available for this form of the newline command.

A related command is \linebreak which has one optional argument. The
major difference between it and \newline is that the remaining space in the cur-
rent line is distributed between the words already in the line resulting in a line
that ends at the right margin. If the remaining space is substantial, the result
can be ugly. The optional argument is [imp-digit], where imp-digit is an integer
between 0 and 4 establishing the importance of breaking the line at that point. A
value of 0 means it’s not too important to break there, whereas \linebreak[4]
means the break is mandatory; that is, it’s equivalent to \linebreak. The
command \nolinebreak[imp-digit] works in exactly the opposite way to pre-
vent a line break. There are other ways to prevent a line break. For example,
using a “sticky space”, ~ as in Dr.~Smith. Sometimes it’s desirable to keep
an entire string of words on one line. The easiest way to accomplish this is as
follows. \mbox{the string of words to be kept on one line}. LATEX treats what’s
in the brackets as one object rather that several objects. The \mbox command
is described in detail on page 22.

The commands related to page breaks are \newpage, \pagebreak[imp-
digit], and \nopagebreak[imp-digit]. These commands are analogous to the
corresponding ones for line breaking.

4 MANAGING THE TEXT AND CHARACTERS. 17

4.3 Page Numbering.

The page style determines where the page number will appear on the page.
Wherever it appears the page number may be displayed in any of the styles
arabic, roman, Roman (upper case roman), alpha, and Alpha (upper case al-
phabet), with arabic being the default. The style is changed using the command
\pagenumbering{numbering style}. For example \pagenumbering{Roman} num-
bers the pages using upper case Roman numerals. The actual page num-
ber (no matter in what style it is displayed) is set using the counter called
page. (LATEX has a large number of counters. We will meet more of them
later.) The value of that counter is incremented each time a new page is cre-
ated even if the page number isn’t printed anywhere on the page. Also the
value can be changed using the command, \setcounter{page}{page number}
or \addtocounter{page}{adjustment}. One example where the ability to use
different number styles and to adjust the corresponding counter is an article
that begins with a preface and/or a table of contents or any such elements
that should be numbered in lowercase roman numerals while the remaining text
should be numbered in arabic. For example to begin with a table of contents, af-
ter the \begin{document} command, type \pagenumbering{roman} and then
type \tableofcontents followed by \newpage to begin a new page and then
type the command \pagenumbering{arabic}. The result will be that the next
page to be printed will be numbered 1, because the command \pagenumbering

automatically resets the counter to 1. For example, the beginning of the body
for the source file of this document is

\begin{document} \newpage

\maketitle \pagenumbering{arabic}

\pagenumbering{roman} \begin{abstract}

\tableofcontents

4.4 Page Layout.

Figure 1 below shows what a page in LATEX looks like.
The circle is at 1 inch from the top and left of the page. All of the dimen-

sions shown in the figure are self-explanatory except for \oddsidemargin. For
documents prepared in the oneside style, this command controls all indicated
margins. But when the twoside style is used (either by default as in the book

class) this command sets the margin for odd pages while the margin for even
pages is set be the command \evensidemargin. Two dimensions that are not
displayed in the figure are \paperheight and \paperwidth. The first is the sum
of all of the vertical dimensions and the second, the sum of all of the horizontal
dimensions. All of these commands represent lengths that are set automatically
by the selected document class and any selected options. Consequently they
can be used in space commands such as \hspace and \vspace. For example
\hspace{.5\textwidth} will insert horizontal space equal to half of the text
width.

These length can be changed, however because of the connections between

4 MANAGING THE TEXT AND CHARACTERS. 18

!

\p
ap

er
h
ei

g
h
t

"

\paperwidth# $

$#
1 inch

!

"

1 inch

Header"
!
\headheight

"
!\topmargin

"
!\headsep

\o
d
d
si

d
em

ar
gi

n

$#

\textwidth# $
\t

ex
th

ei
gt

h

!

"

Body

"
!\footskip

Footer

Figure 1: Page Layout Parameters

these dimensions, they can’t be changed independently. But there are situation
in which changing some of them would be beneficial. For example, for a one
page document, such as an exam, it may be desirable to expand the height

4 MANAGING THE TEXT AND CHARACTERS. 19

and/or width of the text on the page. To increase the text height, first reduce
the topmargin by typing
\addtolength{\topmargin}{-2in}. (As with counters, LATEX has several

lengths all of which can be altered in a similar fashion.) Then type
\addtolength{\textheight}{2in}. Subtracting and adding the same amount
is essential to maintain the sum of all of the vertical lengths. Provided you
haven’t selected the option twoside, to change the width, first type the com-
mand \addtolength{\oddsidemargin}{-2in} followed by
\addtolength{\textwidth}{2in}. (With twoside you must also subtract 2
inches from \evensidemargin as well.) With these two changes, the text will
be 2 inches wider and 2 inches higher, but will be centered on the paper. The
other lengths should remain as they are set by LATEX.

Because all of these dimensions are lengths, they may be used in the manda-
tory arguments of spacing commands; for example \hspace{.5\textwidth}

will insert horizontal space equal to half of the text width.
Because TEX adjusts horizontal space automatically, it’s usually not nec-

essary for the user to make any adjustments. But when it is necessary, there
are six standard positive horizontal space commands for that purpose: \,, \:,
\;, \quad, \qquad and \ .

The command Produces this much space
\, | |
\: | |
\; | |

\quad | |
\qquad | |

In addition \! produces negative space equal to that of \,. The command
\, is used most often in integration formulas to put a small amount of space
between the function and the differential. For example, to produce

∫
f(x) dx

type $\int f(x)\,dx$.

4.5 Document Horizontal and Vertical Lengths.

A specific amount of horizontal space is created with the command
\hspace{length} where the length must be given units of some kind; for exam-
ple, in, pt, mm, cm and em (the width of the letter, M). For a complete list of
acceptable measures of length see page 73. Horizontal space created this way is
ignored at the beginning of a line. If some horizontal space is desired even at
the beginning of a line, use \hspace*{length} instead.

It’s also possible to enter horizontal space equal to the space occupied by
some specific text with the command . For example
typing enters horizontal space equal to that used by the word,
“text”. Enter space equal to “text”. This command can be very useful as
will be seen.

Another very useful horizontal space command is \hfill. It can be used to
evenly space two, three or more entries along a line such as

4 MANAGING THE TEXT AND CHARACTERS. 20

MTH 132 Section 23 First Hour Exam January 26, 2007

which is produced by typing
MTH 132 Section 23\hfill First Hour Exam\hfill January 26, 2007.
The length assigned to each \hfill command is the unused length in the line
divided by the number of \hfill commands. The command \hfill has two
cousins: \dotfill and \hrulefill. The first fills the space with dots on the
baseline; the second, with a solid line. For example

Student Name Student PIN Section number

is produced by typing

Student Name\hrulefill\hrulefill\hrulefill

Student PIN\hrulefill\hrulefill Section number\hrulefill \\

Note that to use these three commands at the end of a line they must be followed
by either \\ or \newline.

MTH 132 First Hour Exam Section Number
These commands are ignored at the beginning of a new line (i.e. after either new

line command) except at the beginning of a new paragraph. So to use one of
them at the beginning of a new line type two returns followed by the command
\noindent\index{noindent@\verb\noindent}, which starts a new paragraph
but eliminates the indentation. Then type the desired command. For example
typing

This is the start of a paragraph. The next line starts with dots

\noindent\dotfill Next a space \hfill and then a line\hrulefill\\

Finally the last line of the paragraph.

produces this outcome.
This is the start of a paragraph. The next line starts with dots

. Next a space and then a line
Finally the last line of the paragraph.

Vertical spacing is somewhat analogous to horizontal spacing, but first, it
should be noted that one carriage return is the same as one strike of the space
bar in the output file. This feature makes it easy to find specific parts of a
document, such as a short mathematical expression. It is also useful in locating
errors in the source file. When the compiler runs on the source file, if it finds
a TEX error (which it often does), it identifies the line in the source file where
the error occurs. So creating new lines in the source file with carriage returns
makes it easier to find errors. This process works because a single carriage
return starts a new line in the source file, but simply produces a space in the
output file. To begin a new paragraph in the output file enter two consecutive
carriage returns in the source file. More than two consecutive carriage returns
is the same as two carriage returns. Vertical space in the output file can’t be
created with additional strikes of t he carriage return.

4 MANAGING THE TEXT AND CHARACTERS. 21

There are three vertical space commands that create a small amount of ver-
tical space: \smallskip, \medskip, and \bigskip. These three distances are
rubber and therefore can be adjusted by TEX to maximize the look of the doc-
ument. Specific vertical space is inserted with the commands \vspace{length}
and \vspace*{length}. They are completely analogous to the corresponding
horizontal space commands. Finally the command \vfill does for vertical
distance what \hfill does for horizontal distance.

4.6 Creating New Commands

There are times when preparing a source file when new commands could shorten
the typing making it more efficient and consistent. The command \newcommand

is designed for this purpose. In its easiest form it has the syntax
\newcommand{command name}{definition}.

When using the version of this try to use a name such as \1 in order to avoid
the problem with command names of one or more alphabetic characters. For
example if you wish to use the abbreviation, e. g. , frequently, consider inserting
in the preamble \newcommand{\4}{e.\ g.\ } thereby replacing 8 keystrokes
with 2 and ensuring that this abbreviation will always be entered with the
appropriate spacing. In a similar fashion frequently typed text can be entered
efficiently.

The complete syntax for this useful command is
\newcommand{command name}[number of arguments][optionals]{definition}.
The optional arguments are used to define a command having arguments; manda-
tory as well as optional. To define a new command with n mandatory argu-
ments, the first optional argument contains the number n. For example, if
the output document is to contain many words in italics, in the preamble type
\newcommand{\il}[1]{\textit{#1}. (Note the use of the special keystroke,
#.) The optional argument specifies that the new command is to have one ar-
gument. (The lack of any entry for the second optional argument indicates that
this argument is to be mandatory.) The contents of that argument is placed in
the definition at every entry of #1. Then typing \il{text in italics} would
produce text in italics. Had \it been used instead of \il, an error message
would have resulted saying that the command \it is already defined. In such a
case, either chance the name or use the command \renewcommand.

If one or more optional arguments is desired, then the number in the first
optional argument is the TOTAL number of arguments; mandatory plus op-
tional. The second optional argument contains a comma-separated list of the
default values of each of the optional arguments. The first example of such
a command contains no mandatory arguments and just one optional argu-
ment. \newcommand{\1}[1][x]{let $#1$ be a variable}. Typing \1 pro-
duces, ‘let x be a variable’, but typing \1[y] produces, ‘let y be a variable’. Be-
cause in this case the command name need not be followed by a non-alphabetic
character, it’s better not to use a name such at \t or any string of alphabetic
characters.

The next example has one mandatory argument and one optional one.

4 MANAGING THE TEXT AND CHARACTERS. 22

\newcommand{\vc}[2][x]{$#2_1, \dots, #2_#1$}. Here the use of a string
of alphabetic causes no problems, because the name must be followed by a
{. So typing \vc{n} produces, ‘x1, . . . , xn’ while typing \vc[y]{n} produces,
‘y1, . . . , yn’. Note that the argument number associated with the mandatory
argument is 1 while 2 is associated with the optional argument. In general if
there are to be n mandatory arguments, the numbers 1, . . . , n are associated
with them and in that order, while the remaining numbers are associated with
the optional arguments. So the number n+1 is associated with the first optional
argument, the number n+2 is associated with the second optional argument, etc.
This commands works as designed unless it is issued in math mode, in which
case the $ in the definition returns to text mode and an error message will
result. The command \ensuremath fixes this problem. Change the definition
to {\ensuremath{#2_1, \dots, #2_#1}}. The \ensuremath command does
nothing if it is issued in math mode, but if it is issues in text mode, the contents
of the mandatory argument is put in math mode.

4.7 Boxes

4.7.1 In Line Boxes.

The contents of these boxes are typeset from left to right in a single line with no
line breaks permitted. Consequently care must be exercised in their use. The
simplest box is constructed with the command \mbox, which has one mandatory
argument. For example some text that must appear on one line is produced by
typing \mbox{\textit{text that must appear on one line}}. The more
versatile box command is, \makebox[width][pos]{text}. The width sets how
long the box will be. The default is the length of the text. If a width has
been entered, the pos determines how the text will be aligned in the box. The
choices are l, c, r with c being the default. Typing \makebox[2\width][l]{a
small bit of text} produces a small bit of text . (The command
\width that appears in this example is the length of the text, a small bit of
text. It can only be use as part of the \makebox command.) A box of width
0pt permits over-writting one character with another. For example to produce
/S type \makebox[0pt][l]{/}S.

To actually see the box that is produced by the previous two command. The
simpler of them, corresponding to \mbox is \fbox. For example \fbox{some
text} produces some text . Corresponding to \makebox is \framebox, which
has the same syntax as does \makebox. So that \framebox[1.5\width][r]{a

small bit of text} produces a small bit of text . With any frame box

it’s possible to increase the width of the frame with the command \fboxrule

and the space at either end with the command \fboxsep. For example typing
\setlength{\fboxrule}{1mm}\setlength{\fboxsep}{2mm}

\fbox{Some text in a big box with a fat frame} yields

Some text in a big box with a fat frame

In conjunction with these boxes come the very useful command \raisebox

4 MANAGING THE TEXT AND CHARACTERS. 23

which is used to create and raise or lower any of the boxes discussed above. The
syntax for the command is \raisebox{lift}[height][depth]{contents}. The
first mandatory argument is the amount that the box is to be raised, which can
be negative. The default setting for height and depth are \heigth and \depth

respectivally. (See Section ?? for the meaning of these commands.) Either of
these can used to determine the lift. For example many authors wish to put a
subscript on the Greek letter, chi, typing χ_A produces χA. It would look
better if the character, chi, were raised so that it sits on the baseline. Typing
\raisebox{\depth}{χ}, produces χ as desired. To put a subscript would
require typing \raisebox{\depth}{χ}$_A$ which seems like a lot to type.
The following new command can save repetitive typing.

\newcommand{\charf}[1]{\raisebox{\depth}

{χ}{\ensuremath{_{#1}}}}.

Then get χA instead of χA by simply typing \charf{A}. The reason that the
\chi must be put in math mode is that the contents of a box is, by default, in
regular text mode. The command \ensuremath does nothing if math mode is
in force and changes to math mode if not. It’s needed because outside of the
box the text mode could be math or regular.

4.7.2 Rule Boxes

The command \rule has one optional arguments, lift, and two mandatory ar-
guments, width and height. It produces a black line whose height is determined
by height and whose width is width. For example \rule{3in}{2mm} produces

. The optional argument, lift
may be either positive or negative and will move the rule vertically the desig-
nated amount.

4.7.3 Paragraph Boxes.

Paragraph boxes are to pages what LR boxes are to lines. They are created with
the \parbox command, which has first three optional arguments followed by two
mandatory arguments. The first optional argument, pos, has three choices: t,

c, b with c being the default. The baseline of the current line is aligned with
the base line of the top, center, or bottom line of the text in the box respectively.
The second optional argument, height, can be a specific length, such as 2in or
a multiple of a fixed length, such as \height, the height of the text in the box,
which is the default setting. Only if the height is other that its default does
the third optional argument, inner-pos, get selected. It has three choices, t,
c, b with c being the default. The first mandatory argument is width, which,
like height, can be assigned a specific number or a multiple of a standard length
such as \textwidth or \linewidth. The second is the contents of the baragraph
bpx.By the way, it’s possible to put a frame around a paragraph box by putting
the \parbox command inside of the argument of a \fbox command.

5 INTRODUCTION TO PACKAGES. 24

A LATEX document consists of a preamble and the body of the document.
Usually, but not always, the document ends with a bibliography. We begin with
the preamble. The preamble of every LATEX document begins with the command
\documentclass{class name}. The most common choices for class name are:
article, book, report, beamer, and . Many of the documents you will produce
will be done in article class. (The class beamer is used for presentations.
It and the letter class will be discussed later in this document.) Once the
document class has been selected a large number of commands become available
and several parameters are set. These will be discussed later in this section.

The documentclass command has an optional argument placed between
documentclass and the mandatory argument class name; specifically
\documentclass[option1, option2, . . .]{class name}.

5 Introduction to Packages.

After selecting the document class and any desired options, the next choices to
make are the packages to be used. Packages are used to update LATEX without
issuing a new version of the program. Packages are loaded with the command
\usepackage that has one mandatory argument which may be preceded by
an optional argument. For any document containing a substantial amount of
mathematical material, the packages to use are: amsmath, amssymb, and amsthm.
Several examples such as url and graphics will be discussed in the sequel, but
it’s not possible to discuss them all.

5.1 The xcolor Package.

Placing \usepackage{xcolor} in the preamble permits using color in the out-
put document in several different manners. Simply to insert some text in a color,
use the command \textcolor{color}{text in the selected color}. For example
typing \textcolor{green}{this text will be green in the output

document} will produce this text will be green in the output document. Another
way to use color for emphasis is to have some text appear with a colored back-
ground which is done with the command \colorbox{background color}{back-
ground color}{text with the background color}. For example to produce
this text will appear in the output with a magenta background type
\colorbox{magenta}{this text will appear in the output with a

magenta background}. (There’s a major difference between these two com-
mands. Text produce with the \textcolor command is subject to TEX’s usual
line breaking, but text in a \colorbox command is treated as a box and therefore
will appear on the current line even if it runs into the margin.) Combining this
command with the \textcolor command will produce text in one color with
the background in a different color. Specifically for text use \textcolor{color}.
As has been seen in Subsection 4.7.1, it’s possible to put a frame around text.
With the xcolor package, it’s possible to color this frame. The command is
\fcolorbox{frame color}{background color}{text}. A color must be in each

5 INTRODUCTION TO PACKAGES. 25

argument even if all that is desired is a colored frame. For example to produce

framed in green , type \fcolorbox{green}{white}{framed in green}.

The following colors can be used in any of the commands above that select a
color: red, green, blue , cyan, magenta, yellow , black , gray , white , darkgray
, lightgray , brown, lime , olive , orange , pink , purple , teal , and violet. The
shade of any of these can be set in any color command by typing the name
of the color followed by !̌=num, where num is a number between 1 and 100
representing the percent of the color to mix with white; that is, the smaller the
number the lighter the shade. For example

Typing Produces
\textcolor{blue!40} very light blue
\textcolor{blue!65} light blue
\textcolor{blue!90} medium blue
\textcolor{blue} blue

Using a similar structure, it’s possible to mix two colors by typing
\textcolor{color 1!num!color 2. The resulting color will be num% color 1
and the remainder color 2. For example text 30% red and 70% blue is the result
of typing \textcolor{red!30!blue}{text 30\% red and 70\% blue}.

5.2 The hyperref Package.

The hyperref package turns all items listed in the Table of Contents, all
bibliographical citations, all pages listed in the Index and all urls into hy-
pertext links. To avoid possible conflicts with other packages, the command
\usepackage{hyperref} should be the last package listed in the preamble. By
default, all links created by the package are enclosed in boxes, which is prefer-
able for black-and-white output, but for color output the option colorlinks the
links appear in red, except for the urls for which the color is magenta. It can be
changed with the option urlcolor=desired color . (In this document the color
is changed to blue.) Another useful option is backref . After each biographical
entry it lists the division numbers where that reference is cited in the document.
For additional information see [1, pages 35–67].

5.3 The url Package.

Above the command \url appears, which is made possible by the url pack-
age. Entering internet and email addresses can be tricky because a hyphen
is often part of such an address, so LATEX must be prevented from break-
ing a line with a hyphen in an address. The package url is designed to do
just that and to typeset these items in the typewriter family. In the pream-
ble type \usepackage{url} and then when you wish to enter, say an internet
address, type \url{http://www. ams. org/ tex/ amslatex. html} and the
result will be the internet address with a linebreak http://www.ams.org/tex/

amslatex.html. The spaces in the argument tell LATEX where it is allowed to
break the line.

http://www . ams . org / tex / amslatex . html
http://www . ams . org / tex / amslatex . html

6 INTRODUCTION TO ENVIRONMENTS. 26

6 Introduction to Environments.

Having discussed what is necessary to know to produce a document consisting
mainly of simple text, we now learn how to produce special structures such
as quotations, lists, tables, figures, bibliographies, and displayed mathematical
expressions. Such structures are constructed in environments. An environment
begins with the command \begin{environment name}, some of which have
mandatory and optional arguments.An environment ends with the command
\end{environment name}. In fact the entire document is typed in the docu-
ment environment so when LATEX encounters the command \end{document} it
stops compiling text. (Consequently, extra text can be safely stored after the
\end{document}.)

In this introductory section several elementary examples are presented. Then
additional packages that include environments are discussed.

6.1 The abstract Environment.

Almost all professional periodicals require or recommend that articles begin
with an abstract. The best way to include one is with the abstract envi-
ronment. Immediately after the \maketitle command type (after a return)
\begin{abstract}. Then on the next line begin typing the text of the ab-
stract. Afterwards type \end{abstract}. For example

\begin{abstract}

Text of the abstract, which may be as long as needed, but short

enough that anyone can read it within two minutes to decide if

they wish to read the article.

\end{abstract}

The result will be the following.

Abstract

Text of the abstract, which may be as long as needed, but short enough
that anyone can read it within two minutes to decide if they wish to read
the article.

Note that appropriate vertical space is inserted before the word, “Abstract”
is printed centered on the page. The text of the abstract is smaller than that
of the surrounding text and both margins are increased. Before regular text
resumes, some vertical space is added.

6.2 The center Environment

To center text or any structure, type
\begin{center}

The text or other structure to be centered
\end{center}.

6 INTRODUCTION TO ENVIRONMENTS. 27

The amount of text to be centered may be longer than one line as in the
following example.

This text is being centered on the page using the center environment which
inserts line breaks automatically, but, obviously, doesn’t justify. But you may

start a new line anywhere you wish with the command \\.

The command \begin{center} automatically ends the previous paragraph.
The same can’t be said for other environments as will be seen.

6.3 The quotes and quotation Environments.

There are two environments for displaying quotes; quote and quotation. Both
indent the text to be quoted by equal amounts on both sides and present the
quoted text is smaller font size. The difference is that quote starts a new para-
graph by inserting an empty line, but no indent, while quotation starts a new
paragraph by indenting first line, but doesn’t skip a line. For example typing

\begin{quote}

It hits on a dull, overcast Monday morning. I awake realizing

there is no party in sight for the weekend. I’m out of bread,

and I’ve got a dry skin problem. So I say it aloud to myself,

‘‘What’s a nice girl like me doing in a dump like this?’’

The draperies are dirty (and will disintegrate if laundered),

the arms of the sofa are coming through. There is Christmas

tinsel growing out of the carpet. and some clown has written

in dust on the coffee table, YANKEE GO HOME.

\end{quote}

will produce

It hits on a dull, overcast Monday morning. I awake realizing there
is no party in sight for the weekend. I’m out of bread, and I’ve got
a dry skin problem. So I say it aloud to myself, “What’s a nice girl
like me doing in a dump like this?”

The draperies are dirty (and will disintegrate if laundered), the arms
of the sofa are coming through. There is Christmas tinsel growing
out of the carpet. and some clown has written in dust on the coffee
table, YANKEE GO HOME.1

Replacing quote by quotation results in

Last December world leaders met in Copenhagen to add more
hot air to the climate debate. That is because although the impacts
humanity would like to avoid—fire, flood and drought, for starters—
are pretty clear, the right strategy to halt global warming is not.

1At Wit’s End, Erma Bombeck, Fawcett Publishing, 1965.

6 INTRODUCTION TO ENVIRONMENTS. 28

Despite decades of effort, scientists do not know what “number”—
in terms of temperature or concentrations of greenhouse gases in the
atmosphere—constitute a danger

When it comes to defining the climate’s sensitivity to forcings
such as rising atmospheric carbon dioxide levels, “we don’t know
much more than we did in 1975,” say climatologist Stephen Schnei-
der of Stanford University, who first defined the term “climate sensi-
tivity” in the 1970s. “What we know is if you add watts per square
meter to the system, it’s going to warm up.”2

6.4 The verbatim Environment.

The text In Section 6.1 beginning with, “\begin{abstract}” was produced
using the verbatim environment. All text typed between \begin{verbatim}

and \end{verbatim} is typeset exactly as it is typed. In particular the user
must insert the returns for otherwise the text will continue into and likely,
beyond the right margin. This environment is used when entering a computer
program into a document.

A short piece of text that appears in line is done with the command \verb

followed by any character that isn’t part of the verbatim text to follow. The
text to be so printed is ended with the same character with witch it began.
For example to produce verbatim text type \verb=verbatim text=. Any
keyboard character other than v e r b a t i m t e x t could be used in
place of =. Think of the verbatim environment as the display method for entering
several lines of verbatim text and the \verb command as the in-line version.

6.5 Lists

Next we introduce the list environments: itemize, description and enumerate.
Each generates a list of items, but they differ in how the items are presented.
Itemize and enumerate indent and mark each item, while description indents
just a very small amount, but doesn’t mark. Itemize marks each item with a •
while enumerate marks items with consecutive numbers (arabic, roman, Roman,
alph, or Alph). All three list structures have the same basic format; namely,
\begin{list name}
\item The first item in the list.
\item The second item in the list.
\item The third item in the list.
\end{list name}

To demonstrate the difference the same list will be set in all three list envi-
ronments beginning with itemize.

• The first item in the list.

2Scientific American, David Biello, January 2010, page 14.

6 INTRODUCTION TO ENVIRONMENTS. 29

• The second item in the list.

• The third item in the list.

Next the description environment is demonstrated.

The first item in the list.

The second item in the list.

The third item in the list.

Finally the enumerate environment is demonstrated.

1. The first item in the list.

2. The second item in the list.

3. The third item in the list.

A list may included another list as an item. The two lists may have the same
or different list names. In the case of the same list, the second level markers are
different from the first level. For example, in itemize the second level items are
marked with the short dash created with two consecutive hyphens –, the third
level, * and the fourth level, ·. For the enumerate environment the second level
is delineated by lower case letters enclosed in parentheses, the third by lower
case Roman numerals and the fourth by upper case letters.

The command \item has an optional argument that can be used to change
the default marker. For example typing \item[(a)] This item= produces, “(a)
This item” in any of the three list environments. In the description environ-
ment, the marker is flush to the left margin and followed by the small indent
characteristic of this list environment.

The enumerate permits changing all of the labels in an enumerate list with
one command. For example putting \usepackage{enumerate} and typing
\begin{enumerate}[a)] will result in all items having label of the form a)
but using the letters of the alphabetical in order. It also eliminates the indent.

a) The first item in the list.

b) The second item in the list.

c) The third item in the list.

To insert text between two items in an enumeration list, end the list after the item
where the text is to be inserted. Then begin an enumerate list, but with the appropriate
number. To do so the counter must be changed. The counter’s name is enumi (for the
first level). It is automatically set to 0 with the \begin{enumerate} command. So
follow that command with the command
\setcounter{enumi}{the previous number}. The resulting list will begin with the
next number.

The above process can be automated as follows. First in the preamble created a

new counter called, say last by typing \newcounter{last}. Then after the last item

7 MORE PACKAGES 30

in the first list and before the \end{enumerate} command, type,

\setcounter{last}{\value{enumi}}. After beginning the new list environment and

before the first item, type

\setcounter{enumi}{\value{last}}.

Because some authors find the distance between items in these list environ-
ments to be excessive, the paralist package was developed to provide compact
versions of all three of these list environment. It it contains and extends the
enumerate package. It makes available the list environments in the right hand
column of the following table.

List Name Compact Version
itemize compactitem

description compactdesc
enumerate compactenum

For example typing

\begin{compactenum}[a)]

\item The first item in the list.

\item The second item in the list.

\item The third item in the list.

\end{compactenum}

produces
a) The first item in the list.
b) The second item in the list.
c) The third item in the list.

6.6 The minipage Environment.

Environments, footnotes and other structures can’t be placed in a paragraph
box, but they can go in a mini page. The syntax is
\begin{minipage}[pos][height][inner-pos]{width}.

pos This argument is applicable only if the mini page is to be used in line.
The options are b,t,c(default).

height This argument is used only to set the height for a value other than height
of text on mini page.

inner-pos If [height] is designated, this argument determines how the text will be
positioned on page.

width This mandatory argument sets the width of mini page.

7 More Packages

Before continuing with environments, some additional packages will be presented
that introduce new environments.

7 MORE PACKAGES 31

7.1 The setspace Package.

The best way to get double spacing or one-and-one-half spacing is to use the
package, setspace by typing \usepackage{setspace} in the preamble. To use
double spacing or one-and-one-half spacing throughout the document, type the
command \doublespacing or \onehalfspacing in the preamble. To produce a
portion of the document in double spacing, precede that portion of the text with
\begin{doublespace} and end it with \end{doublespace}. For one-and-one-
half spacing, replace doublespace with onehalfspace. If \begin{doublespace}
occurs after the beginning of a new paragraph, the entire paragraph is double
spaced.

7.2 The milticol Package

The class option twocolumn typesets a document in two columns. If both
formats are desired in the same document, it’s possible, with the commands
\twocolumn and \onecolumn, to toggle between the two formats, but each time
a change is made, a new page is begun. If the transition is from two columns
to one, the left column is completed on the page before the right one is begun
which can produce a large blank space. The better way is to use the multicol

package. To do so, put \usepackage{multicol} in the preamble, which makes
the multicols environment available. To begin two or more columns, type
\begin{multicols}{num cols}, where num cols is an integer between 1 and
10 indicating the number of columns desired. LATEX automatically inserts some
vertical space, and starts producing text in the number of columns requested.
If the space left on the page is small, a \newpage command is issued and the
multicolumn text begins on the next page. When the \end{multicols} com-
mand is met, LATEX stops producing the text in the multicolumn format and
balances the columns. It’s possible to start a second multicols environment
inside an existing one with the expected outcome.

If some introductory text is desired before beginning the multicolumn text,
it’s advisable to put that text in the first optional argument of the
\begin{multicols}[prefix text]. (Note the location of the optional argument
following the mandatory one.) Doing so makes that text part of the multicol-
umn environment preventing it from appearing at the bottom of a page while
the multicolumn text begins at the top of the next page. A second optional
argument [skip] allows the user to change the amount of vertical space skipped
before resuming the text format in force before the multicolumn text was begun.
For example \begin{multicols}{2}[\centerline{The next paragraph is

typeset in two columns.}], which is exactly the command issued at the be-
ginning of the next paragraph.

The next paragraph is typeset in two columns.

In addition to the multicols en-
vironment, the multicol package pro-
vides two additional parameters that

can be altered by the user. The first of
these is the length \columnsep which,
as it’s name suggest, is the distance be-

7 MORE PACKAGES 32

tween the columns. Its value can be
changes by either of the commands,
\setlength or \addtolength. It’s
recommended that this distance not be
diminished because the resulting text
might be difficult to read. However in-
creasing it might make sense stylisti-
cally. One such case would be if it’s
desired to have a line separating the

columns. To do so, set (or increase)
the length, \columnseprule to the de-
sired thickness. Its default value is 0pt.
If it’s increased to, say 2pt, then its
recommended that the \columnsep be
increased by 2pt as well. Finally, the
length of a line in each column is the
length \linewidth, which in single col-
umn text is the same as \textwidth.

7.3 The graphicx Package

The latest package used for importing graphics into a LATEX document is the
package, graphicx, which replaced the package, graphics. The package graphicx
recognizes that pdf is quickly replacing post script as the output format of
choice. It can import graphics in several different form, pdf, jpg, gif, tiff, but it
can’t deal with eps (encapsulated postscript) files. If you use Mathematica, or
Maple to create your graphics files, you will need to export them as a pdf file
rather that an eps file. (Double-clicking an eps file on a Mac will automatically
convert the file into a pdf file.)

The command used to import the graphics file is \includegraphics which
has an optional argument and a mandatory one. The optional one comes first
and the mandatory one, which comes second, contains the name of the graphics
file; for example, graphics_file.pdf although the suffix may be omitted. In
particular, the command \includegraphics{graphics file} will put the graphics
immediately after the word preceding the command, even if the command is on
the next line. To put it below the current line of text, put two carriage returns
after the line. To line the graphics up with the left margin, precede the command
with \noindent. For example typing

Here’s a graphics file, in pdf format, presented as is.

\noindent\includegraphics{circuit.pdf}

will produce
Here’s a graphics file, in pdf format, presented as is.

7 MORE PACKAGES 33

But as you can see, the file is too large to fit on the page. That’s where
the optional argument is used. Its syntax is [key=value]. There are two keys:
width and height. For example the optional argument [width=5in]will expand
or shrink the graphics to a width of 5 inches. The height is also adjusted so
that the ratio of width/height remains unchanged. For example typing

Here’s the same file shrunk to fit exactly in the page.

\noindent\includegraphics[width=\textwidth]{circuit.pdf}

will produce
Here’s the same file shrunk to fit exactly in the page.

7 MORE PACKAGES 34

It’s also possible to change both the width and length by specifying both the
width and the height as in [width=5in,height=3in]. For example typing

Here’s the same file enlarged vertically.

\noindent\includegraphics[width=5in,height=3in]{circuit.pdf}

will produce
Here’s the same file enlarged vertically.

It’s also possible to use the optional argument to rotate the graphics using
the key angle measured in degrees. For example [angle=-45] will rotate the
graphic around the bottom, left corner by −45 degrees. The point of rotation
can be altered with the option, origin= and choices c for center, t for top, r for
right, and B for baseline. Any sensible combination of these options is allowed.
The default is bl.

7 MORE PACKAGES 35

Note that is all of the cases above, there is an extra line between the text
and the \includegraphics. Without it, if there’s room, a small graphics would

be placed as follows.
But wait! There’s more. Suppose the graphics file you wish to display is so

large that there isn’t room for it on the current page. In that case LATEX inserts
a \newpage command and puts the graphics at the top of the next page leaving
the current page with a large blank space at the bottom which could contain
text from after the graphic. Or suppore you wish to include a caption and label
the graphics as, say, Fig. 1. The figure environment deals with both of these
concerns.

7.4 The picinpar Package

The picinpar package permits the insertion of special material, such as a
photograph or a special logo, to be inserted in a paragraph of text through the

8 ADDITIONAL ENVIRONMENTS 36

use of the window environment. It has one mandatory argument which, con-
trary to the usual practice, is enclosed in brackets rather than in braces. The
argument consists of four dis-
mas. The first of these parts
the paragraph where the win-
ond determines where the ob-
graph, at the left margin, in
gin with the choice of l, c,

the actual object to be in the
for any explanatory text about
this paragraph is graphics was

A Snowflake

tinct parts separated by com-
is the number of the line in
dow is to begin. The sec-
ject is located in the para-
the center or at the right mar-
or r. The third position if for
window and the last place is
the object. For example in
included with the command

\begin{window}[4,c,\includegraphics[width=.3\textwidth]{images3},

\centerline{A Snowflake}]. The paragraph must end with the command
\end{window}.

8 Additional Environments

8.1 Tabbing and Tables.

8.1.1 The tabbing Environment.

The first method for producing tables is designed to imitate the process of
setting tab stops on a typewriter and is called the tabbing environment. Once
the \begin{tabbing} command has been issued, the tabs are set with the
command \= in either of two ways. You may type the text to appear before
the first tab in the first row followed by \=, which sets the tab, and proceed
similarly until all tabs have been set and then issue a new page command, \\.
Then type the text to go in the first column of the second row followed by \>,
(the command that moves to the first tab stop). Continue until all entries in
the second row have been entered. For example typing

\begin{tabbing}

Department\=Course 1 \=Course 2 \=Course 3\\

Math\>1825\>103\>114

\end{tabbing}

produces

Department Course 1 Course 2 Course 3
Math 1825 103 114

If more space is desired before the tab is set, it can be added with any of the
horizontal space commands discussed earlier except for \hfill and its cousins.
For example typing

\begin{tabbing}

Department \=Course 1\quad \=Course 2\; \=Course 3\\

Math\>1825\>103\>114

\end{tabbing}

8 ADDITIONAL ENVIRONMENTS 37

produces

Department Course 1 Course 2 Course 3
Math 1825 103 114

The second method avoids adding extra space. You begin by typing the
longest amount of text to appear in the first column of any row followed by
the \= command and then type the longest text that will appear in the second
column followed by \=. Proceed to set the remaining tabs in a similar fashion,
but at the end of the first line, type \kill instead of the usual end of line
command. In either case, type the text to go before the first tab followed by
\> to move to the tab stop and then continue until all of the text for that line
is complete. Then enter the \\ command to start the next line. The alternate
method of setting the tab stops is illustrated by typing

\begin{tabbing}

Mathematics \=MTH 1825 \=CHEM 117 \=CHEM 203 \kill

Department\>First\>Second\>Third\\

Mathematics\>MTH 1825\>MTH 103\>MTH 114\\

Physics\>PHY 201\>PHY 202\>PHY 300\\

Chemistry\>CHEM 116\>CHEM 117\>CHEM 203

\end{tabbing}

which produces

Department First Second Third
Mathematics MTH 1825 MTH 103 MTH 114
Physics PHY 201 PHY 202 PHY 300
Chemistry CHEM 116 CHEM 117 CHEM 203

Note that there’s no new line command at the end of the last line. The
\end{tabbing} ends the line. Also note that it’s not necessary to insert a
blank line with a return before typing \begin{tabbing} because the tabbing

environment automatically begins a new paragraph. Consequently any strikes
of the return key are ignored.

It’s possible to insert another tab stop in any line by just typing \= after the
last possible tab stop in that line. However typing \= before the last tab stop
simply repositions the next tab stop.

The text after the last tab stop in any line may be flushed to the right
margin by issuing the command \‘ at any point in the line. Text following a
tab stop can be moved to be flush with the next tab stop. Instead of typing
\>first text\>second text type \>\>first text\’second text.

Because of the fashion in which the tabbing environment is structures, If a
tabbing table is too long to appear on one page, LATEX will automatically insert
a page break and continue the table on the next page. This property makes it
impossible for a table to be centered, nor can one be put in a box. To display a
table in color, each entry must be colored separately. In addition, an \hspace

command must be applied to each entry.

8 ADDITIONAL ENVIRONMENTS 38

Because the commands \‘, \’, and \= are redefined in the tabbing envi-
ronment, to produce any of the accents that are normally done with these three
commands, type \a‘, \a’ and \a= instead. For example type \a’e to produce
é in the tabbing environment. In addition the command \- is redefined, but
new hyphenation in the tabbing environment isn’t necessary.

8.1.2 The tabular Environment.

The second method for producing tables is done in the tabular environmen-
twhich differs from the tabbing environment in two important aspects. First,
a table produced by the tabular environment must appear on the same page.
Consequently if such a table is too long for the current page, LATEX issues a new
page command and puts the table on the next page. Second, a table produced
with the tabbing environment must be in a separate paragraph, while a table
produced with the tabular environment can occur in the current paragraph or
can be in a separate paragraph. Consequently, to start the table in a new para-
graph, the extra carriage return that was superfluous when starting a tabbing

environment is required for a tubular environment.
A tabular environment begins with \begin{tabular}[pos]{cols}. The

optional argument [pos] is used only when the table is to appear in the current
line rather than in a separate paragraph. The value of the optional argument
determines how the table is to be placed relative to the baseline of the current
line. Use t to put the top of the table at the baseline of the current line and b

to put the bottom of the table at the baseline of the current line. If no value is
inserted or if c is inserted, the table is centered on the baseline of the current
page. For example

option t
C.1 C.2
a 1
b 2

option c

C.1 C.2
a 1
b 2

option b

C.1 C.2
a 1
b 2

The mandatory (second) argument sets the number of columns the table is
to have and how the text in each is to be aligned. For example {lcr} indicates
that there are to be three columns; the text in the first column is to be left
aligned, in the second the text is to be centered and in the third the text is to
be right aligned. For example the table

C.1 C.2
a 1
b 2

is produced with

\begin{center}

\begin{tabular}{cc}

C.1&C.2\\

a&1\\

b&2

\end{tabular}

\end{center}

It has two columns; each centered. Note that the text for each column in each

8 ADDITIONAL ENVIRONMENTS 39

row is separated by inserting an &. Also a row is ended with the newline com-
mand \\. Vertical lines can be inserted before and/or between columns with the
| keystroke. For example enter {|l|c|r|} puts a vertical line before the first
column, between each column and after the last column. For example replac-
ing the first line for the table above with \begin{tabular}{|c|c|} results in

C.1 C.2
a 1
b 2

Horizontal lines are inserted with the command \hline which

is inserted before the first row and after each \\ including the last row in order
to produce

C.1 C.2
a 1
b 2

from

{\begin{center}

\begin{tabular}{|c|c|}\hline

C.1&C.2\\ \hline

a&1\\ \hline

b&2\\ \hline

\end{tabular}\end{center}}

Besides |,l,c and r another possible entry in the mandatory argument is
p{width}, which permits the entries in a column to be paragraphs with witth,
width. For example if the mandatory argument is {|c|p{3em}|} the resulting

table might be

C.1 C.2

a
some
text

b
more
text

As was demonstrated in the above examples, it’s best to type the first row
of the table starting on a new line in the source file. (This isn’t necessary, but
good for later editing.) Begin with the text for the first column followed by an
&, which indicates the end of the text for the first column. Next type the text
for the second column of the first row followed by a &. Continue in this fashion
until the first row has been completed and type \\ to indicate the start of the
second row. Again it’s beneficial begin on a new line in the source file. Type
the text for the second row in the same fashion as the first row and end with
\\. Continue until all rows of the table have been typed. To complete the table,
type \end{tabular}.

Note that unlike the tabbing environment, the width of each column is
automatically adjusted to accommodate the longest entry in that column. For
example to produce the table

Food $255 22.75%
Rent $283 25.25%

Transportation $186 16.6%
Utilies $93 6.67%

Medical $138 8.396%
Misc $166 14.8%

8 ADDITIONAL ENVIRONMENTS 40

type

\begin{center}

\begin{tabular}{|c|r|r|}

\hline

Food&\$255&22.75\%\\ \hline

Rent&\$283&25.25\%\\ \hline

Transportation&\$186&16.6\%\\ \hline

Utilies&\$93&6.67\%\\ \hline

Medical&\$138&8.396\%\\ \hline

Misc &\$166&14.8\%\\ \hline

\end{tabular}

\end{center}

It would be easier to enter the numbers into the table if the dollar signs,
$, and percent signs, %, were entered automatically and the table would look
better if the decimal points in the last column were lined up. The first two
wishes can be done with two structures provided by the array package while
the last one used a structure provided by the tabular environment. To better
understand how these structures work, it’s helpful to know how LATEX views
the columns of a table, which is dislayed in the following diagram.

c the c c the c c the c
o text o o text o o text o
l for l l for l l for l

the the the
s first s s second s s last s
e column e e column e e column e
p p p p p p

Table 3: The structure of a LATEX table

To automatically enter the dollar signs, the structure >{pre insert} permits
the insertion of the same command and/or character(s) in front of each entry
in a specific column. For the percent signs, the structure <{post insert} inserts
commands and/or character(s) following each entry. Aligning the decimal points
is done by creating a column consisting of a period but with no column sepa-
ration or either side of the column, which is done with the structure @{insert}.
To use this structure, the digits to the left of the decimal point go in a right
aligned column followed by @{.} and then the digits to the right of the decimal
point go in the following left aligned column. Specifically typing

\begin{center}

\begin{tabular}{{|c|>{\$}r|r@{.}l<{\%}|}}

8 ADDITIONAL ENVIRONMENTS 41

\hline

Food&255&22&75\\ \hline

Rent&283&25&25\\ \hline

Transportation&186&16&6\\ \hline

Utilies&93&6&67\\ \hline

Medical&138&8&396\\ \hline

Misc &166&14&8\\ \hline

\end{tabular}

\end{center}

results in

Food $255 22.75%
Rent $283 25.25%

Transportation $186 16.6%
Utilies $93 6.67%

Medical $138 8.396%
Misc $166 14.8%

There is one remaining structure similar to the @{} used above that can be used
to make the vertical line between the first and second columns thicker. It is
!{insert}, which creates a column as does @{} except that the column separation
is preserver. For example the vertical line, |, is equivalent to !{\vline}; so to
make a thicker one, use !{\vline\vline} or !{\vline\vline\vline}. Specifi-
cally use \begin{tabular}{{|c!{\vline\vline\vline}>{\$}l|r@{.}l<{\%}|}}
in place of the current version to get

Food $255 22.75%
Rent $283 25.25%

Transportation $186 16.6%
Utilies $93 6.67%

Medical $138 8.396%
Misc $166 14.8%

Often an title is good to have as well as headings for the columns. The
command \multicolumn{num}{pos}{content} can be used to do both. It is
inserted at the beginning of a row or immediately before one of the alignment
letters, l, c, or r. It combines num of the following columns into one column
whose width is the combined width of the combined columns and whose content
is content aligned according to pos. For example to put in the title, “Monthly
Budget” for this table, immediately after the \begin{tabular} command, for
the first two rows type

\multicolumn{$}{|c|}{Monthly Budget}\\ \hline

\multicolumn{1}{|c!{\vlinev\line\vline}}{Item}

&\multicolumn{1}{|c|}{Cost}

&\multicolumn{2}{|c|}{Percent}\\ \hline=.

The result is

8 ADDITIONAL ENVIRONMENTS 42

Monthly Budget
Item Cost Percent
Food $255 22.75%
Rent $283 25.25%

Transportation $186 16.6%
Utilies $93 6.67%

Medical $138 8.396%
Misc $166 14.8%

One final improvement would be to have thicker horizontal lines after the
title and headings rows, which can be made with the command \cline{m–n}.
This command must come immediately after \\. It put a line from the left side
of the mth column to the right side of the nth. In the case of the, “Monthly
Budget” table, put \cline{1-4} at the end of the second and third rows to get

Monthly Budget
Item Cost Percent
Food $255 22.75%
Rent $283 25.25%

Transportation $186 16.6%
Utilies $93 6.67%

Medical $138 8.396%
Misc $166 14.8%

8.1.3 The tabular* Environment

The tabular* environment allows the user to set the width of the table with a
mandatory argument. Specifically, begin with \begin{tabular*}{width}. In
all other aspects this environment is exactly like the tabular environment.

8.1.4 Long Tables; the supertabular Package.

A table that is too long to fit on one page can be continued on the next page using
the supertabular package. It provides the supertabular and supertabular*

environments, as well as the following commands.
• \tablefirsthead{rows}
• \tablehead{rows}
• \tabletail{rows}
• \tablelasttail{rows}
• \topcaption[lot caption]{caption}
• \bottomcaption[lot caption]{caption}
• \tablecaption[lot caption]{caption}

Each of these commands that is to used, must precede the start of the envi-
ronment. The first command sets the first row(s) of the beginning of the table.
The second command sets the top row(s) of the table on page two and all subse-
quent pages of the table. The third determines the bottom row(s) of each page
of the table except for the last page; the that bottom row(s) for the last page is

8 ADDITIONAL ENVIRONMENTS 43

determined by the fourth command. Care must be taken to be certain that the
contents of the (mandatory) arguments contain all of the data that would ap-
pear in the row(s) of a table including the \\ any \hline or similar commands.
A caption for the table is set by any one of the last three commands; usually
the last one, which by default puts the caption before the table begins as does
\topcaption. To put the caption underneath the last page of the table, use
\bottomcaption. The optional argument is used if the caption for the table
is too long to fit comfortably on one line in the list of tables (lot). The actual
table is begun with the command \begin{supertabular}{row markers etc.}.

For example suppose that so may more rows were added to the, “Monthly
Budget’,’ table in the previous section that it wouldn’t fit on one page. To
produce it start by typing

\tablecaption[Smith Family Monthly Budget 2010]

{Monthly Budget for the Smith Family for the Year 2010}

\tablefirsthead{\hline\multicolumn{4}{|c|}{Monthly Budget}\\

\hline \cline{1-4}}

\tablehead{\hline\multicolumn{1}{|c!{\vline\vline\vline}}{Item}

&\multicolumn{1}{c|}{Cost}&\multicolumn{2}{c|}{Percent}

\\\hline\cline{1-4}\cline{1-4}

\tabletail{\multicolumn{4}{r}{\textit{Continued on the next page}}

\tablelasttail{\hline}

\begin{supertabular}{|c!{\vline\vline\vline}>{\$}l|r@{.}l<{\%}|}

\multicolumn{1}{|c!{\vline\vline\vline}}{Item}

&\multicolumn{1}{c|}{Cost}&\multicolumn{2}{c|}{Percent}

\\\hline\cline{1-4}\cline{1-4}

The remainder of the table is entered just as was done in the tabular environ-
ment. Note that the first row after the \begin{supertabular} command is the
row that puts headings for each column and not the title.

8.1.5 Color in Tables

Colors can make tables easier to understand by using different background col-
ors for each column or for each row. The commands to accomplish either of
these are made available by the option table to the xcolor package, necessi-
tating the appearance of \usepackage[table]{xcolor} in the preamble. In
addition the array package is also needed. The command \columncolor is
used as a pre insert to establish the background color for a column. Typing
\columncolor{color}before the column token in the mandatory argument of
the \begin{tabular} command cause all entries in that row to have color as
background. For example this simple table

8.2 The table Environment

The table environment is a float structure; that is, one that is designed to
move automatically to a place where it can fit. The user has some control

8 ADDITIONAL ENVIRONMENTS 44

over its possible locations. The environment also allows the user to assign a
caption to the table and to include the table in a list of tables if such a list is
desired. A table environment begins with the command \begin{table}[pos}.
The optional argument pos can be used to try to place the table. Below are
the choices and what each means.

h here If possible the float should appear at the point of the text where it is
entered. If there isn’t enough room at the bottom of the page to include
the float, it will be put at the top of the next page (if permitted).

t top If there is room for the text already on the current page to appear under
the float, it should be placed at the top of the current page. If not, then
it goes at the top of the next page (if permitted).

b bottom The float is placed at the bottom of the current page after the pre-
ceding text on the current page if there’s sufficient room and any room
under the current text should be filled by text following the float. If not,
then the float is placed at the bottom of the next page (if permitted).

p page This option is used to put this float on a special page reserved for it
(and perhaps other floats).

! Suspends all constraints on floats. These constraints are described below.

More than one choice may be listed. The default selection is tbp. The
constraints that apply to floats are:

1. no more than two floats at the top of a page and no more than 70% of the
page can be occupied by floats at the top of the page.

2. no more than one float at the bottom of a page and no more than 30% of
the page can be occupied by a floats at the bottom of the page.

3. many more that don’t need to be mentioned here.

It’s these constraints that can be most frustrating to a user trying to place a
float. Suspending them with the option ! should result in the desired placement.

A caption for the figure is entered with the command \caption{Caption
text}. Including a caption is important for two reasons. It’s the caption that’s
listed in the list of tables and if the table is to be referenced later using a \ref

command the \label command be attached to the caption; not to the table
environment.

A typical table environment might look like this.

\begin{table}[htb!]

\begin{center}

\begin{tabular}

8 ADDITIONAL ENVIRONMENTS 45

Insert the table here
\end{center}

\caption{caption text}\label{key}
\end{table} Note that the \label command is associated with the caption and
not with the table. When the file is compiled, LATEX determines which number
the table is and then precedes the caption text with the text, so that the output
might look like, “Table 3. Test Scores”.

There is a second float environment, the figure environment that is designed
to contain figures, usually, but not exclusively, those that are imported. The
environment works exactly as does the table environment. So all that needs to
be explained is how to import graphics files.

8.3 The thebibliography Environment

A bibliography is produced with the environment thebibliography which is an-
other list environment, but with one mandatory argument and one optional
argument for each item. Specifically, the bibliographic entries begin with the
command \bibitem[user key]{entry id} followed by the data that identifies
the reference being entered. If no user key is entered, a number is automati-
cally assigned as the key just as is done for an enumerate list. If one entry in a
bibliography has an optional user key, then all entries must have user keys.

A bibliography starts with the command \begin{thebibliography}{widest
key}. If numbers are used as keys and there are fewer than 9 bibliographic
entries, the mandatory argument should be {9}. With 10 or more but fewer
than 100, use {99}. On the other hand if all bibliographic entries are to be
labeled with a user key of, say, a sequence of letters and/or numbers, the longest
of which is 4 characters, then use {XXXX} for the widest key.

For example the bibliography at the end of these notes is produced by typing

\begin{thebibliography}{9}

\bibitem{HD04} Helmut Kopka and Patrick W. Daly, \textit{Guide to

\LaTeX}, fourth edition, Addison-Wesley, 2004.

\bibitem{LL94} Leslie Lamport, \textit{\LaTeX, A document

preparation system}, second revised edition, Addison-Wesley, 1994.

\bibitem{MG05} Frank Mittelbach and Michael Goossens, \textit{The

\LaTeX{} Companion}, second edition, Addison-Wesley, 2005.

\bibitem{AMS} \textit{User’s Guide for the} \texttt{amsmath}

\textit{Package}, version 2.0, Amer. Math. Soc., revised, 2002,

\url{http://www . ams . org / tex / amslatex . html}.

\end{thebibliography}

Another option is

9 THE BIBLIOGRAPHY USING BIBTEX 46

\begin{thebibliography}{XXXX}

\bibitem[HD04]{HD04} Helmut Kopka and Patrick W. Daly, \textit{Guide

to \LaTeX}, fourth edition, Addison-Wesley, 2004.

\bibitem[LL94]{LL94} Leslie Lamport, \textit{\LaTeX, A document

preparation system}, second revised edition, Addison-Wesley, 1994.

\bibitem[MG05]{MG05} Frank Mittelbach and Michael Goossens,

\textit{The \LaTeX{} Companion}, second edition, Addison-Wesley, 2005.

\bibitem[AMS]{AMS} \textit{User’s Guide for the} \texttt{amsmath}

\textit{Package}, version 2.0, Amer. Math. Soc., revised, 2002,

\url{http://www . ams . org / tex / amslatex . html}.

\end{thebibliography}

which would produce

References

[HD04] Helmut Kopka and Patrick W. Daly, Guide to LATEX, fourth edition,
Addison-Wesley, 2004.

[LL94] Leslie Lamport, LATEX, A document preparation system, second revised
edition, Addison-Wesley, 1994.

[MG05] Frank Mittelbach and Michael Goossens, The LATEX Companion, sec-
ond edition, Addison-Wesley, 2005. 4.1, 8.3

[AMS] User’s Guide for the amsmath Package, version 2.0, Amer. Math. Soc.,
revised, 2002, http://www.ams.org/tex/amslatex.html.

The mandatory argument entry id in each \bibitem is used to cite the reference
in the body of the document by typing \cite[extra]{entry id}. The extra
information in the optional argument further identifies the actual material being
referenced. For example, “ see \cite[pages 5--8]{MG05}” would produce,
“see [4, pages 5–8]”.

9 The Bibliography Using BibTEX

For those who will be authoring several manuscripts about related subjects and
in that process will be drawing references from a large collection of article, book
or other sources, building bibliographies with BibTEX would be more efficient
than constructing them individually from scratch. To do so requires one (or
more) database file(s), which must be in the same folder as the source file. Each
entry (or record) in such a database begins with an entry type (book, article

(The full list is given below in subsection 9.3 on page 48.), followed by an entry

http://www . ams . org / tex / amslatex . html

9 THE BIBLIOGRAPHY USING BIBTEX 47

id that uniquely determines the entry, and then the data needed to produce a
reference in the bibliography. The command \cite{entry id} in the body of the
source file will cause the associated reference to be included in the bibliography.
(Find more information about the \cite command on page 46.) To include a
reference that is never cited in the document, type \nocite{entry id} anywhere
in the body of the source file or to include all references in the database(s), type
\nocite{*} again anywhere in the body of the source file.

9.1 How the BibTEX System works

To create a bibliography from the elements discussed above, put the command
\bibliographystyle{style} in the preamble to select a style for the bibliog-
raphy. There are many possibilities. (See the next subsection for partial list
of styles.) The command \bibliography{database 1.bib, database 2.bib,

...} is placed in the source file where the bibliography is to appear. To produce
the bibliography, compile the file and then run the program BibTeX which will
use information in the file name.aux file to produce two new files; file name.blg
and file name.bbl. (The BibTEX program comes with each TEX implementa-
tion.) The first of these two files is just a log file. The latter file contains the ac-
tual bibliography that will be imported into the source file at the point where the
command \bibliography{database 1.bib, database 2.bib, ...} is situated.
In addition, the file can be edited, but don’t do so until the final run of BibTeX
because it’s rebuilt with each run.

9.2 Bibliography Styles

The bibliography style determines the formatting of each reference and how the
bibliography is ordered. Every TEX implementation comes with the following
four bibliography style files.

plain Entries are ordered alphabetically by last name of the first author and
identified with a numeric key.

unsrt Entries are ordered by first appearance in a \cite or \nocite command
and identified with a numeric key.

alpha Entries are ordered as in plain but with a key consisting of the first three
letters in the first author’s last name followed by the last two digits of the
year of publication.

abbrv Same as plain but with a key consisting of abbreviations of names and
other fields.

Many periodicals have their own bibliography style files. These can usually be
downloaded from the publication’s web page. Any style file obtained in such a
way should be placed in the /texmf/tex/bibtex/ folder on your computer.

Those styles that order entries by author’s last name have a problem if
the data for an entry doesn’t have an author. In that case BibTEXuses other

9 THE BIBLIOGRAPHY USING BIBTEX 48

information, such as editor or organization, for sorting. When the style doesn’t
list the entries by number, it constructs a different key for ordering. This key
(not to be confused with the entry id) is what appears in brackets in the output
file where a \cite command occurs in the source file. If the style file produces
an unacceptable key, the use can change it as will be explained later.

9.3 BibTEX Databases

A database is a plain text (ASCII) file consisting of a collection of entries (or
records). The name of the file must end with the suffix, .bib. Each entry must
begin with @entry type{entry id, and end with a closing }. The entry id is the
unique identifier for the entry and consequently no two entries can have the
same entry id in a database file and preferably, in no other database file. The
entry id is what appears in the mandatory argument of a \cite command. The
following list contains all possible entry types and the types of references for
which each is used.

1. article: for an article from a journal or magazine
2. book: for a book with a definite publisher
3. booklet: for a printed and bound work without a publisher or sponsoring

organization
4. conference: same a inproceedings; included for Scribe compatibility
5. inbook: for a part (chapter, section, etc.) and/or pages of a book
6. incollection: for a part of a book such as an anthology which has its

own title
7. inproceedings: for an article in the proceedings of a conference
8. manual: for technical documentation
9. mastersthesis: for a Master’s thesis

10. misc: for a work that doesn’t fit under any of the other entry types
11. phdthesis: for a PhD thesis/dissertation
12. proceedings: for the proceedings of a conference
13. techreport: for a report published by a school or other institution, usu-

ally numbered within a series
14. unpublished: for a document having an author and title, but not formally

published

The remainder of an entry in a BibTEX database consists of fields. The
entry type determines what fields must or may occur in the entry. Each field
begins with its name followed by an equal sign (=) and then the content for
that field enclosed in a pair of quotation mark (" ") and ends with a comma (,).
The following is a list of most of the possible fields. Others may be included,
but those not used by a given bibliography style will simply be ignored.

1. address: Usually used for the address of the publisher or other type of
institution.

2. annote: Not used by standard bibliography styles, but may be used by
others.

3. author: Used for the name(s) of the author(s). See Section 9.3.3 for how

9 THE BIBLIOGRAPHY USING BIBTEX 49

names should be entered.
4. booktitle: Used for title of a book, part of which is cited.
5. chapter: A chapter (or other part) number being cited.
6. crossref: The database entry id of the entry being referenced.
7. edition: Used for the edition of a book; for example Second. It should

always be capitalized.
8. editor: Used for the name(s) of the editor(s). See Section 9.3.3 for how

names should be entered.
9. howpublished: Used to explain how something strange has been pub-

lished.
10. institution: The sponsoring institution of a technical report or similar

document.
11. journal: The name of a journal; standard abbreviations are permitted.
12. key: Used for alphabetizing and cross referencing when no author or

editor field is present.
13. month: Use the standard 3 letter abbreviations for months.
14. note: Used for additional information that could be useful to the reader.

Capitalize the first word.
15. number: Used for the number of a journal, magazine or other series.
16. organization: Used for the name of an organization that sponsors a

conference or published a munual.
17. pages: Used for a page number or a range of pages.
18. publisher: Used for the publisher’s name.
19. school: Used for the name of the school where a thesis/dissertation was

written.
20. series: Used for the name of a series or set of books.
21. title: Used for the title of the work. See Section 9.3.4 for details.
22. type: Used for the type of a technical report; for example, “Research

Note”.
23. volume: Used for the volume of a journal or multivolume book.
24. year: Used for the year of publication or the year an unpublished work

was written. Must be four numerals.

Each entry type has some required fields and some optional fields. Both entry
type and field names in a database are case-independents; that is, ARTIcle and
artICLE are identical. The following table indicates which fields are required
and optional for each entry type. Other fields may be included in an entry, even
those not listed above. They will be ignored by the BibTEX program. However,
if used by another such program they may be needed.

Table 4: Entry types, required and optional fields

Required and Optional Fields

Entry Type Required Fields Optional Fields

@article author, title, journal,

year

volume, number, pages,

month, note

Continued on the Next Page

9 THE BIBLIOGRAPHY USING BIBTEX 50

Entry Type Required Fields Optional Fields

@book author or editor, title,

publisher, year

volume or number,

series, address,

edition, month, note

@booklet title author, howpublished,

address, month, year,

key, note

@conference same as inproceedings

@inbook author or editor, title,

chapter and/or pages,

publisher, year

volume or number,

series, type, address,

edition, month, note

@incollection author, title,

booktitle, publisher,

year

editor, volume or
number, series, type,

chapter, pages, address,

edition, month, note

@inproceedings author, title, booklet,

year

editor, or number,

series, pages, address,

month, organization,

publisher, note

@manual title author, organization,

address, edition, key,

month, year, note

@mastersthesis author title school,

year

type, address, month,

note

@misc author, title,

howpublished, key, year,

note

@phdthesis author, title, school,

year

type, address, month,

note

@proceedings title, year editor, volume or
number, series,

key, address, month,

organization, publisher,

note

@techreport author, title,

institution, year

type, number, address,

month, note

@unpublished author, title, note month, year

The crossref field is optional in any entry type due to its use as explained
in Section 9.3.5.

9.3.1 Templates and Some Typical entry Types

Having a template for the most commonly used entry types can be useful. The
case-independance of the field names is used to distinguish required fields for
optional ones.

9 THE BIBLIOGRAPHY USING BIBTEX 51

@ARTICLE{ ,

AUTHOR = " ",

TITLE = " ",

JOURNAL = " ",

YEAR = " ",

volume = " ",

number = " ",

pages = " ",

month = " ",

note = " "

}

@BOOK{ ,

AUTHOR = " ",

EDITOR = " ",

TITLE = " ",

PUBLISHER = " ",

YEAR = " ",

volume = " ",

number = " ",

series = " ",

address = " ",

edition = " ",

month = " ",

note = " "

}

@MANUAL{ ,

TITLE =" ",

author =" ",

organization =" ",

address =" ",

edition =" ",

key =" ",

month =" ",

year =" ",

note =" ",

}

@article{AHP92,

AUTHOR = "Anderson, J. M. and Housworth, E. A. and Pitt, L. D.",

title = "The Spectral Theory of Multiplication Operators",

journal = "Mathematika",

volume = "39",

year = "1992",

pages = "136--151"

}

9 THE BIBLIOGRAPHY USING BIBTEX 52

@book{BBS97,

author ="Bruckner, A. M. and Bruckner, J. B. and Thomson, B. S.",

title ="Real Analysis",

edition =" ",

publisher ="Prentice-Hall",

year ="1997",

address ="Englewood Cliffs, NJ"

}

9.3.2 Abbreviations and Preamble

If new commands would be useful in a BibTEX database, they are entered at
the beginning of the file using the following syntax.
@PREAMBLE{"\providecommand{\url}[1]{\texttt{#1}}"#

"\providecommand{\singleletter}[1]{#1}"#
...}
Abbreviations are entered next in a similar fashion.
@STRING{pams="Proc. Amer. Math. Soc."}

@STRING{raex = "Real Analysis Exch."}

@STRING{jcs = "J. Chem. Soc."}

@STRING{jfm = "J. Fluid Mech."}

9.3.3 The author or editor Field

Of all of the fields that appear in entries the author and the editor fields
requires the greatest attention as to how the data is displayed. If there is more
than one author (editor), their names are separated by the word “and”. The
wore, <and> isn’t printed, but serves only to separate one name from another.
The style file will decide how to manage all of the names. Each name consists
of four parts; the Last name, a possible prefix to it, a possible suffix to it and a
First name. Only the Last name is required. A prefix might be something like,
von or van der or de la. A suffix is something like Jr. or III. To make it easy
for BibTEX to find the Last name it’s best to enter a name in the form Last
name, First name. To help BibTEX get the parts of a name right, parts may be
enclosed in a pair of braces ({ }). If the last name has no prefix, the first letter
of the last name is use for alphabetizing. However, if a prefix is included, and it
begin with a capital, that capital letter is use to for alphabetizing. Suppose the
prefix is La as in the following examples. Entering it as \MakeUppercase{l}a

will result in the first letter of the main part of the last name being used for
alphabetizing. The reverse situation may require the use of \MakeLowercase.

9 THE BIBLIOGRAPHY USING BIBTEX 53

Name In the Field
Edward M. Arnold Arnold, Edward M.
Arthur van der Werder van der Werden, Arthur
Cristina Maria di Bari di Bari, Christine Maria
Tapan Kumar Dutta Dutta, Tapan Kumar
Lee Peng Yee {Lee Peng Yee}
Paolo de Lucia de Lucia, Paolo
Susana Fernandez Long de Foglio Fernandez Long de Foglio, Susanna
Emma d’Aniello \MakeLowercase{D}’Aniello, Emma
Artero Enrique de Amo Enrique de Amo, Artero
Marisa Ortegoza da Cunha da Cunha, Marisa Ortegorza
Davide La Torre \MakeUppercase{l}a Torre, Davide
Giovanni di Fratta \MakeUppercase{d}i Fratta, Giovanni
Geraldo DeSouza \MakeLowercase{D}eSouza, Geraldo
John C Morgan, II {Morgan, II}, John C.

9.3.4 The title Field

Many bibliography styles capitalize only the first word in the title of an article.
So to assure that proper nouns in titles are capitalized type then as {Smith}. It
may seem that {S}mith would work as well, but for very technical reason, it’s
not recommended.

9.3.5 Cross Referencing

In case several entries appear in the same source, such as a conference report,
the fields from one entry can be used in another entry. For example

@INPROCEEDINGS{PWCPJ,

author = "Janot, J.",

title = "Closing the light sbottom mass window from a compilation=

\verb=of e+e- -> hadron data",

page = 81,

crossref = "PWC"

}

@PROCEEDINGS{PWC,

title= "Proceedings of the Workshop on e^+e^- Collisions",

booktitle= "Proceedings of the Workshop on e^+e^- Collisions",

editor="Zerwas, P.M.",

year= 2002

}

9.3.6 Multiple Bibliographies

It’s possible to produce a separate bibliography for each chapter, or at the end of
specific divisions or several bibliographies at the end of the document. To learn
how this is done, see The LATEX Companion, [2, Section 12.6, pages 747–756].

10 LONG DOCUMENTS. 54

10 Long Documents.

When producing a long document several new aspect arise. First, the size of
the source file for a long document can be clumsy. Second in a long document
it’s desirable to have a table of contents and also, perhaps, an index. In this
section we deal with all of these matters.

To more efficiently handle a long document, it’s convenient to create the
source file in segments. For this purpose LATEX provides the notion of a root
file with sub files that are imported into the document using the \include

command. For example suppose a thesis is being written that has an abstract,
an introduction, three chapters and a bibliography. At the outset the root file
would look like this.

\documentclass{book}

\usepackage{packages}

Other preamble entries

\begin{document}

\pagenumbering{roman}

\tableofcontents

\newpage

\pagenumbering{arabic}

\setcounter{page}{1}

\maketitle

\begin{abstract}

Text of the abstract

\end{abstract}

\include{intro}

\include{chapt1}

\include{chapt2}

\include{chapt3}

\include{biblio}

\end{document}

Then five separate files are created for each of the five parts. Because it’s never
certain at the beginning what will go into the bibliography, the biblio file
should be updated as the others are in production. These files contain only
text; no \begin{document} etc. commands. All of these files must be in the
same directory. While working on the intro file, and building the biblio file,
the root file is slightly altered as follows.

\documentclass{book}

\usepackage{packages}

Other preamble entries

\includeonly{intro,biblio}

\begin{document}

\maketitle

\pagenumbering{roman}

10 LONG DOCUMENTS. 55

\tableofcontents

\newpage

\pagenumbering{arabic}

\setcounter{page}{1}

\begin{abstract}

Text of the abstract

\end{abstract}

\include{intro}

\include{chapt1}

\include{chapt2}

\include{chapt3}

\include{biblio}

\end{document}

Once the introduction is finish (at least in its first form) and chapter 1 is started
and the command \includeonly{intro,biblo} is changed to \includeonly

{chapt1,biblo}. (Some prefer to comment out the first \includeonly com-
mand and add the second.) Each time LATEX is run, the auxiliary file is updated;
not replaced. Thus all labels and citations created during the construction of
the Introduction are preserved and consequently, if any are referenced in the
new file, they will be recognized when the root file is compiled. Continue in
this fashion to construct all of the files. Then remove all of the \includeonly

commands and compile the file. Each time LATEX sees an \include command,
it enters and \clearpage command thereby starting the next file on a new page.
For that reason the files must represent separate parts of the document.

10.1 Table of Contents.

To create a table of contents for any document, simply type \tableofcontents

at the place in the document where you wish the table of contents to appear,
usually immediately after the title page (if there is one) and the abstract. (See
the example on page 54.) Adding \newpage will start the rest of the document
on a new page. It takes two runs to create the table of contents. Putting
the command \pagenumbering{arabic} numbers the table of contents in lower
case Roman numerals. Begin a new page, change the page numbering to arabic

and reset the page counter to 1 to begin the body of the document. A List of
Figures (Tables) can be added after the Table of Contents with the command
\listoffigures (\listoftables).

10.1.1 Depth.

By default the divisions listed below are automatically included in the table of
contents.

Book Report Article
Part Chapter Section

Chapter Section Subsection
Section Subsection Subsubsection

10 LONG DOCUMENTS. 56

The user can change the depth with the command \setcounter{tocdepth}{

desired depth} or \addtocounter{tocdepth}{desired change}. For example, if
the depth is set to 4, then paragraph names will be included.

10.1.2 Adding Items.

The command \tableofcontents produces a file named main file name.toc
to which entries can be added. For example sections entered with the command
\section* are not automatically put into the table of contents nor is the bib-
liography. To add the section given by \section*{Extra Section}, type
\addcontentsline{toc}{section}{Extra Section}. In this form, the Table
of Contents might look something like

Contents

1. Introduction

Extra Section

To align the names of the two sections, augment the command as
\addcontentsline{toc}{section}{\protect\numberline{}Extra Section}

resulting in

Contents

1. Introduction

Extra Section

The References section is added to the table of contents of this document using
this technique.

10.2 Index.

Creating an index is far more complicated than creating a table of contents,
because the author must specify each item to be included in the index. This
is accomplished with a command beginning with \index, which has a very
complicated structure due to the different ways in which entries in the index
may appear. To create the index the file must be compiled and then a program
must be run on a file created by LATEX. Finally the location of the index must
be selected by typing the command \printindex at the point in the source file
where the index is to appear, usually just before the \end{document} command.
Details are provided below in Section 10.2.2

10 LONG DOCUMENTS. 57

10.2.1 The Command \index.
The process of producing the index will begin by discussing how and where to
designated index entries in the text. Entires in an index often have subentries
under them and in some cases those subentries also have subentries, but others
stand alone with no subentries. To create a stand alone entry, at the point in the
source file where this item appears, type \index{entry}. For example typing
\index{Roman} will cause the word, “Roman” to appear in the index followed
by the page number in the output file where the command appears. Typing the
same command later in the source file will produce a second page number in
the index separated from the first by a comma. It must be emphazied that the
command must be typed exactly as before. For example \index{ Roman} will
create a different entry in the index as will \index{Roman }. To avoid making
any such errors, it’s best to never use the space bar when creating index entries.
All stand alone entries in the index will appear in alphabetic order.

To create a entry that will have subentries, type \index{entry!sub entry
1}. For example typing \index{environments!abstract} will cause the word,
“environments”, to appear in the index, with no page number listed, but with
, “abstract” listed under it and slightly indented and a page number. As with
stand alone entries, typing the same command later in the text will cause a
second page number to be listed after, “abstract”. In addition a second suben-
try can be created by typing \index{entry!sub entry 2}. For example typing
\index{environments!center} will cause, “center”, to appear under, “envi-
ronments” in the index. All subentries to an entry appear under that entry in
alphabetic order.

Subentries may have subsubentries listed under them by typing
\index{entry!sub entry!subsub entry}. For example typing
\index{environments!lists!enumerate} will cause, “enumerate” to appear
under, “lists”, which will appear under, “environments”, in the index. Addi-
tional similar entries but will different subsubentries will cause additional entries
under, “lists”, to appear in alphabetic order.

The appearance of any page number in the index can be altered if, for ex-
ample, one page reference is more important than the others. For a stand alone
entry, typing \index{entry|\textbf} will cause the page number for that par-
ticular reference to the entry to appear in boldface. Similar commands such as
\textit or \textsc may also be used. For entries with subentries, altering the
appearance of the page number only makes sense for the last subentry. For ex-
ample \index{environments|\textit!lists!enumerate} would be senseless
because no page number is listed for the main entry. Only
\index{environments!lists!enumerate|\textit} would be meaningful.

To indicate that an entry is discussed on several consecutive pages, type
\index{entry|(} at the beginning of the discussion and \index{entry|)} at
the end. The page number will be listed as a range of number; for example
45–51. To refer an entry to another entry, type \index{entry|see{alt entry}.
For example \index{plain}|see{page style} refers, “plain”, to, “page style”.
Similarly see also{alt entry} can be used as well.

11 TYPESETTING MATHEMATICS. 58

The way an entry or subentry appears in the index may be altered slightly or
significantly without changing where in the index it appears. For example typing
\index{amsmath@\texttt{amsmath}} will displays, “amsmath”, in the index
as amsmath. Likewise typing \index{newpage@\verb\newpage} will cause the
command, “\newpage”, to appear in the index alphabetically ordered under,
“newpage” as it happens in the index of this document.

Finally, it’s best not to put an \index inside of an environment. If the same
command occurs elsewhere in the document, the reference will appear twice,
each with a different page number instead of one appearance with two or more
page numbers listed.

The \index command gives new meaning to the characters, !, @, | and
". The use of the first three of these characters has been explained above. The
quote character, " allows one of these characters to be typeset. For example
typing \index{at@"@} will cause the @ symbol to be printed alphabetically
where the word, “at” would appear. Similarly \index{bar!vertical@"|} will
cause a vertical bar |, to be printed under the heading, “bar” where the word,
“vertical” would be.

10.2.2 Creating the Index File.

To actually create the index, first include the package makeidx in the preamble
with a \usepackage command, put the command \makeindex in the pream-
ble, and compile the file. In that process, LATEX will create a file named
file name.idx. Then run the program MakeIndex. (How that is done de-
pends on particular TEX implementation you’re using.) That program creates
files file name.ilg and file name.ind (which is actually an environment) that
LATEX inputs when it runs next. That is when the index appears at the point
where the command \printindex appears.

If the package hyperref is loaded, then the page numbers in an index will
be hyper links.

11 Typesetting Mathematics.

LATEX employs a different font for characters used as mathematical symbols. So
be certain that every symbol you enter that is to be mathematics is set in “math
mode”. If a mathematical expression is to be included as part of the text in a
line, it is enclosed between a pair of $ signs. For example to typeset the sen-
tence, “The factoring of squares formula is (a2− b2) = (a− b)(a+ b).” you type
The factoring of squares formula is $(a^2 - b^2)=(a - b)(a + b)$.

(Spaces are ignored in math mode, so type as many as you need to make read-
ing the source document as easy as possible.) Longer and more complicated
expressions are displayed. Displayed expressions are enclosed between a pair of
$$ signs, or inside of the special mathematics environments introduced below.
Use the first technique when the expression to be displayed is less than a line
in length and you don’t wish to number it. For example type

11 TYPESETTING MATHEMATICS. 59

The formula for the factoring of the difference of n^th

powers is

$$ a^n - b^n = (a - b)(a^{n-1} +a^{n-2}b + a^{n-3}b^2+ \dots +

a^2b^{n-3} +ab^{n-2} + b^{n-1})$$

to get,
The formula for the factoring of the difference of nth powers is

an − bn = (a− b)(an−1 + an−2b+ an−3b2 + · · ·+ a2bn−3 + abn−2 + bn−1)

(Note that exponents longer than one character must be contained in a pair of
braces { }.) Some authors will type \cdots to get the dots in the center of the
line, but LATEX (with the amsmath package) knows from the contents where to
put them according to the convention adopted by the AMS.

11.1 Binomials and Modulo.

The commands for producing binomial expressions are similar to those for
fractions. (See subsection 3.3, page 8.) For binomial expressions, the com-
mand $\binom{m}{n}$ will produce

(m
n

)
while $\dbinom{m}{n}$ will produce(

m

n

)
. Likewise in display mode $$\binom{m}{n}$$ will produce

(
m

n

)
and

$$\tbinom{m}{n}$$ will produce
(m
n

)
.

The basic command for producing modulo expressions such as x ≡ y mod n
is x\equiv y\mod{n}. The variation \bmod{n} diminishes the space before
mod, x ≡ y mod n. Parentheses are placed around mod n with \pmod and \pod

eliminates the word mod, x ≡ y (mod n) and x ≡ y (n).

11.2 The amssymb and eucal Packages.

LATEX provides an collection of upper case in math mode called the Computer
modern calligraphic letters. They areA,B, C,D, E ,F ,G,H, I,J ,K,L,M,N ,O,
P,Q,R,S, T ,U ,V,W,X ,Y,Z which are produced with the command
$\mathcal{WANTED LETTERS}$. Loading the amssymb package makes the
Blackboard Bold and Fraktur fonts available in math mode as well along with
many special characters. The Blackboard Bold fonts are available only in up-
per case and are produced with the command $\mathbb{BLACKBOARD LET-
TERS}$. The complete set of letters is A,B,C,D,E,F,G,H, I, J,K,L,M,N,O,P,
Q,R,S,T,U,V,W,X,Y,Z. The Fraktur font family is available in math mode
in both upper and lower cases. They are produced with the command
$\mathfrak{Letters In Fraktur}$. The entire list of characters is A,B,C,D,E,F,
G,H, I, J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z, a, b, c, d, e, f, g, h, i, j, k, l,
m, n, o, p, q, r, s, t, u, v,w, x, y, z. In particular, ${\mathfrak c}$ is commonly
used to denote the cardinality of the real line, R.

The package and option [mathscr]eucal provides an additional complete
set of upper case characters in math mode. They are produced with the com-
mand $\mathscr{LETTERS}$ and look like A,B,C,D,E,F,G,H, I, J,K,L,M,N,
O,P,Q,R, S,T,U,V,W,X,Y,Z.

11 TYPESETTING MATHEMATICS. 60

11.3 The amsthm Package.

There are many different styles for presenting assertions such as definitions, lem-
mas, theorems, corollaries, etc. The amsthm permits the use of all of the popular
ones. Each different assertion is stated with an environment that is created by
the user with the command \newtheorem , which must be in the preamble.
This command has two mandatory arguments and two optional ones. The syn-
tax using the only two mandatory arguments is \newtheorem{name}{heading}
where name is the name of the environment and heading is the heading that
will announce the assertion. For example the command
\newtheorem{theorem}{Theorem} creates an environment, theorem. In the
body of the document when \begin{theorem}\label{th1} is typed, LATEX be-
gins an environment on a new line after a small amount of vertical space and,
flush with the left margin, produces, Theorem followed by a number identifying
the theorem that can be recalled with the command \ref{th1}. The user types
the statement of the theorem which LATEX sets in italics. When \end{theorem}

is typed, LATEX inserts a small amount of vertical space and reverts to the previ-
ous font family. The default method for numbering the assertions is 1, 2, 3, etc.
If the user wishes to number by section number; i.e., 4.1, 4.2, etc for the first and
section theorems in the fourth section, then the command employs one of the
optional arguments; specifically, \newtheorem{theorem}{Theorem}[section].
The numbers 1, 2, 3, etc. assigned to the assertion come from a counter, theorem
which is automatically created. When a second type of assertion is created, the
user has an option to use the same counter as is used by theorem or to introduce
a new one. To introduce a new one, type say \newtheorem{lemma}{Lemma} in
the preamble. To use the counter already created, type
\newtheorem{lemma}[theorem]{Lemma} in which case only a new environment
is created, lemma but not a new counter. The numbering would be Lemma 1.,
Theorem 2. (or Lemma 4.1., Theorem 4.1. if [section] was used in the
definition of theorem).

The style in which assertions are presented as described above represents the
default style, plain. The amsthm package supplies two other styles, definition
and remark. The command \theoremstyle{style} changes the style. Exam-
ples of all three styles how to change from one to the other follow. First is the
default style, plain

Theorem 1. This assertion is set in the theorem style with the default num-
bering scheme.

Definition 2. This assertion is set in the definition theorem style. Note that
the font shape is upright, which is the only change from plain.

Remark 1. This assertion is set in the remark theorem style. Note that the
heading is in italics rather than bold and that the statement is again in the
upright shape.

Note the small amount of vertical space between each assertion. LATEX knows
when to insert such space and when not to insert any. The amount of space

11 TYPESETTING MATHEMATICS. 61

between Theorem 1 and Definition 2. is the same as that before Theorem 1 and
after Remark 1. The user shouldn’t attempt to alter this spacing.

Below are the entries in the preamble that are needed to produce the above
assertions.

\newtheorem{theorem}{Theorem}

\theoremstyle{definition}

\newtheorem{definition}[theorem]{Definition}

\theoremstyle{remark}

\newtheorem{remark}{Remark}

Note that remark has its counter, but that definition uses the theorem

counter.

\begin{theorem}\label{th1}

This assertion is set in the theorem style with the default

numbering scheme.

\end{theorem}

\begin{definition}\label{def1}

This assertion is set in the \textit{definition} theorem style.

Note that the font shape is upright, which is the only change

from \text{plain}.

\end{definition}

\begin{remark}\label{rmk1}

This assertion is set in the remark theorem style. Note that the

heading is in italics rather than bold and that the statement is

again in the upright shape.

\end{remark}

Note that all of the assertions are labeled for possible reference elsewhere in the
document.

Frequently instead of identifying an assertion by a number, it’s preferable
to identify it by a name. The preamble command \newtheorem* with the
same two mandatory arguments is used in such a case. For example typing
\newtheorem*{WO}{Well Ordering Principle} in the preamble and in the
document typing

\begin{WO}

Every non-empty set can be well-ordered.

\end{WO}

will produce

Well Ordering Principle. Every non-empty set can be well-ordered.

All of the environments created with either of the preamble commands
\newtheorem or \newtheorem* have an optional argument that can be used
for inserting additional information about the assertion before its statement.
For example, typing

11 TYPESETTING MATHEMATICS. 62

\begin{lemma}[see \cite{T}]

If f is differentiable at x, then f is continuous at x.

\end{lemma}

will produce
Lemma 2. (see [7]) If f is differentiable at x, then f is continuous at x.

assuming that the famous text book by George Thomas is the seventh item in
the bibliography.

Also provided in the amsthm package is the proof environment, which, as its
name suggests, is to contain the proof of an assertion. Typing \begin{proof}

automatically begins the proof with, Proof. unless the optional argument is
used. For example to start with something like, Proof of Lemma 3.1. type
\begin{proof}[\textsc{Proof of Lemma 3.1}]. Ending the environment with
\end{proof} produces the default end-of-proof symbol � at the end of the line.
For example
and that completes the proof.
A problem arises if the proof ends with a displayed expression because the �
comes then at the end of the line after the end of the displayed expression; for
example,

(an − bn) = (a− b)(an−1 + an−2b+ an−3b2 + · · ·+ a2bn−3 + abn−2 + bn−1.

The command \qedhere is provided to put the � at the end of the last line
of a displayed expression, but it won’t work with if the display is created
with a pair of dollar signs. In that case replace the pair of dollar signs with
\begin{equation*} and \qedhere\end{equation*}. To understand why, see
the discussion of this, and other environments, coming up next .

11.4 The amsmath Package.

11.4.1 Multi-Lined Expressions and Numbering.

Use this package when typing any mathematics that will require numbered or
multi-line expressions. It provides you with several environments for these pur-
poses: equation, align, gather, and multline. Each of these environments
numbers each line in the environment. To suppress the numbers, follow the
name with a ∗; for example equation*. In addition the environment split is
provided to be used inside of a number-producing environment. LATEX produces
a small amount of (rubber) vertical space before beginning the environment and
more after the environment ends. So adding vertical space should be avoided.
For ease of editing the source document, always put the \begin{. . . } command
on a new line and start the environment text on the next line.

The equation environment produces a single line of mathematics which is
numbered. For example

11 TYPESETTING MATHEMATICS. 63

∞∑
i=1

p(f(ti))µ(σi) ≤
∞∑
i=1

g(ti)µ(σi) ≤
∫

Ω
p(f(t)) dt+ ε (1)

is created by typing

\begin{equation}\label{eq1}

\sum_{i=1}^\infty p(f(t_i))\mu(\sigma_i)

\leq \sum_{i=1}^\infty g(t_i)\mu(\sigma_i)

\leq \overline{\int_\Omega}p(f(t))\,dt +\epsilon

\end{equation}

To produce the same expression without the number, replace equation with
equation* . Its use was mentioned at the end of the previous segment on page 62.

To refer to a numbered equation later in the document, type
\begin{equation}\label{eq1} and then typing \eqref{eq1} will produce (1).

For a calculation that requires several lines, use the align environment. (It
replaces the eqnarray environment supplied by LATEX.) A simple example of
its use is

|f(x)− f(y)| = |h(x)− h(pik)| ≤ L|x− pik| ≤ L(|x− vi|+ |vi − pik|) (2)

≤ L(|x− vi|+ |vi − xik+1|) ≤ L(|x− y|+ |x− y|) = 2 · L|x− y|
(3)

which is produce by typing

\begin{align}

|f(x)-f(y)|&=|h(x)-h(p^i_k)|\label{eq2}

\le L|x-p^i_k|

\le L(|x-v_i|+|v_i-p^i_k |)\\

& \le L(|x-v_i|+|v_i-x^i_{k+1}|)\label{eq3}

\le L(|x-y|+|x-y|)= 2\cdot L|x-y|

\end{align}

Note that the equation number (3) is on the following line whereas it ought to be

immediately after the second line. By inserting \! in several places, the number can

be coaxed into moving up. If this technique doesn’t create enough room at the end

of the line for the number, Create a third line by breaking the second line before the

second ≤ sign.

New lines are created with the \\ command. Note that there isn’t a new
line command at the end of the last line nor should there be. If one is included,
too much vertical space results. To suppress the number at the end of a line,
insert the command \notag before the new line command \\. The point of
alignment in each line is at the ampersand &. It should precede a relation
character (=,≤,≥, <, > etc.) in order to have the appropriate amount of space
on each side of the relationship symbol. If, as in the following example, the new
line begins with a + sign or any character indicating the continuation of the
previous line, it’s best to indent the line just a bit. For example typing

11 TYPESETTING MATHEMATICS. 64

\begin{align*}

Y_n &= \sum_{\nu =

1}^{n}{a_{n\nu}\lambda_{\nu}}\mu a_{\nu}b_\nu

= \sum_{\nu =1}^{n} a_{n\nu}\lambda_{\nu}

[\sum_{r= 1}^{\nu}ra_r - \sum_{r = 1}^{\nu - 1}ra_r]\\

&= \sum_{\nu =1}^{n-1}\Delta_{\nu}(a_{n\nu}\lambda_{\nu})

\sum_{r= 1}^{\nu}ra_r + {a}_{n\nu}\lambda_n\sum_{r = 1}^n ra_{r}\\

& + \sum_{\nu = 1}^{n-1}a_{n, \nu + 1}\lambda_{\nu +

1}\frac{1}{\nu}t_{\nu} +

\frac{(n + 1)a_{n\nu}\lambda_nt_n}{n}.

\end{align*}

produces

Yn =

n∑
ν=1

anνλνµaνbν =

n∑
ν=1

anνλν [

ν∑
r=1

rar −
ν−1∑
r=1

rar]

=

n−1∑
ν=1

∆ν(anνλν)

ν∑
r=1

rar + anνλn

n∑
r=1

rar

+

n−1∑
ν=1

an,ν+1λν+1
1

ν
tν +

(n+ 1)anνλntn
n

.

The command is used to move the + sign to the right an amount
equal to the size of an = sign. The lack any equation numbers is due to the use
of the ∗ version of the align environment.

The split environment is used to associate just one number with a multi-line
calculation or expression. To accomplish this goal, type

\begin{equation}\label{eq2a}

\begin{split}

| f(x) -f(y)|& = |h(x) -h(p^i_k)|

\le L|x- p^i_k|

\le L(| x-v_i|+|v_i -p^i_k |)\\

& \le L(| x-v_i|+|v_i-x^i_{k+1}|)\\

&\le L(| x-y|+|x-y|)= 2\cdot L|x-y|

\end{split}

\end{equation}

which produces

|f(x)− f(y)| = |h(x)− h(pik)| ≤ L|x− pik| ≤ L(|x− vi|+ |vi − pik|)
≤ L(|x− vi|+ |vi − xik+1|)
≤ L(|x− y|+ |x− y|) = 2 · L|x− y|

(4)

The option centertags causes the tag is placed vertically in the center of the
display. It is the default setting. The other choice is tbtags. With this option,

11 TYPESETTING MATHEMATICS. 65

the number is placed at the end of the last line if the leqno (the default) has
been selected. If the other choice, reqno has been selected, then the number
will be at the beginning of the first line.

If the last line is too long, the number can be forced to the end of the line
following the expression. For example

|f(x)− f(y)| = |h(x)− h(pik)| ≤ L|x− pik| ≤ L(|x− vi|+ |vi − pik|)
≤ L(|x− vi|+ |vi − xik+1|)
≤ L(|x− y|+ |x− y|) = 2 · L|x− y| < M · |x− y| < M · δ < ε

(5)

The command, \raisetag is available to solve this problem. By experimenting,
determine by how much the tag needs to be raised. In this case the command
\raisetag{2\baselineskip} placed after \end{split} provides the needed
boost.

The split environment can be used similarly inside of all of the others
except for multline.

The align environment can be used to produce two (or more) columns of
aligned equations. The points of alignment and the points where the columns
end must be designated with ampersands. For example

8 ≡ 0 mod 8 9 ≡ 1 mod 8 10 ≡ 2 mod 8 (6)

11 ≡ 3 mod 8 12 ≡ 4 mod 8 13 ≡ 5 mod 8 (7)

14 ≡ 6 mod 8 15 ≡ 7 mod 8 16 ≡ 0 mod 8 (8)

is the result of typing

\begin{align}

8&\equiv 0\bmod{8}&9&\equiv 1\bmod{8}&10&\equiv 2\bmod{8}\\

11&\equiv 3\bmod{8}&12&\equiv 4\bmod{8}&13&\equiv 5\bmod{8}\\

14&\equiv 6\bmod{8}&15&\equiv 7\bmod{8}&16&\equiv 0\bmod{8}

\end{align}

You can designate a displayed expression by what ever symbol you wish, say
(*), by typing \tag{*} after the expression but before the line is ended by a \\

or before the end of the environment. Using \tab*{*} omits the parentheses.
It is sometimes useful to number the lines of a calculation with the same number

by adding a suffix, such as (3a), (3b), (3c) etc. This variation can be done using the
subequations environment. For example in the above example

\begin{subequations}

\begin{align}

8&\equiv 0\bmod{8}&9&\equiv 1\bmod{8}&10&\equiv 2\bmod{8}\\

11&\equiv 3\bmod{8}&12&\equiv 4\bmod{8}&13&\equiv 5\bmod{8}\\

14&\equiv 6\bmod{8}&15&\equiv 7\bmod{8}&16&\equiv 0\bmod{8}

\end{align}

\end{subequations}

11 TYPESETTING MATHEMATICS. 66

produces

8 ≡ 0 mod 8 9 ≡ 1 mod 8 10 ≡ 2 mod 8 (9a)

11 ≡ 3 mod 8 12 ≡ 4 mod 8 13 ≡ 5 mod 8 (9b)

14 ≡ 6 mod 8 15 ≡ 7 mod 8 16 ≡ 0 mod 8 (9c)

Some displayed mathematics contains too many lines to be completed before the
end of the page on which it starts. In this case LATEX will move the entire calculation
to the next page and spread out the text on the previous page to fill the page by
using large sections of white space. The result can be ugly. To correct the situation,
you can tell LATEX that the calculation can be broken part way through by typing the
declaration, \allowdisplaybreaks inside the environment producing the calculation.
Or, if you prefer, you can put the declaration in the preamble and it will apply to all
calculation environments. If you know where you want the display to be broken, type
\displaybreak immediately before the end of line command, \\. However, the split

environment can not be broken.
Neither gather nor multline employs ampersands because no alignment is in-

volved. The gather environment simply centers each of its lines giving a number to
each line unless the * version is selected. To have one number associated to the entire
collections of lines, put gather* inside of an equation environment as was done with
split above. The multline environment moves the first line to the left hand margin
(unless the option leqno has been selected), centers the following lines except the last
one, which is moved to the right leaving room only for the equation number.

If you want, say expressions created with the equation environment to be num-
bered according to the section in which it occurs, put the command,
\numberwithin{equation}{section} in the preamble.

To enter non-mathematical text in the midst of a mathematical expression (dis-
played or in-line), use the command \text{text}. The \intertext{text} command
allows you to put text between two lines of a displayed calculation without ending the
environment to do so (nor disturbing the alignment in such environments). As with
\text the text entered is governed by the same rules for entering regular text.

To put a } adjusted to encompass all lines of a multi-line expression, use one of
the two variations, gathered and aligned. For example to produce

y′ = f(x, y)

y(x0) = y0

}
Initial Value Problem

type

$$\left.\begin{aligned}

y’&=f(x,y)\\

y(x_0)&=y_0

\end{aligned}

\right \}

\quad \text{Initial Value Problem}$$

Before the amsmath package was available, a structure similar to the one above was
needed to produce something like

f(x) =

{
0 if x is a rational number

1 if x is an irrational number

11 TYPESETTING MATHEMATICS. 67

which is somewhat clumsy and easy to get wrong. But with amsmath the above is done
by typing

$$

f(x)=

\begin{cases}

0&\text{if x is a rational number}\\

1&\text{if x is an irrational number}

\end{cases}

$$

Note that there is no space between & and \text{if The reason is that some

space is automatically included after the &. To number the expression, put it between

\begin{equation}\label{} and \end{equation} in place of the pair of double
dollar signs. The environment may be used in line as well as in display mode.

11.4.2 Matrices.

The amsmath package provides 6 environment for producing matrices. They are:
matrix, pmatrix, bmatrix, Bmatrix, vmatrix, Vmatrix, and smallmatrix.
Each is an offshoot of the tabular environment in that columns are separated

by & signs. To produce the matrix,
1 2 3 4
a b c d
−3 −2 −1 0

, type

$\begin{matrix}

1&2&3&4\\

a&b&c&d&\\

-3&-2&-1&0

\end{matrix}$

The next four matrix environments enclose the matrix in different symbols;
pmatrix encloses the matrix in parentheses, bmatrix, in brackets [], Bmatrix,
in braces { }, vmatrix in a pair of vertical lines | |, and Vmatrix in a pair of
double vertical lines ‖ ‖. The height of the symbols involved is expanded to
match the height of the matrix. For example,

$$\begin{Vmatrix}

1&2&3&4\\

a&b&c&d&\\

-3&-2&-1&0

\end{Vmatrix}$$

will create ∥∥∥∥∥∥
1 2 3 4
a b c d
−3 −2 −1 0

∥∥∥∥∥∥ .

11 TYPESETTING MATHEMATICS. 68

Of course these matrix structures can be assigned a number by replacing the
two pairs of dollar signs with \begin{equation} and \end{equation}.

The above examples are used mostly in display mode. Use smallmatrix for
in line math mode. However, you must supply the inclosing symbol and adjust
the height of the symbols. See the next paragraph. Often in matrices dots are
desired. For example

Let A =


a1,1 a1,2 a1,3 a1,4 . . . a1,n−1 a1,n

a2,1 a2,2 a2,3 a2,n

. .
am,1 am,2 am,n


The matrix has 7 (actual) columns. The second row is produced by typing
a_{2,1}&a_{2,2}&a_{2,3}&\hdotsfor{3}&a_{2,n}, the third by \hdotsfor{7}

and the last row, by a_{m,1}&a_{m,2}&\hdotsfor{4}&a_{m,n}. The argument
of the command, \hdotsfor is the number of columns that are to be taken up
by dots.

11.4.3 Additional Useful Structures.

The height of bracketing symbols (referred to as delimiters3) like those used to
enclose matrices can by controlled by typing, for example, \left and \right.
However, this technique often produces a symbol that is too tall. For example∣∣∣∣∣
∫ b

a
fp dt

∣∣∣∣∣
1
p

. They have two other disadvantages as well. First, if two delimiters

are nested, such as (a+ (b+ c)), the outer pair isn’t increased in size. Second,
each \left must be paired with a corresponding \right. If the expression inside
of a pair of delimiters stretches over two lines in a displayed formula, the first
\left must be balanced with a \right. before the end-of-line command, \\ and
\left. must appear at the beginning of the next line (or the line in which the
right delimiter appears). LATEX provides the additional choices of \big, \Big,
\bigg, and \Bigg. But with these the spacing is not quite right. So the amsmath
package provides commands that produce bracketing symbols of varying heights
with the appropriate spacing. They are \bigl \bigr; \Bigl \Bigr;

\biggl \biggr; \Biggl \Biggr. One must try each one and pick the one that
looks best. For example

(
a b
c d

)
, is produced by typing

$\bigl(\begin{smallmatrix}a&b\\c&d\end{smallmatrix}\bigr)$, but for(
1 0 2
0 3 4
2 5 0

)
the \Big\ and \Bigr combination works best. These are not required

to appear in pairs which is useful it a situation like the one alluded to above.

Also two different sizes can be paired; for example,
(∫ b
a f(x) dx

)
.

LATEX abhors using the same symbol for different purposes. The character,
|, produced in math mode with the shifted forward slash, is used for a is a factor
of b, a|b, for absolute values, |x|, for norms, ||X|| or to denote the restriction of

3Delimiter sets include (), {}, | |, 〈〉, ‖ ‖, d e, and b c.

11 TYPESETTING MATHEMATICS. 69

a function to a subset of its domain, f |A. But LATEX has different symbols for
the last three. For absolute value use the set of delimiters, \lvert and \rvert.
Compare $|x|$ to the result from \lvert x\rvert; |x| versus |x|. Their size
can be adjusted using the commands introduced in the previous paragraph. For

example,
∣∣∣∫ b

a
|f(t)|p dt

∣∣∣ 1p . The pair of commands \lVert and \rVert work for

norms in the same fashion. Compare ||X|| to ‖X‖. To indicate restriction, the
command \restriction is available. It and produces f �A. If the horizontal
space seems to much, reduce it with a \!first; for example f �A is produced
with $f\!\restriction _A$. (a new command is useful for this purpose.) To
denote inner produce, don’t use the < and > symbols but rather the pair, 〈
and 〉. Compare < x, y > to 〈x, y〉. As might be expected these delimiters
can be increased in size as needed. Rather than use \int twice for a double
integral, three times for triple integrals, etc. use \iint for double integrals,
\iiint for triple integrals, \iiiint for quadruple integrals and \idotsint for
more although this command produces the same outcome as \int\cdots\int.
Also for

∮
use \oint.

Before proceeding, this would be a good place to discuss the \newcommand

command in further detail. All such commands must go in the preamble. The
command has two mandatory arguments and one optional one that, when it
is used, is placed between the two mandatory ones and is a number indi-
cating the number of arguments for the command being defined. For exam-
ple, to easily place absolute signs around a character, in the preamble type
\newcommand{\abs}[1]{\left\lvert#1\right\rvert} and then to put abso-
lute value signs around an expression, type \abs{expression}. For example
|xy| is produced by typing \abs{xy}. Also larger expressions are automati-
cally accommodated. For example,

∣∣a
b

∣∣. A similar command can be defined to
produce ‖A‖. Another possibility is \newcommand{\rest}{\,\restriction}.

\newcommand has one very annoying feature when used to insert text rather
that a mathematical expression. For example the command \st was suggested
earlier, but if it is typed followed by a strike of the space bar, no space appears.
For example, typing For all x \st $x\in A$. what appears is, “For all x
such thatx ∈ A.”. The reason is that LATEX interprets the strike of the space bar
as singling the end of the command. Even is an additional strike of the space bar
is inserted, it is ignored by LATEX. One possible fix is to augment the definition
of the command to contain a space; that is, \newcommand{\st}{such that }.
The problem with this solution is that if \st comes at the end of a sentence,
the space is inserted before the period—unacceptable. The better solution is to
follow the command with a mandatory space; that is, a backslash followed by a
space bar, or a pair of braces, {}.

Besides the command \vec{x} to produce the simple expression ~x com-
mands are available to put arrows pointing in each direction or both direc-
tions over or under expressions. They are \overleftarrow, \overrightarrow,
\overleftrightarrow, \underleftarrow, \underrightarrow, and
\underleftrightarrow. They work in the same way as \vec does, with one

11 TYPESETTING MATHEMATICS. 70

mandatory argument, except that they will expand automatically to include all
characters in the mandatory argument. For example, typing

$\overleftrightarrow{abcd}$ produces
←−→
abcd.

For left or right arrows between symbols with expressions over the arrow or
under the arrow the commands \xleftarrow and \xrightarrow are available.
Each has one optional argument and one mandatory argument. The mandatory
argument contains the expression to go over the arrow and the optional one, the
expression to go under the arrow. For example, $X\xrightarrow[\text{onto}]

{\text{1-1}}Y$ produces X
1-1−−−→

onto
Y . The mandatory argument may be empty,

{ } to omit an expression above the arrow.
It’s possible to have two lines in a subscript such as lim

n→∞
n even

an. Such a con-

struction is accomplished by typing
$\lim_{\substack{n\to\infty\\ n\text{ even}}} a_n$. \substack may
also be used in superscripts.

LATEX provides several commands for putting a modifier over a character.
For example â is produced by \hat{a}. It’s possible to put any modifier
over another character in math mode with the command \overset. The com-
mand \undersetreverses the positions of the modifier and the character. Each
has two mandatory arguments. The first contains a modifier and the second
a character to be modified. For example, $\underset{\bullet}{A}$ produces

A
•

. One useful application is to construct
∞∑
n=1

which is accomplished by typing

$\underset{n=1}{\overset{\infty}{\sum}}$. If you wish to use this form
several times, it would be a good idea to create a new command. In the preamble
type \newcommand{\mysum}[2]{\underset{#1}{\overset{#2}{\sum}}. To pro-
duce the same output, simple type $\mysum{n=1}{\infty}$. The optional com-
mand [2] indicates that the new command is to have 2 mandatory arguments.

So the command could be used to produce
n∑
i=1

by typing \mysum{i=1}{n}.

To put symbols lower left, upper left, lower right, and/or upper right of a
sum or sum-like character, the command \sideset is provided. For example in
math mode, typing \sideset{_{l,l}^{l,u}}{_{r,l}^{r,u}}\sum produces
l,u

l,l

∑r,u

r,l
. It’s not necessary to have symbols in all “four corners”. For example

l,u∑
is produced by typing $\sideset{^{l,u}}{}\sum$.

The commands such as \sin,\tan \log are fine as far as they go, but there
are others that you might need. These commands are used in math mode to pro-
duce the name of the function in text font and insert a small space after the func-
tion name before the next mathematical symbol. For example \sin x produces
sinx. The command \DeclareMathOperator allows you to produce function
names that aren’t provided. For example typing \DeclareMathOperator{\dist}
{dist} in the preamble (All of these commands must be in the preamble.) pro-
duces dist(A,B) when $\dist(A,B)$ is typed. If a limit is required for the
new math operator, use the * form. For example ess supx∈Af(x) is produced

12 COMMUTATIVE DIAGRAMS. 71

by first typing \DeclareMathOperator*{\esssup}{ess\,sup} in the preamble
and then in the document typing $\esssup_{x\in A}f(x)$ in the document.

The sticky space, ~, can be used to prevent an unwanted line break at a space,
but there are times when a line break should be prevented at a hyphen. For
example in semi-group. The command to prevent line breaks in such situations
is \nobreakdash. To use it, insert it just before the hyphen where a break
should not occur. For example semi\nobreakdash-group.

11.5 Additional Font Families for Math Mode.

The font family used in math mode is essentially the italic font family with some
minor changes in spacing. The Roman font family can be use in math mode with
the command \text{text in Roman font family}. For sans serif and typewriter
use \textsf and \texttt respectively. Similarly the commands for bold face
and the different shapes work in math mode and produce the same output as
they do in text mode. Some authors prefer to use the usual Roman version
of, d, in the differential of an integral,

∫
f(x) dx, which is produced by typing

$\int f(x)\,\mathrm{d}x$. (Rather than typing \,\mathrm{d}\ repeatedly
create a new command.) To embolden a character in math mode, for example
a as opposed to a, use the command \boldsymbol, which puts a character as
it appears in math mode, in boldface. For example x · y is produced by typing
$\boldsymbol{x\cdot y}$.

There are additional font families available in math mode as well, but not
in all shapes. These are blackboard bold (\mathbb), calligraphy (\mathcal),
Fraktur (\mathfrak), and Euler (\mathscr with the package eucal and the
option mathscr). The blackboard bold, calligraphy and Euler are available in
upper case only. In particular the symbol, c used to denote the cardinality of
the real line is produced by typing \mathfrak{c}. For the real line use R
produced with \mathbb{R} . Both of these are candidates for new commands;
\c and \R.

12 Commutative Diagrams.

Simple commutative diagrams can be constructed using the package, amscd,
which must be entered after the package, amsmath. Only diagrams with vertical
and horizontal arrows can be made. These arrow may point in either direction
(left or right for horizontal arrows and up or down for vertical ones). In addition
symbols may be entered on either or both sides of these arrows. The commands
that produce theses four types of arrows are: @>>> for arrows pointing to the
right, @<<< for arrows pointing left, @VVV for arrows pointing down and @AAA

for arrows pointing up. The symbols to accompany the arrows are inserted
between the characters. For example @>f>1-1> produces a right arrow with an
f over it and 1-1 beneath it. All of these commands must be given inside of the
environment, CD. For example

$$\begin{CD}

12 COMMUTATIVE DIAGRAMS. 72

X@>f>\text{1-1}> Y\\

@VhV\text{onto}V @AgA\text{iso}A\\

X/G@=Y/H

\end{CD}$$

produces

X
f−−−−→

1-1
Y

h

yonto g
xiso

X/G Y/H

13 COMMANDS 73

13 Commands

Dimensions.

mm (millimeter), cm (centimeter), in (inch), pt (point 1in = 72.27 pt),
pc (pica = 12pt), bp (big point 1in = 72 bp), em = width of M, ex = height of
x.

Greek Letters (All in Math Mode.)
Lower Case.

α=\alpha β=\beta γ= \gamma δ=\delta

ε=\epsilon ε=\varepsilon ζ=\zeta η=\eta

θ=\theta ϑ=\vartheta ι=\iota κ=\kappa

λ=\lambda µ=\mu ν=\nu κ=\varkappa

ξ=\xi o=o π=\pi $=\varpi

ρ=\rho %=\varrho σ=\sigma ς =\varsigma

τ=\tau υ=\upsilon φ=\phi ϕ=\varphi

χ=\chi ψ=\psi ω=\omega

Upper Case.

Γ=\Gamma ∆=\Delta Θ=\Theta Λ=\Lambda

Ξ=\Xi Π=\Xi Σ=\Sigma Υ=\Upsilon

Φ=\Phi Ψ=\Psi Ω=\Omega Π=\Pi

Hebrew Letters (All in Math Mode).

ℵ=\aleph i=\beth k=\daleth gimel\=ג

Some Letters from Other Languages.

œ=\oe Œ=\OE æ=\ae Æ=\AE å=\aa Å =\AA ¡=!‘

ø =\o Ø=\O l =\l L=\L ß=\ss SS=\SS ¿=?‘

Miscellaneous Symbols

†=\dag ‡=\ddag §=\S c©=\copyright ¶=\P £=\pounds

Accents.

à =\‘a á=\’a â=\^a ä=\"a ã=\~a

ā =\=a ȧ=\.a ă=\u{a} ǎ=\v{a} a̋=\H{a}

�oo=\t{oo} a̧=\c{a} a
¯
=\b{a} å=\r{a} â=\^a

Accents in Math Mode.

á=\acute{a} ā =\bar{a} ă=\breve{a} ǎ =\check{a}

ȧ=\dot{a} ä =\ddot{a}
...
a=\dddot{a}

....
a =\ddddot{a}

à=\grave{a} å =\mathring{a} â=\hat{a} âbc=\widehat{abc}

ã=\tilde{a} ãbc=\widetilde{abc} ~a=\vec{a}

13 COMMANDS 74

Function Names.

sin =\sin cos =\cos tan =\tan cot =\cot

sec =\sec csc =\csc arcsin=\arcsin arccos=\arccos

arctan=\arctan sinh =\sinh cosh =\cosh tanh =\tanh

coth =\coth exp =\exp ln =\ln log =\log

deg =\deg det =\det dim =\dim Pr =\Pr

arg =\arg gcd =\gcd max =\max min =\min

lim =\lim lg =\lg inf =\inf sup =\sup

lim inf=\liminf lim sup=\limsup hom =\hom arg =\arg

Binary Operation Symbols.

±=\pm ∩=\cap ◦=\circ ©=\bigcirc

∓=\mp ∪=\cup •=\bullet �=\Box

×=\times]=\uplus �=\diamnd ♦=\Diamond

÷=\div u=\sqcap C=\lhd 4=\bigtriangleup

ᵀ=\intercal t=\sqcup B=\rhd 5=\bigtriangledown

∗=\ast ∨=\vee \lor E=\unlhd / =\triangleleft

?=\star ∧=\wedge \land D=\unrhd . =\triangleright

†=\dagger ⊕=\oplus �=\oslash \ =\setminus

‡=\ddagger 	=\ominus �=\odot o =\wr

q=\amalg ⊗=\otimes }=\circledcirc �=\circleddash

�=\boxdot �=\boxminus �=\boxplus �=\boxtimes

· =\cdot � =\centerdot Z=\barwedge Y=\veebar

d=\Cup e=\Cap g=\curlyvee f=\curlywedge

Relational Symbols.

J \blacktriangleleft ≤ \le \leq ≥ \ge \geq ∼ \sim

I \blacktriangleright � \gg
.
= \doteq ' \simeq

⊂ \subset ⊃ \supset ≈ \approx � \asymp

⊆ \subseteq ⊆ \subseteq ∼= \cong ^ \smile

@ \sqsubset A \sqsupset ≡ \equiv _ \frown

v \sqsubseteq w \sqsupseteq ∝ \propto ./ \bowtie

∈ \in 3 \ni ≺ \prec ≺ \prec

` \vdash a \dashv � \preceq � \succeq

|= \models ⊥ \perp ‖ \parallel \| | \mid |

l \lessdot m \gtrdot o \rtimes n \ltimes

u \approxeq v \backsim w \backsimeq l \bumpeq

m \Bumpeq $ \circeq 2 \curlyeqprec + \Doteq

3 \curlyeqsucc + \doteqdot P \eqcirc h \eqsim

0 \eqslantless = \geqq 1 \eqslantgtr ≫ \ggg

> \geqslant ' \gtrapprox R \gtreqless T \gtreqqless

; \fallingdotseq ≷ \gtrless & \gtrsim 5 \leqq

6 \leqslant / \lessapprox Q \lesseqgtr . \lesssim

w \precapprox 4 \preccurlyeq - \precsim , \triangleq

% \succsim % \succsim < \succcurlyeq ∼ \thicksim

: \risingdotseq ≈ \thickapprox b \Subset ⊆ \subseteq

� \ll c \Supset k \supseteqq M \vartriangle

13 COMMANDS 75

Most of the symbols above can be negated by placing a \not before the
command. For example 6∈ is produced by typing \not\in. The following table
gives alternate negations

Negated Relational Symbols.

≮ \nless � \nleq
 \nleqslant � \nleqq

� \lneq � \lneqq � \lvertneqq � \lnsim

⊀ \nprec � \npreceq � \precnsim � \nsim

- \nmid � \precnapprox . \nshortmid 0 \nvdash

2 \nvDash 6 \ntriangleleft * \nsubseteq $ \subsetneqq

	 \gneqq 5 \ntrianglelefteq � \gvertneqq � \lnapprox

6= \ne \neq \varsubsetneq � \gnapprox
 \gneq

≯ \ngtr & \varsubsetneqq $ \subsetneqq � \ngeqslant

� \ngeq � \ngeqslant � \ngeqq � \gnapprox

� \gnsim � \succnapprox � \nsucc � \succnsim

� \nsucceq / \nshortparallel � \ncong � \ncong

2 \nvDash 7 \ntriangleright 1 \nVdash + \nsupseteq

\nsupseteqq 4 \ntrianglerighteq) \supsetneq % \supsetneqq

/∈ \notin ' \varsupsetneqq

Delimiters.

b \lfloor c \rfloor d \lceil e \rceil 〈 \langle 〉 \rangle

p \ulcorner q \urcorner x \llcorner y \lrcorner

Arrows.

	 \circlearrowleft � \circlearrowright x \curvearrowleft

y \curvearrowright 99K \dasharrow L99 \dashleftarrow

99K \dashrightarrow ⇓ \Downarrow ↓ \downarrow

� \downdownarrows � \downharpoonright ← \gets

←↩ \hookleftarrow ↪→ \hookrightarrow ⇐ \Leftarrow

← \leftarrow � \leftarrowtail ↽ \leftharpoondown

↼ \leftharpoonup ⇔ \leftleftarrows ⇔ \Leftrightarrow

↔ \leftrightarrow � \leftrightarrows � \leftrightharpoons

! \leftrightsquigarrow W \Lleftarrow ⇐= \Longleftarrow

←− \longleftarrow ⇐⇒ \Longleftrightarrow ←→ \longleftrightarrow

7−→ \longmapsto =⇒ \Longrightarrow −→ \longrightarrow

" \looparrowleft # \looparrowright � \Lsh

7→ \mapsto (\multimap ↗ \nearrow

↖ \nwarrow � \restriction ⇒ \Rightarrow

→ \rightarrow � \rightarrowtail ⇁ \rightharpoondown

⇀ \rightharpoonup � \rightleftarrows
 \rightleftharpoons

⇒ \rightrightarrows \rightsquigarrow V \Rrightarrow

� \Rsh ↘ \searrow ↙ \swarrow

→ \to � \twoheadleftarrow � \twoheadrightarrow

⇑ \Uparrow ↑ \uparrow m \Updownarrow

l \updownarrow � \upharpoonleft � \upharpoonright

� \upuparrows

REFERENCES 76

Negated Arrows.

: \nLeftarrow 8 \nleftarrow < \nLeftrightarrow

= \nleftrightarrow ; \nRightarrow 9 \nrightarrow

Mathematical Symbols in Two Sizes.∑∑
\sum

⋂ ⋂
\bigcap

⊙⊙
\bigodot∫ ∫

\int
⋃ ⋃

\bigcup
⊗⊗

\bigotimes∮ ∮
\oint

⊔ ⊔
\bigsqcup

⊕⊕
\bigoplus∏∏

\prod
∨ ∨

\bigvee
⊎ ⊎

\\biguplus∐∐
\coprod

∧ ∧
\bigwedge

References

[1] Michael Goossens and Sebastian Rahtz. The LATEX Web Companion: Inte-
grating TEX HTML and XML.Tools and Techniques for Computer Typeset-
ting. Addison-Wesley Longman, Reading, MA, 1999. 5.2

[2] Hekmut Kopka and Patrick W. Daly. Guide to LATEX. Addison-Wesley,
Boston, MA, fourth edition, 2006. 3.6

[3] Leslie Lamport. LATEX: A Document Preparation System:User’s Guide and
Reference Manual. Addison-Wesley, Boston, MA, second edition, 1996. 1

[4] Frank Mittelbach and Michael Goossens. The LATEX Companion. Addison-
Wesley, Boston, MA, second edition, 2005. 4.1, 8.3

Index

\,,19
\:,19
\;,19
#, 2
$, 2
$$, 2
%, 2
&, 2
ˆ, 2
, 2
\{, 3
\}, 3
\,3
\#,3
\$,3
\%,3
\&,3
\-,6
\\,16
\^,3
_,3
\~,3
{}, 2
˜, 2
, 6

a4paper, 11
abstract environment, 26
\addtocounter, 17
\allowdisplaybreaks, 66
amsmath package

align environment, 63, 65
Bmatrix environment, 67
bmatrix environment, 67
cases environment, 67
equation environment, 62, 64, 67
gather environment, 66
matrix environment, 67
multline environment, 66
pmatrix environment, 67
smallmatrix environment, 68
split environment, 64
Vmatrix environment, 67
vmatrix environment, 67

amssymb package, 59
amsthm package, 60

proof environment, 62
\author, 13

bibliography environment, 45
\bibitem, 45
\cite, 46

\Big, 68
\big, 68
\Bigg, 68
\bigg, 68
\binom, 59
\bmod, 59
boxes, 22

LR boxes
\raisebox, 23

paragraph boxes, 23
\parbox, 23

rule boxes, 23
•, 28

caption, 44
\caption, 44
cases environment, see amsmath pack-

age
\cdots, 59
center environment, 26
character sizes, 10
\cline, 42
commutative diagrams, 71
compactdesc, 30
compactenum, 30
compactitem, 30
counter, 29
counters, 12

\date, 14
\DeclareMathOperator, 70
description environment, 28
\dfrac, 8
documentclasses

article, 24
two sided, 11

77

INDEX 78

beamer, 24
book, 24
letter, 24
report, 24

two sided, 11
\dotfill, 20
\dots, 4
\doublespacing, 31

\ell, 4
empty, see page style
\ensuremath, 22
enumerate environment, 28
environments

tabular
@ structure, 40
\hline , 39

multicolumn, 41
\vline , 41

environments
abstract, 26
center, 26
lists

compactdesc, 30
compactenum, 30
compactitem, 30
description, 28
enumerate, 28
itemize, 28

quotation, 27
quote, 27
tabbing, 36
table, 43
tabular, 38
thebibliography, 45
verbatim, 28

\eqiv, 59
\eqref, 63
eucal package, 59
\evensidemargin, 19

fance page style, 16
fancyhdr package, 16
\fbox, 22
\fboxrule, 22
\fboxsep, 22
figure environment, 35
font shapes, 9

\footnote, 15
\footnotesize, 10
\frac, 8
\framebox, 22

graphicx package, 32
\includegraphics, 32
\height, 33
\width, 33

headings, see page style
\hfill, 19
horizontal space

\,,19
\:,19
\;,19
\dotfill, 20
\hfill, 19
\hrulefill, 20
\hspace, 19
\hspace*, 19
\phantom, 19, 64
\qquad, 19
\quad, 19

\hrulefill, 20
\Huge, 10
\huge, 10
hypen, 5
hyphen

\nobreakdash, 71
hyphen key, 5

\i, 4
\j, 4
\in, 4
\include, 54
\includegraphics, 32
\includeonly, 55
index

\index, 56, 57
\makeindex, 58
\printindex, 56, 58

\int, 19
\intertext, 66
italics, 9
\item, 28
itemize, 28
itemize environment, 28

INDEX 79

Knuth, Donald, 1

\label, 12
Lamport, Leslie, 1
\LARGE, 10
\Large, 10
\large, 10
LATEX, 1
LATEX 2e, 1
legalpaper, 11
letterpaper, 11
\linebreak, 16

\makebox, 22
markboth, 15
markright, 15
\mathcal, 59
\mathfrak, 59
\mbox, 22
medium, 9
minipage, 30
myheadings, see page style

\newcommand, 21, 69
\newline, 16
\newpage, 16, 17
\newtheorem, 60, 61
\normalsize, 10
\numberwithin, 66

\oddsidemargin, 19
\onehalfspacing, 31
options

classes
a4paper, 11
fleqn, 11
legalpaper, 11
leqno, 11
letterpaper, 11
twoside, 11

\overleftarrow, 69
\overleftrightarrow, 69
\overrightarrow, 69
\overset, 70

package
array

! structure, 41
< structure, 40

> structure, 40
packages, 2

amsmath, 24
amssymb, 24
amsthm, 24
enumerate, 29
graphicx, 32
setspace, 31
url, 25
array, 40
hyperref, 25

backref, 25
colorlinks, 25
urlcolor, 25

makeindex, 58
setspace, 31
xcolor, 24

table option, 43
\pagebreak, 16
pagenumbering, 17
\pageref, 12
pagestyle, 16

empty, 15
plain, 15
headings, 15
myheadings, 15

\paragraph, 11
paralist, 30
plain, see page style
\pmod, 59
\pod, 59

\qedhere, 62
\qquad, 19
\quad, 19
quotation environment, 27
quotation marks, 6
quote environment, 27

\ref, 13
\renewcommand, 21
\rule, 23

\scriptsize, 10
section, 17
\section, 11
setcounter, 17
setspace, 31

INDEX 80

\sideset, 70
\Sigma, 4
\sigma, 4
slant, 9
\small, 10
small caps, 9
split, 62
\sqrt, 8
\subparagraph, 11
\subsection, 11
\subsubsection, 11
\sum, 4

tabbing, 36
table environment, see environments
table option, see pckages43
\tableofcontents, 55
tabular, 10, see environments

the array package, 40
\tag*, 65
TEX, 1
\text, 66
\textheight, 19
\textstyle, 8
\textwidth, 19
\tfrac, 8
\thanks, 15
\tiny, 10
\title, 13

Short Title, 13
\today, 4
\topmargin, 19
twoside, 11

\underleftarrow, 69
\underleftrightarrow, 69
underline

\underline, 5
\underrightarrow, 69
\underset, 70
upright, 9
\url, 25
\usepackage, 24

\vec, 69
\verb, 4, 28
verbatim environment, 28
vertical space

\bigskip, 21
\medskip, 21
\smallskip, 21
\vfill, 21
\vspace, 21
\vspace*, 21

xcolor, 24
\colorbox , 24
\textcolor , 24

\xleftarrow, 70
\xrightarrow, 70

	Introduction.
	Some TeX Basics.
	Special Keystrokes.
	Example
	Commands.
	Commands with Arguments.
	The Hyphen Key.
	Quotation Marks.
	Spacing between Words and Sentences.

	Entering Characters in a LaTeX Document
	Constructing a Simple LaTeX Document.
	Entering Text and Other Characters/Symbols into a LaTeX Document.
	Math Mode: Fractions and Roots
	Changing the Look of Text
	Character Sizes.
	Other Popular Class Options.
	Document Divisions.
	Counters
	Labeling.
	Creating a Title
	The Auxiliary and Log Files.
	Footnotes.

	Managing the Text and Characters.
	Page Style.
	Line and Page Breaking.
	Page Numbering.
	Page Layout.
	Document Horizontal and Vertical Lengths.
	Creating New Commands
	Boxes
	In Line Boxes.
	Rule Boxes
	Paragraph Boxes.

	Introduction to Packages.
	The xcolor Package.
	The hyperref Package.
	The url Package.

	Introduction to Environments.
	The abstract Environment.
	The center Environment
	The quotes and quotation Environments.
	The verbatim Environment.
	Lists
	The minipage Environment.

	More Packages
	The setspace Package.
	The milticol Package
	The graphicx Package
	The picinpar Package

	Additional Environments
	Tabbing and Tables.
	The tabbing Environment.
	The tabular Environment.
	The tabular* Environment
	Long Tables; the supertabular Package.
	Color in Tables

	The table Environment
	The thebibliography Environment

	The Bibliography Using BibTeX
	How the BibTeX System works
	Bibliography Styles
	BibTeX Databases
	Templates and Some Typical entry Types
	Abbreviations and Preamble
	The author or editor Field
	The title Field
	Cross Referencing
	Multiple Bibliographies

	Long Documents.
	Table of Contents.
	Depth.
	Adding Items.

	Index.
	The Command "026E30F index.
	Creating the Index File.

	Typesetting Mathematics.
	Binomials and Modulo.
	The amssymb and eucal Packages.
	The amsthm Package.
	The amsmath Package.
	Multi-Lined Expressions and Numbering.
	Matrices.
	Additional Useful Structures.

	Additional Font Families for Math Mode.

	Commutative Diagrams.
	Commands
	References
	Author Index
	Index

