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Abstract—in this paper, a (2M, 4) scheme of the finite-dif- cannot increase the accuracy significantly. More importantly,
ference time-domain (FDTD) method is proposed, in which the these schemes [5], [6] cannot directly extend conductors to the

time differential is of the fourth order and the spatial differential rfectly matched | r (PML ndarv. In order to incl
using the discrete singular convolution is of order2 M. Compared perfectly matched layer ( ) boundary. In order to include

with the standard FDTD and the scheme of (4, 4), the scheme conductors in the PML _poundafy for the Runge—Kutta time
of (2M,4) has much higher accuracy. By choosing a suitable Scheme, the PML condition must be treated specially [9].
M > 2, the (2M, 4) scheme can arrive at the highest accuracy.  In this paper, a generalized FDTD method based on the

In addition, an improved approximation of the symplectic inte- (27, 4) scheme is presented using the discrete singular con-
grator propagator is presented for the time differential. On one volution (DSC) and symplectic integrator propagator, where

hand, it can directly simulate unlimited conducting structures . . .
without the air layer between the perfectly matched layer and M is the bandwidth. The DSC algorithm was proposed as a

inner structure; on the other hand, it needs only a quarter of the Potential approach for the computer realization of singular
memory space required by the Runge—Kutta time scheme and integrations. The theory of distribution and wavelet analysis

requires one third of the meshes in every direction of the standard form the mathematical foundation for the DSC. Compared to
FDTD method. By choosing suitable meshes and bandwidth the multiresolution time-domain (MRTD) method [10], the

M, our scheme not only retains higher accuracy but also saves . f arbit bandwidfif f tial diff tial
memory space and CPU time. Numerical examples are provided expression ot arbitrary banawi orspatial direrential can

to show the high accuracy and effectiveness of proposed scheme. Pe obtained more easily. By choosing a suitaldlethe scheme

. : . . of (2M,4) can achieve higher accuracy than the standard
Index Terms—Piscrete singular convolution (DSC), finite .
difference time domain (FDTD), Lagrange-delta kernel, FDTD method and the scheme of (4, 4) [2]. By choosing the

symplectic integrator propagator. symplectic integrator propagator as the time-domain scheme,

the scheme(2M,4) requires much less memory than the

standard FDTD method and the scheme of (4, 4) in [2].

This paper is organized as follows. In Section Il, the DSC

HE finite-difference time-domain (FDTD) [1] method ismethod based on the Lagrange delta kernel (LK) is intro-
a full-wave approach to the analysis of various electuced. An improved symplectic integrator propagator scheme

tromagnetic problems, such as integrated transmission linesproposed in Section Ill. In Section IV, using the generalized

discontinuities, scattering by intricate objects, and radiatidtDTD scheme, several numerical examples for two-dimensional

from antennas. Although the FDTD method can analyze vd2-D) and three-dimensional (3-D) guided-wave problems are

ious electromagnetic problems, its accuracy is lower than ianalyzed and the performance of t®\/,4) scheme is also

tegral methods. It is desirable to find a method that can nadiscussed.

only retain the flexibility of the FDTD, but also achieve the

higher accuracy of integral methods. During the past few years, [I. SPATIAL DISCRETIZATION

many re§earchers have proposed a number of technique%\_toThe DSC Method

improve its accuracy. The scheme of (4, 4) was proposed by o

Young et al. [2], Zingg [3], Turkel and Yefet [4], based on LetT be a d|str|but|qn and(z) be an eIemeqt of the space

the Runge—Kutta time scheme, and by Hircetoal. [5], [6], of test functions. The singular convolution pfz) is defined as

using the symplectic integrator propagator, which is basically

|I. INTRODUCTION

~+oo
a time-integration method for Hamiltonian systems [7], [8]. F(t)=(Tx*f)(t) = / T(t—x)f(z)dz. 1)
However, it has been observed that these schemes of (4, 4) o
Its DSC can be written as
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the standard Yee’s cell is used, thih-order spatial differentia- 11l. 1 MPROVED PML CONDITION WITH PADE APPROXIMATION
tion of the electromagnetic field functighby the DSC method

can be shown as follows: In this paper, the PML condition based on the symplectic in-

tegrator propagator [5], [6] is introduced to truncate the open

-1 boundary. However, it is found that the PML condition based
fM(z) = Z 55’_2(;1; — Tpp1/2) f(Th1/2) on the symplectic integrator propagator in [5] and [6] cannot be
k=M used to truncate unlimited conductor boundary directly.
M In [5] and [6], a 3-D fourth-order FDTD scheme using a
+ Z&fj&(x —wr—1/2)f(7r-1/2) (3) symplectic integrator propagator was proposed. Its basic idea
k=1 is briefly reviewed here for clarity.

Maxwell’s equations in an isotropic and source-free medium
where&fjfg(x—xk) = (d/dz)" 65 A(x—2k), b5, a(x—2x) iSthe are written in a matrix form as
DSC delta kernel, antl/ is the bandwidth. There are many delta

kernels, such as Shannon’s delta kernel, the LK, and Posisson’s 9 <H> - W <H> (7)
delta kernel. In this paper, only the LK is considered. Compared ot \ b K
with other delta kernels, the LK needs less bandwidth for tf\]N ere
same accuracy.
It is well known that the LK is given as —plg* !
J w= ("t o B gy (g
e'R —e tols
kMo . L o R
L]\Lk(il)) = H — (4) U=— <_U 3 > ,
ik Mtk R T H 0 0
1/0 0
Its regularized form is V= - <R _g]3> : ©)
kbMo (o np)? The solution after a time stefy; is expressed by the expo-
Oy(x —my) = H /l. e 2% . (5 nential operatoexp(A;W) as
ik M,izk TF TV
B3 (A = expa) () (0 10
The LK of ordern and bandwidth\/ can be computed by a E (A¢) = exp(AV) E (0) (10)

recurrence method [12].
Forn = 1, using the Taylor's expansion and considering thahereexp(A, W) is approximated by the symplectic integrator
characteristic of the Lagrange polynomial (4), the error terpropagator, which is the multiproduct of the exponential oper-

Ry k of the LK (4) can be derived as ator of U and of V. The propagator approximatesp(A;WW)
as
[(2M — 1)!]? Az\*M m
Rix o« =———— — . (6) _—
(2M + 1)! 2 exp(A W) = [ ] exp(dpAiV) exp(cp Adl) + O((Ar)" )
p=1
11)

B. Boundary Conditions

i\é/herec,, andd, are real coefficients characterizing the propa-
tor [5], [6],n is the order of the approximation, andis the
age number of the propagator

As the DSC kernels are either symmetric or antisymmetr
they require approximating the function values outside t
computational domain. Therefore, the following boundary cofr
ditions can be used. Ao 1—exp(=2e7)

For a perfect electric wall, the tangential electric figldand exp(A) = (GXP (—#") I3 —T’R>

the normal magnetic fieldd,, outside the computational do- {0} 15

main are obtained by antisymmetric extensions, whereas, for the (12)

normal electric fieldE,, and the tangential magnetic field;, I3 {0}

symmetric extensions are used exp(A¢V) = | 1Zexp(=Aso/e) A - (13)
' R exp (—522) I

For a perfect magnetic wall, the tangential magnetic figld
and the normal electric field,, outside the computational do- In[5] and [6], the following exponential functions are approx-
main are obtained by antisymmetric extensions, whereas, for theated by Padé’s approximation of (2, 2):
normal magnetic fieldd,, and the tangential electric fielH;,

symmetric extensions are used. _l—w/2+w?/12

e , I —w) & 14
For a periodic boundary, all electric and magnetic fields exp(=w) 1+ w/2+w?/12 (14)
outside the computational domain are obtained by periodic 1—exp(—w) 1—w/10+ w?/60 15
extensions. w T 1+ 2w/5 + w?2/20 (15)

For an open boundary, the PML condition can be used to de-
termine field values outside the computational domain. wherew = Ao /e orw = Ao* /.
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1.0 4

In this paper, the quadratic profile of conductivityp) =
om(p/6)™ [13], [14] is chosen. So, the reflection factor for a

PML of thickness) is %7 I
2 opb = PPt o
R(6) = exp <_n 1 ec cos(@)) (16) g -
5
wheree is the dielectric constant,is the vacuum velocity,and ¢ |} 7 | " Scheme (21)
g — —— Scheme (14)
w

6 is the angle of incidence. By choosifig= 0°, o,,, can be
obtained from (16) as

Analysis result of Exp(-w)

(n+1)ecln Ry,

Om — — (17) ———— . . . v . .
26 0 5 10 15 20 25 30 35 40 45 50

When the spatial incrementh and the time increment are
chosen, the conductivities at the mesh points are implementggl 1. comparison between two kinds of approximationefop(—w).
as the average value in the cell around the index location. At

index![, we have

1 I-Ah+Ah/2 p g
o(l) = E/ om (5) St | I EEEEEES Scheme (22)
1-Ah—Ah/2
41 11 — - — Scheme (15)
_beom 1 1+05\" B 1—05\" § 06 Analysis result of (1-exp(-w))/w
T Ah n+1 N N g
o
6o 1 @
= - fa 18 )
Ah n+1 1) (18) u%.

whereb = N - Ah.
In order to satisfy the stability condition, we choose the time
increment as

At:Ah (19) o 5 10 15 2 25 30 35 40 45 50
B-c w
where/ is usually greater than 1 for most planar circuit probCchg- (_2@)]72@3“50” between two kinds of approximation fdr —
lems. If Ak is the minimum space increment in (19), then-  © 0~ /™
Vv2M for 2-D propagation problems angl > +/3M for 3-D

propagation problems,
From (17)—(19), we can obtain

Because > we foragood conductofg /) Atis very large.
Therefore, inthe FDTD, (14) and (15) cannot be used for a con-
ductor and extend an unlimited conductor to the PML condition,
o(l) - At In(R,) In(Ry) s_uch as in 3-D microstrip prpblems. nge, improyed approxima—

- == 283 23 (20) tions are presented according to Padé’s approximation of (0, 2)
where the.condmom/e = o*/u was mvo!(ed for low-loss exp(—w) & T+wt w22 (21)
media. It is seen from (20) thals/e)At is smaller than 1 — exp(—w) 1
—In(R,,)/2. Normally, when10~!* < R,, < 107° for ~ 5
most microstrip circuit problems(o/e)At is smaller than w L+w/2+w?/12
12 for lossless and low-loss dielectric media. However, in From Fig. 1, it is seen that, whenis small, (21) can give an
good conductor and high-loss media > we), the value of acceptable approximation texp(—w). However, whenw in-
(o/€)At can be very big. creases, (21) gives a better approximatioexte( —w) than (14)

Fig. 1 shows the comparison between the right-hand sideddes. The similar comparison between (15) and (22) is shown
(14) andexp(—w). It is obvious that, whenv is small, the in Fig. 2. In the entire range, (22) has a better approximation to
right-hand side of (14) is a good approximationetq(—w) (1 — exp(—w))/w than (16).

However, whenw is large, the right-hand side of (14) can not Combining (3), (12), (13), (21), and (22) with (11), the
approximatesxp(—w) well. scheme of th€2M,4) FDTD method can be constructed. If

Fig. 2 shows the comparison between the right-hand sideaf = 2 and the PML scheme uses (14) and (15), (th&f, 4)

(15) and(1 — exp(—w))/w. It is seen that, whew is small, scheme reduces to the fourth-order FDTD scheme using a
the right-hand side of (15) is a good approximation(to— symplectic integrator propagator [5], [6]. #/ = 1 and the
exp(—w))/w. Similarly, whenw is large, the right-hand side central difference for the first-order time differentiation is used,
of (15) cannot approximatd — exp(—w))/w well. it becomes the standard FDTD method.

f) < -

(22)
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Fig. 4. Geometry of a rectangular waveguide partially loaded with a dielectric
Fig. 3. Variation of the maximum error for different bandwidths fot =  slab.
0.0001/cq.
TABLE I
TABLE | COMPARISON OF CUTOFF FREQUENCY RESULTS (GIGAHERTZ) FROM
MAXIMUM ERROR AND CPU TIME FOR DIFFERENT MESHES DIFFERENT SCHEMES OF THEFDTD METHOD
IN EVERY DIRECTION BY THE STANDARD FDTD METHOD
Analytical R, of scheme R, of scheme Standard
Meshes Maximum error (dB CPU time (s
55 1590 (dB) 36 ime (s) result (14) and (15) (1) and (22) FDTD
-l (GHz) (@B) (dB) (dB)
50 -23.861 499
100 -37.162 1966 16.0218 -63.507 -63.507 -57.325
19.7099 -65.553 -67.503 -55.037
TABLE 1I 21.6386 -61.267 -61.267 -52.536
MAXIMUM ERROR AND CPU TIME FOR DIFFERENT MESHES INEVERY 24.7317 -64.519 -64.519 -47.302
DIRECTION AND DIFFERENTBANDWIDTHS BY THE (21, 4) SCHEME 28.6893 3352 63354 WYRYY)
Meshes Bandwidth Maximum error CPU time 322307 -57.888 -57.888 ~45.031
M) (dB) (s) 34.4280 -55.175 55.175 -44.605
5 2 -11.632 28 37.7809 64.697 63.977 39379
g i :gg“gg ;2) 41.7686 44344 -44344 38551
5 5 -83.154 44 47.9226 -56.5 -56.746 -39.675
10 2 -34.661 87 51.0020 -60.401 -60.069 -34.929
10 3 -71.375 103
10 4 -106.933 124
10 5 -141.807 137
25 1 -11.497 675
50 1 -23.479 856
50 6 -214.742 3456
IV. EXAMPLES

To illustrate the application of the proposgt\/, 4) scheme
to electromagnetic wave problems, a 2-D air-filled rectangular
waveguide is first considered. The waveguide length and width
are both 0.01 m and the cross section is discretized by 51
grid points.M is chosen from 1 to 30, anfl = 23.9769 GHz.
For every fixed)/, the DSC parametes ') } can be obtained
by the recurrence method starting frdth = 1. In order to elim-
inate the error introduced by the time incremeft,is chosen
to be very smal(0.00001/c¢). Fig. 3 shows the maximum error ~ _|
between analytical results and numerical results for different k %
values of M. The maximum error is defined as

0.0127m

b=l

Microstrip
line

Fig. 5. Geometry of a shielded microstrip line, whére- w = 0.00127 m.

Jmax |fn — fal(z,y)
Y It is seen that wheM varies from 1 to 4, the maximum error
wherefy is the numerical field valuef 4 is the analytical field will decrease about 65 dB for every incremenf\éf This result

value, and? is the interior domain. is in agreement with (6). Therefore, we can choose a suitable



860 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 3, MARCH 2003

0.06

3.50E+052 | Scheme of (21) and (22) |
3.00E+052 -
2.50E+052 -
e}
3 200E+052+ Scheme of (14) and (15) | <
i ©
L 1.50E+052 E
i 1 ©
L 1.00E+052 ] w
5.00E+051 - J
0.00E+000
-5.00E+051 T T T T T T T T T T T T T T T 1 -0.06 -1 T T T T T T T 1
0 200 400 600 800 1000 1200 1400 1600 1800 0 10000 20000 30000 40000
Time steps Time steps
(@ (b)
Fig. 6. Comparison of time-domain electric field results at node (5,5,5) between: (a) the scheme of (14) and (15) and (b) the scheme of (21) and (22).

M from (6) according to the required accuracy. However, when TABLE IV

M is bigger than 4, the maximum error almost keeps constarfoMPARISON OFg:;aﬁs':iﬁgﬁ“gERgs%LsE(DGéiA:ERSTSZ) BETWEEN OUR

In the examples that follow)/ = 6 is used to obtain a higher

accuracy. Results of (2M, 4) scheme HFSS Results
Tables | and Il compare the maximum error (foe 1 s) and 16.93875 16.8977

CPU time between the@M, 4) scheme and the standard FDTD ) )

method. If using the same mesh in every direction,(the, 4) 22.56698 22.7337

scheme needs more CPU time than the standard FDTD for any

) X 23.46411 23.5520
bandwidth)M . Itis seen from Table Il that, for the same meshes,
the (2M,4) scheme can achieve a higher accuracy with a slight 27.70574 27.6291
increase in CPU time by increasing the bandwitithHowever, 2933492 703668

If choosing much smaller mesh@s/3—1/10) in every direction
and a larger bandwidth/ > 2, the(2M, 4) scheme can obtain
a higher accuracy with less CPU time.

The second example is a rectangular waveguide partiall
loaded with a slab of dielectric material [15], as shown i
Fig. 4. This problem is selected to verify that the improve
scheme of (21) and (22) has the same accuracy as that of
and (15) for lossless dielectric media. Meshes are chosen to
N, =50, N, = N, = 25, andAt = 0.0001/c. Two PML
conditions are added in the direction to terminate the
computational domainz(0) is 10=%, N = 10, and the factor B (r—2:)2+(y—ye)?
n in the conductivity relation (17) is 3. Table Ill shows the B = exp {_ 272
comparative results of the cutoff frequencies from the
standard FDTD method, the scheme of (14) and (15yhere(z.,y., 2.) is the center node of interior domain.
and the scheme of (21) and (22). From the table, it is Fig. 6 shows the comparison of the scheme (21) and (22)
seen that the scheme of (21) and (22) produces the samith the scheme (14) and (15). It is obvious that the solution
results as the scheme of (14) and (15). For every Tbf the scheme of (14) and (15) diverges after 1600 time steps.
mode, the DSC method has very lower relative erroidowever, the solution of the scheme of (21) and (22) is very
R.(20log(|analytical result-numerical res{ainalytical resul) ~ stable in all calculated time steps. Therefore, it can be concluded
than the standard FDTD method, and the difference betwethat the scheme (21) and (22) can deal with conductor problems
them is from 6 to 25 dB. very well.

The determination of mode cutoff frequencies based on theTable IV shows the comparison of the cutoff frequencies cal-
time-domain DSC method and the improved PML is generalizedlated by the DSC method based on an improved symplectic
to a shielded microstrip line, as shown in Fig. 5. This problestheme and those obtained by Ansoft's High-Frequency Struc-
is slightly more complicated than the previous two examplégre Simulator (HFSS). It is seen that they are in good agree-
and it does not have an exact solution. The strip line is assummaédnt. Therefore, the improved symplectic scheme can be used
to be a good conductor with parameters= 1, u,. = 1, and to extend conductors to the PML boundary directly without any
o = 2.x 10% S/m. modification.

The interior region of the square cross section is discretized
to many small square cell$, = IV, = N, = 51 and the time
fpcrement isAt = 0.0001/c¢o. In order to excite every possible

de in the cavity-type structure, the following electric field
istribution is used [15] in the transverse face:

} , forz > z. (23)
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V. CONCLUSION

In this paper, a generalized time-domain higher order
finite-difference method, based on the LK of DSC (TD-DSC)
algorithm, and a modified PML absorbing boundary condition,
is introduced to analyze 3-D guided-wave problems. T
presented scheme has the same flexibility as the stand
FDTD method in handling homogeneous and inhomogene
microwave problems. Its accuracy can be much higher th
the standard FDTD method by choosing a suitable bandwid
The higher order Langrage scheme can achieve a satisfac
accuracy with three to six points per wavelength, where
the standard FDTD scheme usually requires 12—18 points | ?

[15] S. M. Rao,Time Domain Electromagnetics New York: Academic,
1999, ch. 6.
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