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Abstract

This paper introduces the discrete singular convolution (DSC) algorithm for edge detection. Two classes of new
edge detectors, DSC edge detector (DSCED) and DSC anti-noise edge detector (DSCANED), are proposed for the
detection of multiscale edges. The DSCED is capable of extracting the 4ne details of images, whereas DSCANED is
robust against noise. The combination of two classes of DSC edge detectors provides an e5cient and reliable approach
to multiscale edge detection. Computer experiments are carried out for extracting edge information from real images,
with and without the contamination of Gaussian white noise. Sharp image edges are obtained from a variety of sample
images, including those that are degraded to a peak-signal–noise-ratio (PSNR) of 16 dB. Some of the best results are
attained from a number of standard test problems. The performance of the proposed algorithm is compared with many
other existing methods, such as the Sobel, Prewitt and Canny detectors. ? 2002 Pattern Recognition Society. Published
by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The edges in an image usually refer to rapid changes
in some physical properties, such as geometry, illumi-
nation, and re<ectivity. Mathematically, a discontinuity
may be involved in the function representing such physi-
cal properties. In practice, human perception e=ects play
an important role in determining whether an edge exists
or not. Edge detection is a key issue in image processing,
computer vision, and pattern recognition. In the context
of digital image processing, the concept of discontinuity
does not apply and an edge may refer to systematic, rapid
variation of gray-level values over number of scales. A
variety of algorithms have been proposed for analyzing
image intensity variation, including statistical methods
[1–5], di=erence methods [6–8] and curve 4tting meth-
ods [9–13].
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Edge detection in noisy environment can be treated as
an optimal linear 4lter design problem [14–18]. Canny
[15] formulated edge detection as an optimization prob-
lem and de4ned an optimal 4lter, which can be e5ciently
approximated by the 4rst derivative of Gaussian function
in the one-dimensional case. Canny’s 4lter was further
extended to recursive 4lters [19], which provide a more
e5cient way for image noise 4ltering and edge detection.
Other edge detection methods include di=erentiation-

based edge detection using logarithmic image process-
ing (LIP) models [20], contrast-based methods [21],
relaxation labeling techniques [22] and anisotropic dif-
fusion [23,24]. In fact, these methods can be combined
to achieve better performance. For instance, the sec-
ond directional derivative edge detector proposed by
Haralick [9] can be regarded as a hybrid of the di=er-
entiation method and the statistical hypothesis testing
method, which leads to better performance in a noisy
environment.
In the last decade, there has been renewed inter-

est in wavelet theory, with applications in 4ltering,
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classi4cation, and compression [25]. Wavelet and its as-
sociated multiresolution analysis have also been applied
for the characterization of image intensity variations.
Mallat et al. [26] have shown that many images can
be adequately approximated by wavelet bases. Discrete
wavelet transform (DWT) decomposes an image into a
set of successively smaller images with di=erent scales
of resolutions. The magnitude of coe5cients in di=erent
scales of the wavelet transform domain can be modi4ed
prior to carrying out the inverse wavelet transform. This
procedure can selectively accentuate interesting com-
ponents at the expense of undesirable ones. Equipped
with wavelet analysis, one can collect quadratic 4lter
responses at selected scales [27], so that an image edge
is more reasonably identi4ed with appropriate 4lter
responses at a number of desired scales.
More recently, a discrete singular convolution (DSC)

algorithm was proposed as a potential approach for com-
puter realization of singular integrations [28,29]. The
mathematical foundation of the algorithm is the theory of
distributions [30] and wavelet analysis. Sequences of ap-
proximations to the singular kernels of Hilbert type, Abel
type and delta type were constructed. In solving di=eren-
tial equations, the DSC approach exhibits the accuracy
of a global method for integration and the <exibility of a
local method for handling complex geometry and bound-
ary conditions. In the context of image processing, DSC
kernels were used to facilitate a new anisotropic di=u-
sion operator for image restoration from noise [31]. Most
recently, DSC kernels were used to generate a new class
of wavelets, which include the Mexican hat wavelet as a
special case [32].
The purpose of this study is to propose a new ap-

proach based on the DSC algorithm for edge detection.
We illustrate this approach by using a special class of
DSC kernels, the DSC kernels of delta type. In particular,
DSC kernels constructed from functions of the Schwartz
class are easy to use. Comparison is made between the
proposed DSC detectors and the Canny detectors. Ex-
periments indicate that the new approach is e=ective
for image edge detection under severe Gaussian white
noise.
The rest of the paper is organized as the following. In

Section 2, we describe the theory and algorithm for edge
detections. The theory of discrete singular distribution
(DSC) is brie<y reviewed. Two new classes of edge de-
tectors are proposed for multiscale feature extraction in
both normal and noisy environment. DSC edge detectors
(DSCED) are constructed as 4ne-scale edge detectors.
Moreover, DSC anti-noise edge detectors (DSCANED)
are designed as coarse-scale edge detectors. The applica-
tion of the present algorithm is given in Section 3. The
utility is illustrated by a number of real images. Both
noise free images and noisy images are treated. The per-
formance of the proposed approach is tested by using an
objective measure. The conclusion is given in Section 4.

2. Theory and algorithm

2.1. The discrete singular convolution

It is most convenient to discuss singular convolution
in the context of the theory of distributions. Let T be a
distribution and �(x) be an element of the space of test
functions. A singular convolution is de4ned as

F(t)= (T ∗ �)(t)=
∫ ∞

−∞
T (t − x)�(x) dx: (1)

Here T (t − x) is a singular kernel. The singular convo-
lution is the central issue for a wide range of science
and engineering problems. Of particular relevance to the
present study is the singular kernels of the delta type

T (x)= �(n)(x); n=0; 1; 2; : : : ; (2)

where � is the delta distribution. Here the superscript de-
notes the nth order derivative. Although the delta dis-
tribution is called Dirac delta function, it is not a func-
tion per se. It does not even have a value anywhere. The
kernel T (x)= �(0)(x) is important for interpolation and
T (x)= �(n)(x) (n=1; 2; : : :) are essential for di=erentia-
tions. However, these kernels cannot directly be applied
in numerical computations because of their singular na-
ture. One method to overcome this di5culty is to con-
struct an approximation {T
} that converges to the sin-
gular kernel lim
→
0 T
 → T (x), where 
0 is a general-
ized limit. In the case of T (x)= �(x), the kernel T
(x) is
a delta sequence kernel. With a su5ciently smooth ap-
proximation, it is useful to consider a discrete singular
convolution (DSC)

F
(t)=
∑
k

T
(t − xk)f(xk); (3)

where F
(t) is an approximation to F(t) and xk is an
appropriate set of discrete points on which the DSC is
well de4ned. Here, in general, f(x) is not required to be
a test function.
An important example of the DSC kernels is Shannon’s

delta kernel

�
(x)=
sin(
x)


x
: (4)

Numerically, Shannon’s delta kernel is a reproducing
kernel

f(x)=
∫ ∞

−∞
f(y)

sin 
(x − y)

(x − y)

dy ∀f∈B2

; (5)

where ∀f∈B2

 indicates that, in its Fourier repre-

sentation, the L2 function f vanishes outside the



Z.J. Hou, G.W. Wei / Pattern Recognition 35 (2002) 1559–1570 1561

interval [− 
; 
]. Here B2

 is the Paley–Wiener repro-

ducing kernel Hilbert space which is a subspace of the
Hilbert space L2(R). The Paley–Wiener reproducing
kernel Hilbert space has a very useful sampling basis
[Sk(x)= sin 
(x− k)=
(x− k); (k ∈Z)], which provides
a discrete representation of every (continuous) function
in B2




f(x)=
∑
k∈Z

f(yk)Sk(x) ∀f∈B2

; (6)

where symbol Z denotes the set of all integers. Eq. (6)
is recognized as Shannon’s sampling theorem.

2.2. DSC 7lters

From the point of view of signal processing, Shan-
non’s delta kernel �
(x) corresponds to a family of ideal
low pass 7lters, each with a di=erent bandwidth. Their
corresponding wavelet expressions

 
(x)=
sin 2
x − sin 
x


x
; (7)

are band pass 4lters. Both �
(x) and its associated
wavelet play a crucial role in information theory and
theory of signal processing. However, their usefulness is
limited by the fact that �
(x) and  
(x) are in4nite im-
pulse response (IIR) 4lters and their Fourier transforms
�̂(!) and  ̂ (!) are not di=erentiable. Computationally,
�(x) and  (x) do not have 4nite moments in the coor-
dinate space; in other words, they are de-localized. This
non-local feature in coordinate is related to the bandlim-
ited character in the Fourier representation according to
the Heisenberg uncertainty principle. To improve the
asymptotic behavior of Shannon’s delta kernel in the
coordinate representation, a regularization procedure can
be used and the resulting DSC kernel in its discretized
form can be expressed as

��;
(x − xk)=
sin(
=�)(x − xk)
(
=�)(x − xk)

e−(x−xk )
2=2�2 �¿ 0:

(8)

Here, it is understood that 
=
=� and expression (8) is
used in discrete computations exclusively.
An immediate bene4t of the regularized Shannon’s

delta kernel, Eq. (8), is that its Fourier transform is in-
4nitely di=erentiable. Both Shannon’s delta kernel and
the regularized Shannon’s delta kernel are plotted in
Fig. 1. Qualitatively, all kernels oscillate in the co-
ordinate representation. Shannon’s delta kernel has
a long tail which is proportional to 1=x. Whereas,
the regularized kernels decay much faster, especially
when � is very small. In the Fourier representa-
tion, Shannon’s delta kernel is the ideal low pass
4lter, which is discontinuous at != 1

2 . In contrast,
all regularized kernels have an “optimal” shape in
their frequency responses. Of course, they all reduce

Fig. 1. Graphs of ��;
(x) and its frequency response. The dotted
line: �=1; the dot dashed line: �=3; the dashed line: �=5;
the solid line: �=∞.

to Shannon’s delta 4lter at the limit

lim
�→∞ ��;
(x)= lim

�→∞
sin 
x

x

e−x2=2�2 =
sin 
x

x

: (9)

2.3. DSC edge detectors

To construct edge detectors, we consider a one-
dimensional, nth order DSC kernel of the delta type

�(n)�;
(x − xk); n=0; 1; 2; : : : :

Here �(0)�;
(x − xk)= ��;
(x − xk) is a DSC 4lter. The ex-
pression given in Eq. (8) is an example of the DSC 4l-
ters and many other examples are given in Ref. [28].
The derivatives �(n)�;
(xm − xk) (n=1; 2; : : :) are obtained
by di=erentiation

�(n)�;
(xm − xk)=
[(

d
dx

)n

��;
(x − xk)
]
x=xm

; (10)

and can be regarded as high-pass 4lters. The 4lters for
n=1–3 and their frequency responses are plotted in
Fig. 2. It is seen that 4lters corresponding to the deriva-
tives of Shannon’s delta kernel decay slowly as x in-
creases, whereas, regularized 4lters are functions of the
Schwartz class and have controlled residue amplitude at



1562 Z.J. Hou, G.W. Wei / Pattern Recognition 35 (2002) 1559–1570

Fig. 2. High-pass 4lters �(n)�;
(x) and their frequency responses. The dotted line: �=1; the dot dashed line: �=3; the dashed line:
�=5; the solid line: �=∞. (a) and (b): n=1; (c) and (d): n=2; (e) and (f): n=3.

large x values. In the Fourier representation, the deriva-
tives of Shannon’s delta kernel are discontinuous at
certain points. In contrast, the derivatives of regularized
kernels are all continuous and can be made as close to
those of Shannon’s as one wishes.
Fig. 2 also illustrates the impact of parameter � on

the 4lters in the time–frequency domain. For 4xed 
, the
larger the � value is, the slower the 4lters will decay in the
time domain. As a result, the truncation error increases
for numerical computations. In the frequency domain,
however, these 4lters become more localized with the

increase of �. But di=erence in � values has little impact
on the low frequency responses of various 4lters. To
balance the localization of a 4lter in both the time and
frequency domains, an optimal � is required and can be
attained for a given practical problem.
Fig. 3 shows the in<uence of parameter 
 on the fre-

quency response of �(1)�;
 for a given �. It is seen that
the frequency response is very sensitive to the change of

 value. With the decrease of 
, the peak of frequency
response moves from the high frequency region to the
low frequency one. At the limit of 
 → 0, the frequency
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Fig. 3. Frequency response of DSCED1 with di=erent 
 values
(�=2).

response localizes at a very low frequency region. Ob-
viously, the DSC parameter 
 can be utilized to achieve
an optimal frequency selection in a practical applica-
tion. For example, in many problems, the object to be
processed may be corrupted by noise whose frequency
distribution mainly concentrates in the high frequency
region. Therefore, a small 
 value can be used to avoid
the noise corruption.
For noise free images, the nth order 4ne-scale DSC

edge detector (DSCEDn) is given by

DSCEDn(xi; yj)

=

∣∣∣∣∣∣
Wn∑

k=−Wn

�(n)�n;
n(xi − xk)I(xk ; yj)

∣∣∣∣∣∣

+

∣∣∣∣∣∣
Wn∑

l=−Wn

�(n)�n;
n(yj − yl)I(xi; yl)

∣∣∣∣∣∣ ; n=1; 2; : : : ;

(11)

where I is a digital image. In principle, all derivatives
(n=1; 2; : : :) can be employed for edge detection and
in general, an appropriate linear combination of them
may be required because image edges can exhibit vari-
ous shapes. Nevertheless, in most situations, DSCED1 is
quite su5cient and very easy to implement. These edge
detectors are capable of extracting 4ne details. However,
they perform less well for images that are corrupted with
much noise.
Due to the possible presence of noise, the de4nition of

image edge is not unique and 4nding edge by di=erenti-
ation is an ill-posed problem in a digital image. Essen-
tially, the di=erential operator is de4ned based on contin-
uous and di=erentiable functions. Its discrete version, the
di=erence operation (or di=erence operator as referred in
the literature), is strictly applicable only to those sets of
discrete values that are attained by the appropriate dis-

cretization of the original continuous and di=erentiable
functions. Therefore, we de4ne edges at di=erent levels
of scales and we call them multiscale edges. The con-
cept of multiscale edges has an advantage that one can
locate an edge at selected scale which is comparable to
the physical extension of the feature. A 4ne-scale edge
detector, as given in Eq. (11), is capable of extracting
features at all scales, though it is sensitive to noise. How-
ever, a coarse-scale edge detector is not too sensitive
to 4ne details and is capable of performing well under
noisy conditions. One way to extract the present multi-
scale edges is to use the wavelet multiresolution analysis.
Another practical way for detecting multiscale edges is
to construct edge detectors by a combination of 4ltering
and edge detection. In the present work, the nth order
DSC anti-noise edge detector (DSCANEDn), or the nth
order coarse-scale DSC edge detector, is proposed as

DSCANEDn(xi; yj)

=

∣∣∣∣∣∣
Wn∑

k=−Wn

W0∑
l=−W0

�(n)�n;
n(xi − xk) �
(0)
�0 ;
0 (yj − yl)I(xk ; yl)

∣∣∣∣∣∣

+

∣∣∣∣∣∣
W0∑

k=−W0

Wn∑
l=−Wn

�(0)�0 ;
0 (xi − xk) �
(n)
�n;
n(yj − yl)I(xk ; yl)

∣∣∣∣∣∣ ;

n=1; 2; : : : : (12)

Note that the di=erentiation matrices in Eqs. (11) and
(12) are, in general, banded. This is advantageous in
large-scale computations.
Although the present DSCEDn and DSCANEDn are

designed as 4ne and coarse edge detectors, respectively,
they operate on the same grid. It is possible to carry out
the operations after appropriate down samplings. This
multiscale procedure may be better for detecting edges
under noisy conditions. For simplicity, the details of this
procedure are not presented in this paper.

3. Results and discussion

To explore the utility and demonstrate the e5ciency
of the proposed approach, we carry out computer exper-
iments on gray-level images. To this end, we select a
few classes of standard images, which are either natural
or human-made. A summary of the images used in the
present study is plotted in Fig. 4. The golfcar, boat and
pitcher images are non-textured human-made images
and the tire is a textured human-made image. The egg
and pepper images are natural and non-textured images,
and the pinecone image is a natural and textured image.
The cameraman, Lena and Barbara images are 4gure im-
ages, of which the Barbara image contains line textures.
The square is a synthetic image. The settings of these
images vary from in-door scenes to out-door views. The
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Fig. 4. A collection of sample images, where the 4rst eight images are of the size of 512× 512 and the last three are of 256× 256.
The 4rst ten images are real ones and the last one is synthetic.

resolution of all images is 8-bit per pixel. The 4rst eight
images are of the size of 512× 512 pixels, while the last
three images are of 256× 256. For de4niteness and sim-
plicity, we set the parameter W =2 for all experiments
in this section.
Most edge detection techniques utilize a post-

processing thresholding immediately after feature ex-
traction to thin and=or extend edge contours. There are
many well-established thresholding [33,34] and edge
thinning techniques. In the present work, the edge detec-
tion consists of two steps: edge magnitude calculation,
and thresholding. For simplicity, a 4xed threshold is
used in the experiments, although there are adaptive
thresholding techniques that could be implemented. In
general, there is no de4nite “rule” to select a threshold
for edge detection. A useful way is to “tune” the thresh-
old such that the resulting edge images have the same
percentage of pixels in gradient images that are classi4ed
as edge pixels. Unfortunately, there is no de4nite rule to
determine the percentage for a real image. A common
practice is to assume the percentage of edge pixels is
about 5–10% [20] for a normal image. In the present
study, we set the percentage to 9%. The procedure
described here is also applied for the implementation
of other standard edge detectors, which are used for
comparison in the present study.
In the rest of this section, we conduct three groups

of computer experiments to test the proposed approach.
Group one is designed to investigate the performance of
the present algorithm on the edge detection of clean im-
ages. Group two is to examine the ability of the present

algorithm on extracting edges from noisy images. The
last group is designed to objectively compare the perfor-
mances of di=erent edge detectors by using a computer
generated image. They are, respectively, described in the
following three subsections. A brief discussion is given
in the last subsection.

3.1. Clean images

In this subsection, we examine the performance of the
4ne-scale edge detectors, DSCED1. The DSCED1 used
here is a 5× 1 mask. Two conventional approaches, the
Sobel detector and the Prewitt detector, are also em-
ployed for comparison. It is well-known that both the
Sobel and Prewitt detectors are constructed by using the
4nite di=erence in one direction in association with a
low-pass 4lter in the normal direction for denoising.
Fig. 5 presents a comparison of the performance of

4ve edge detectors on the sample images. Here, the 4rst
three columns are, respectively, obtained by using the
DSCED1 method with di=erent parameters (Column 1:
�1 = 3; 
1 = 1:5; Column 2: �1 = 1; 
1 = 1:5; Column 3:
�1 = 1; 
1 = 0:4). The performance of the Sobel and Pre-
witt detectors are given in the fourth and 4fth columns,
respectively. From Fig. 5, we can see the impact of the
parameters on the performance of DSCED1. The edge
map of Column 1 is much sharper than that of Column
2. This is due to the fact that a smaller �1 value leads to
larger frequency response at the high frequency region,
as shown in Fig. 2b. As a result, unwanted noise-like 4ne
structures are produced in Column 2.
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Fig. 5. Edge images obtained by using di=erent detectors. Columns 1–3 are obtained by using the DSCED1 with di=erent parameters
(column 1: �1 = 3; 
1 = 1:5, column 2: �1 = 1; 
1 = 1:5, column 3: �1 = 1; 
1 = 0:4). Column 4 is obtained by using the Sobel
detector and column 5 by the Prewitt detector.

As seen from Fig. 3, a smaller 
1 value leads to a
narrow band frequency response. Thus, tuning 
1 is an
alternative way to improve the performance of DSCED1.
The e=ect of 
1 can be observed by a comparison between
Columns 2 and 3. Indeed, the performance of DSCED1

is improved generally in Column 3 by using a smaller 
1
value. The performance of DSCED1 is further compared
with that of standard methods, presented in the last two
columns. The Sobel detector (Columns 4) and Prewitt
detector (Column 5) provide similar results. The visual
di=erences between these results and those of DSCED1

in Columns 1 and 3 are marginal. Both the Sobel and
Prewitt detectors are two-dimensional (3 × 3), whereas
the DSC detectors are one-dimensional (5×1). Therefore,
the DSC detectors are slightly more e5cient for edge
detection of these images.
It is noted that none of the above-mentioned 4ve edge

detectors resolves the facial feature of the Barbara image,
which is a well-known di5cult case. To illustrate the po-
tential of the DSC detectors, we also conduct two tests by
using DSCANED1 which couples a high-pass 4lter with
a low-pass one. The DSCANED1 parameters are chosen
as �1 = 2; 
1 = 0:2; �0 = 3; 
0 = 0; Wn =2; n=0; 1.
These results are depicted in Fig. 6, along with those ob-

tained by using the Sobel and Prewitt detectors. Clearly,
the DSC detector gives rise to excellent facial features
for the Barbara image.

3.2. Noisy images

To investigate the performance of the DSC algorithm
under noisy environment, we consider a number of low
grade images. Fig. 7 presents a summary of the noisy
images, which are generated by adding independently,
identically distributed (i.i.d.) Gaussian noise, and the
peak-signal–noise-ratio (PSNR) for each image is 16 dB.
Fig. 8 illustrates the resulting edge images detected from
noisy environment, obtained by DSCANED1 (Column
1), the Sobel detector (Column 2) and the Prewitt de-
tector (Column 3). The e=ect of noise is signi4cant and
the “edges” re<ecting small illumination changes are
invisible. For de4niteness and simplicity, DSCANED1

parameters remain the same as those speci4ed in the
last subsection. It is possible that other combinations
of the parameters could deliver similar results and the
DSCANED1 parameters could be further optimized to
obtain a global optimal. A discussion of such a global
optimization procedure is beyond the scope of the
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Fig. 6. A comparison of edge images obtained by using di=erent detectors. Column 1: the DSCANED1; column 2: the Sobel detector;
column 3: the Prewitt detector.

Fig. 7. A collections of noisy sample images (PSNR=16 dB).

present work, and the interested readers are referred to
Ref. [15].
In general, the detected edges are blurred due to the

presence of noise. The two conventional detectors, the
Sobel and Prewitt, detect not only spatially extended

edges, but also many spurious features due to noise. As
a result, the contrast of their edge images is poor. In con-
trast, much sharper edge images are successfully attained
by the DSC detector, as shown in Column 1 of Fig. 8.
The di=erence in contrast stems from the fact that the
DSCANED1 detects edges at a coarse scale, in which the
high frequency noise has been remarkably smoothed out.
As mentioned in the introduction, the Canny detec-

tor [15] was formulated as an optimization problem for
being used under noise environment. It was pointed
out by Srinivasan et al. [35] that the Canny detector
can be e5ciently approximated by the following two
4lters [35]:

C1 =− x
�2 e

−(x2+y2)=2�2 ; (13)

C2 =− y
�2 e

−(x2+y2)=2�2 ; (14)

which represent, respectively, the edge detectors along
the horizontal and vertical directions. The parameter
is taken as �=1:5, which, as suggested by other re-
searchers [35,36], is nearly optimal in association with
a 5× 5 mask. The resulting edge images are included in
Column 4 of Fig. 8 for a comparison. Obviously, there
is no visual di=erence between those obtained by using
the DSC detector and the Canny detector. These exper-
iments indicate the performance of the DSC based edge
detector is as good as that of the Canny detector.

3.3. An objective comparison

To validate the DSC detector further, we present an
alternative evaluation in this subsection. Edge detection
systems could be compared in many ways. For exam-
ple, the image gradients may be compared visually [36],
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Fig. 8. Edge images of the noisy sample images, column 1–4 are obtained by using, respectively, the DSCANED1, the Sobel
detector, the Prewitt detector and the Canny detector.

where an edge image is evaluated by a group of people
and the average score could be an index of quality. For
synthetic images, where the exact location of edges is
known, Abdou and Pratt [37] proposed a 4gure of merit
to objectively evaluate the performance of edge detec-
tors. Their 4gure of merit is de4ned as

F =
1

max(NI ; ND)

ND∑
i=1

1
1 + $d2

i
; (15)

where di is the distance between a pixel declared as edge
point and the nearest ideal edge pixel, $ is a penalty
constant, NI and ND are the numbers of ideal and detected

edge pixels respectively. It is a common practice to eval-
uate the performance of an edge detector for synthetic
images by introducing random noise in the images. A
plot of F against the peak-signal–noise-ratio gives the
degradation in the performance of the detector. The value
of F is less than or equal to 1. The larger the value, the
better the performance.
Performance comparison is based on a synthetic square

image, as shown in Fig. 6. The 4gure of merit F for
each of the methods studied is calculated with respect
to di=erent PSNR, and the results are plotted in Fig. 9.
When the noise level is low, the F values are very close
to 1 and the performances of all the four detectors are



1568 Z.J. Hou, G.W. Wei / Pattern Recognition 35 (2002) 1559–1570

Fig. 9. The 4gure of merit for the synthetic square image. Triangle: the DSCANED1; star: the Canny detector; plus: the Prewitt
detector; circle: the Sobel detector.

very satisfactory. With the increase of the noise level,
the F values of two di=erence detectors decrease, and
are less than 0.5 when PSNR is about 10 dB. In contrast,
the Canny detector and the DSC detector achieve large
F values over the domain of interest, suggesting their
superiority to other two detectors. It is noted that the
performance of ANDSCED1 is better than that of the
Canny detector for small PSNR values.

3.4. Discussion

In the presence of noise, the direct application of the
di=erentiation operation in edge detection will encounter
di5culty, as illustrated by the preceding experiments.
The di=erentiation operation is sensitive to noise and
the problem is mathematically ill-posed. To o=set the
e=ect of noise, a direct approach is to remove noise
before the di=erentiation, usually by convolving the raw
input image with a Gaussian function, which leads to the
well-known Marr’s detector [27]. This problem can also
be solved by using regularization techniques developed
for dealing with mathematically ill-posed problems [14].
Poggio et al. [38] proved that the variational formula-
tion of Tikhonov regularization leads to a Gaussian-like
convolution 4lter. In the present method, the idea to

deal with noise basically falls into this framework,
i.e. taking di=erentiation after a low-pass 4lter con-
volution.
It is well-known that the performance of the Canny

detector depends on the computational bandwidth W and
standard deviation �. These parameters can be utilized
to obtain edges which is optimized with respect to the
space of parameters (�∈R+; W ∈Z+) for each given im-
age. In particular, the parameter � gives rise to excel-
lent time–frequency localization. However, the Canny
4lter does not provide much freedom for frequency se-
lection. In contrast to the Canny detector, the DSC de-
tector has one more parameter, 
, which is very e5cient
for frequency selection as shown in Fig. 3. Thus, DSC
detector should perform at least as well as the Canny
detector.
Both the Canny and DSC detectors have a parameter

�n which a=ects signi4cantly the time–frequency local-
ization of the 4lter, as can be seen from Fig. 2. The Gaus-
sian factor determines the regularity and smoothness of
the DSC kernel and can be used to suppress spurious
oscillations, i.e., the Gibbs phenomenon, which is un-
wanted in many applications, such as image processing,
audio 4ltering and numerical computation. Appropriate
choice of �n can judiciously balance between the degree
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of noise removal and 4ne feature detection, and improve
the overall performance.
The DSC detector has an extra parameter, 
n, which

controls DSC 4lter frequency selection as shown in Fig.
3. Experiments in Section 3.1 indicated that, when 
n

decreases, 4ne details are smoothed out and main edge
structures appear signi4cant. This property can be utilized
to deal with images corrupted with color noise, for which
the Canny detector is not the best choice. The ability of
frequency selection is important to many practical appli-
cations. Since it has one more parameter to be optimized,
the DSC algorithm is a potential method for more com-
plicated tasks. Optimization of DSC parameters in more
general conditions will be conducted in our future study.

4. Conclusion

This paper introduces the discrete singular convolu-
tion (DSC) algorithm [28] for edge detection. A num-
ber of DSC (low-pass) 4lters are proposed in the con-
text of distribution theory. A family of regularized DSC
kernels are constructed for denoising and data interpo-
lation. Edge detection is analyzed as a multiscale pro-
cess, in which the compatibility between physical ex-
tension and the scale of a detector is emphasized. Two
classes of DSC edge detectors are constructed in the
present work. One class is for clean images, the 4ne-scale
DSC edge detector (DSCEDn), and the other for noisy
images, the coarse-scale DSC anti-noise edge detector
(DSCANEDn). The combined use of the two DSC edge
detectors make the present algorithm e5cient for edge
detection in a variety of practical situations. The per-
formance of the proposed algorithm is compared with
many other existing methods, such as the Sobel, Prewitt
and Canny detectors. The Canny detector can be opti-
mized with respect to the 4lter length and time–frequency
localization, whereas, the DSC detector can be optimized
with respect to one more parameter, 
, which plays the
role of frequency selection. Experiments on a variety of
images have been carried out with some selected DSC
parameters, and the performance of DSC detectors is at
least as good as that of the Canny detector.
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