Section 2.3 Problem 1ab and 2ab

Find all units and zero divisors in \(\mathbb{Z}_7 \) and \(\mathbb{Z}_8 \).

Answer. Since \(1(1) = 2(4) = 3(5) = 6(6) = 1 \mod 7 \), so there are no zero divisors in \(\mathbb{Z}_7 \) and all nonzero elements in \(\mathbb{Z}_7 \) are units. Similarly as \(1(1) = 3(3) = 5(5) = 7(7) = 1 \mod 8 \) and \(0 = 2(4) = 6(4) = 4(4) \mod 8 \), the units are \(1, 3, 5, 7 \) and the zero divisors are \(2, 4, 6 \) (recall that zero is not a zero divisor with the general rule "you can’t divide by zero"—although I didn’t take points off for this).

Section 2.3, Problem 17

Prove that the product of two units in \(\mathbb{Z}_n \) is also a unit.

Answer. Let \(a, b \in \mathbb{Z}_n \) be units. Then there are elements \(c, d \) such that \(ac = 1 \mod n \) and \(bd = 1 \mod n \). This implies that \((ab)(dc) = abdc = a(1)c = ac = 1 \mod n \), so \(ab \) is a unit with inverse \(dc \).

Section 3.1, Problem 8

Is \(\{1, -1, i, -i\} \) a subring of \(\mathbb{C} \)?

Answer. No. Note that \(1 + 1 = 2 \notin \{1, -1, i, -i\} \), so \(\{1, -1, i, -i\} \) is not closed under addition and hence not a subring. (If you go on to take MTH 411, you will find that this IS a group!)
Section 2.3, Problem 14

Let $a, b, n \in \mathbb{Z}$ with $n > 1$. Let $d = \gcd(a, n)$ and assume $d | b$. Prove that the equation $[a]x = [b]$ has d distinct solutions in \mathbb{Z}_n.

Answer. Note: This problem was not graded, but here is a solution.

Theorem 1. The solutions listed in exercise 13b are distinct.

Proof. Using the notation from 13b, assume two elements of the solutions in 13b are equal. Then $[ub_1 + k_1n_1] = [ub_1 + k_2n_1]$ for some $k_1, k_2 \in \{0, 1, ..., d - 1\}$. This implies that $ub_1 + k_1n_1 \equiv ub_1 + k_2n_1 \mod n$, so n divides their difference. Specifically, $n|(n_1(k_2 - k_1))$. Then there is some $j \in \mathbb{Z}$ with $nj = (n_1(k_2 - k_1))$. But since $n = n_1d$, $dj = k_2 - k_1$, so $d|k_2 - k_1$ so $k_1 \equiv k_2 \mod d$. This implies since $k_1, k_2 \in \{0, 1, ..., d - 1\}$, they must be equal.

Theorem 2. If $x = [r]$ is any solution of $[a]x = b$, $[r] = [ub_1 + kn_1]$ for some integer $k \in \{0, 1, ..., d - 1\}$.

Proof. We have that $ar \equiv b \equiv aub_1 \mod n$, so n divides their difference, namely $n|(a(r - ub_1))$. Thus there is some $j \in \mathbb{Z}$ with $nj = a(r - ub_1)$. Dividing both sides of this equation by d, we obtain $jn_1 = a_1(r - ub_1)$, so $n_1|(a_1(r - ub_1))$. We have that the $\gcd(a_1, n_1) = \gcd(a, n)/d = 1$ so by theorem 1.4 $n_1|(r - ub_1)$ so there is some $k \in \mathbb{Z}$ with $kn_1 = r - ub_1$, so adding ub_1 to both sides of this equation proves our claim.

\[\square\]