
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(1): 1463–1487.
DOI:10.3934/math.2025068
Received: 16 November 2024
Revised: 04 January 2025
Accepted: 13 January 2025
Published: 22 January 2025

Research article

Multi-scale Jones polynomial and persistent Jones polynomial for knot data
analysis

Ruzhi Song1,3, Fengling Li1,*, Jie Wu2,3, Fengchun Lei1 and Guo-Wei Wei4,5,6

1 School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, Liaoning,
China

2 School of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
3 Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China
4 Department of Mathematics, Michigan State University, 426 Auditorium Road, East Lansing, MI

48824, USA
5 Department of Biochemistry and Molecular Biology, Michigan State University, 426 Auditorium

Road, East Lansing, MI 48824, USA
6 Department of Electrical and Computer Engineering, Michigan State University, 426 Auditorium

Road, East Lansing, MI 48824, USA

* Correspondence: Email: fenglingli@dlut.edu.cn.

Abstract: Many structures in science, engineering, and art can be viewed as curves in 3-space.
The entanglement of these curves plays a crucial role in determining the functionality and physical
properties of materials. Many concepts in knot theory provide theoretical tools to explore the
complexity and entanglement of curves in 3-space. However, classical knot theory focuses on global
topological properties and lacks the consideration of local structural information, which is critical
in practical applications. In this work, two localized models based on the Jones polynomial were
proposed, namely, the multi-scale Jones polynomial and the persistent Jones polynomial. The stability
of these models, especially the insensitivity of the multi-scale and persistent Jones polynomial models
to small perturbations in curve collections, was analyzed, thus ensuring their robustness for real-world
applications.

Keywords: knot data analysis; curve data analysis; Jones polynomial; localization; stability; protein
flexibility
Mathematics Subject Classification: 57K10, 92C10

https://www.aimspress.com/journal/Math
https://dx.doi.org/10.3934/math.2025068


1464

1. Introduction

Knot theory, a branch of mathematics that focuses on the study of mathematical knots, is primarily
concerned with classifying and analyzing knots based on their essential properties under ambient
isotopy [1]. This approach allows mathematicians to disregard the specific manner in which knots
are embedded in 3-space, emphasizing instead the invariants that remain unchanged under continuous
deformations. There are several knot invariants, such as the knot crossing number, the knot group [1],
the Alexander polynomial [2], the Jones polynomial [3], the knot Floer homology [4], and the
Khovanov homology [5].

Knot theory has applications in many fields, including physics [6], chemistry [7], and biology [8–
10]. In practical applications, however, two major challenges arise: Many structures do not form
closed loops, and ambient isotopy can significantly alter local structures while preserving global knot
characteristics. For example, open curves in the 3-space, such as polymers [11, 12], textiles [13],
chemical compounds [14], and biological molecules [15, 16], often exhibit local entanglement that
critically affects their physical properties and functions. Topological invariants, functions that remain
unchanged under ambient isotopy, are essential for analysis of knots and links [17–19]. However,
these invariants do not extend to open curves, since open curves can be continuously deformed without
requiring cutting or rejoining, making topological equivalence inapplicable.

In recent years, methods that incorporate classical concepts from knot theory and are more
applicable to practical problems have been proposed. Compared to topological data analysis
(TDA), the concept of knot data analysis (KDA) was formally introduced in [20]. Panagiotou and
Plaxco [21] demonstrated the utility of the Gauss link integral in protein entanglement, particularly to
understand protein folding kinetics and improve future folding models. Based on this, Baldwin and
Panagiotou [22] introduced a new measure of local topological and geometrical free energy based on
writhing and torsion of protein chains, highlighting its critical role in the rate-limiting steps of protein
folding. In addition, Baldwin et al. [23] extended these topological concepts to the study of the Severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, showing how local geometric
features such as writhe and torsion influence its stability and behavior. In a related effort, Shen et
al. [20] introduced multi-scale Gauss link integral (mGLI), a novel method leveraging the Gauss link
integral to quantify the entanglement and topological complexity of both open and closed curves at
various scales. This versatile approach has broad applications in the analysis of curve structures in
both physical and biological systems.

The Jones polynomial [3], a fundamental invariant in knot theory, provides a polynomial measure
of entanglement that distinguishes different types of knots by smoothing their crossings. Panagiotou
and Kauffman [24] extended this concept to an open curve and proposed a continuous measure
of entanglement that converges to the classical Jones polynomial as the end points of an open
curve approach each other. Barkataki and Panagiotou [25] further refined this by introducing the
Jones polynomial for collections of curves, averaged in all projection directions. Building on these
topological frameworks, Panagiotou and Kauffman [26] also used Vassiliev invariants to quantify the
complexity of open and closed curves in 3-space. Furthermore, Wang and Panagiotou [27] explored
the correlations between protein folding rates and topological measures, specifically writhe, average
crossing number (ACN), and the second Vassiliev invariant, to understand the behavior of native
protein states. In addition, Herschberg, Pifer, and Panagiotou [28] developed a computational tool
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that quantifies topological complexity in systems such as polymers, proteins, and periodic structures.
Using the Jones polynomial framework for the collections of disjoint open or closed curves

proposed by Barkataki and Panagiotou in [25], this manuscript introduces two novel models: The
multi-scale Jones polynomial, represented by a characteristic matrix, as described in Section 3.1, and
the persistent Jones polynomial, represented by weighted persistent barcodes or weighted persistent
diagrams, as described in Section 3.2. The weighted barcode was introduced by Cang and Wei
in [29]. Both models have the ability to capture local and global entanglement properties in open
or closed curve structures in the 3-space, thus, effectively representing their topological characteristics.
These models provide an improved approach to solving problems in physical, biological, and chemical
environments.

The stability of the proposed models is a key feature that ensures their robust applicability to
real-world scenarios. Stability in this context refers to the robustness of persistent Jones polynomial
models, including the multi-scale process, against small perturbations in the data. Minor changes in
the positions or configurations of the curve segments should result in correspondingly minor variations
in the computed measures. This property is essential for reliable analysis in noisy environments or
datasets subject to slight distortions, such as those often encountered in physical, biological, and
chemical systems. The models provide a reliable framework for characterizing the topological and
geometric properties of complex structures.

The proposed models are applied to the prediction of B factors and the analysis of protein α-helix
and β-sheet structures. The B factor, or Debye-Waller factor, is a critical metric in structural biology
that represents the atomic displacement and flexibility within a protein structure and, thus, serves
as an indicator of protein dynamics and stability. Traditional methods for predicting B factors have
had limitations in capturing the topological information inherent in protein structures. To address
this, we apply the multi-scale Jones polynomial model to the prediction of B factors, and achieve
prediction accuracies of 0.899, 0.808, and 0.720 for small, medium, and large protein sets [30],
respectively. Our results on these three datasets outperformed previous methods. In addition, the
persistent Jones polynomial model is utilized to explore the structural properties of protein α-helix and
β-sheet segments, with visual representations provided by barcodes that highlight the entanglement
features across these secondary structures. The proposed multi-scale Jones polynomial and persistent
Jones polynomial models have potential for curve data analysis (CDA).

The article is organized as follows: In Section 2, the fundamental construction of the Jones
polynomial is introduced for the collections of curves in the 3-space. In Section 3, two new models of
the Jones polynomial of curves in 3-space are established, namely, the multi-scale Jones polynomial
(discussed in Section 3.1) and the persistent Jones polynomial (described in Section 3.2). In Section
4, the stability of these two local models is demonstrated. Section 5 presents applications of the new
models, including the prediction of B factors and the exploration of α-helix and β-sheet structures. In
Section 6, a discussion is presented on the selection of segmentation, localization, stability issues, and
the comparison with classical persistent homology.

2. The Jones polynomial of curves in 3-space

The Jones polynomial [3] is an important invariant in classical knot theory, recognized for its ability
to characterize the entanglement properties of knots and links. However, it is less applicable to practical
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scenarios, which often involve open curves in 3-space rather than closed curves. To address this
limitation, Barkataki and Panagiotou [25] extended the concept to the collections of disjoint open or
closed curves by defining a normalized version of the bracket polynomial, averaged over all projection
directions. This adaptation increases its relevance to real-world applications. Moreover, the Jones
polynomial for collections of disjoint open or closed curves converges to the classical Jones polynomial
as the endpoints of these curves approach each other. When projected onto a 2-dimensional plane, a
collection of curves in 3-space forms a linkoid, which can be generalized to multi-component knotoids
describing open-ended knot diagrams. The theory of knotoids was first introduced by Turaev [31], with
further developments on linkoids elaborated in [32–35].

2.1. Segment cycles

Before defining the bracket polynomial of linkoids, it is essential to introduce the concept of
segment cycles associated with a state. Let L be a linkoid diagram consisting of multiple components.
Let G = {1, 2, 3, . . . , 2n} denote the set of all endpoints (heads and legs) of L. A component of a linkoid
with n components is represented as l2 j−1,2 j, where j ∈ {1, 2, . . . , n}. The head-leg pairing forms a
product of n disjoint 2-cycles, denoted by L̂ = (1, 2)(3, 4) . . . (2n − 1, 2n).

Let S be a state corresponding to a choice of smoothing over all crossing points in L. This state
induces a pairing represented by the product of n disjoint 2-cycles,

Ŝ = (s1, s2)(s3, s4) . . . (s2n−1, s2n),

where each si ∈ G and each pair (s2 j−1, s2 j) for j ∈ {1, 2, . . . , n} represent the endpoints of a component
in the state S .

For any endpoint a ∈ G, the set

OrbS (a) = {x ∈ G | x = (L̂ ◦ Ŝ )m(a),m ∈ Z}

is defined as the orbit under the composition function L̂ ◦ Ŝ . The segment cycle of an endpoint a ∈ G
is given by

Seg(a) = OrbS (a) ⊔ OrbS (L̂(a)).

It is notable that for any point a ∈ G, L̂(a) also belongs to the same segment cycle. Thus, a segment
cycle always contains an even number of elements.

Lemma 2.1. [25, Proposition 3.1] The number of segment cycles in a state S , denoted by |S |cyc,
satisfies 1 ⩽ |S |cyc ⩽ n.

Consider a state S of L with the associated pairing Ŝ . Let Seg(a) be a segment cycle in S with
|Seg(a)| = 2k. This segment cycle can be represented by a circle marked with the 2k endpoints of L
(see Figure 1). Let a ∈ G be the starting point of the circle. The remaining 2k-1 endpoints are uniquely
sequenced in the circle as Ŝ (a), L̂(Ŝ (a)), Ŝ (L̂(Ŝ (a))), etc., up to L̂(a). It is important to note that the
arcs connecting adjacent points in this circular representation alternate between the functions Ŝ and L̂.
The points connected by Ŝ belong to the same component in state S , while the points connected by L̂
belong to the same component in L.
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a

L̂(a) Ŝ (a)

L̂(Ŝ (a))

Ŝ (L̂(Ŝ (a)))

L̂(Ŝ (L̂(Ŝ (a))))

Figure 1. Representation of the segment cycle of a ∈ G.

Example 1. Consider the linkoid diagram L as shown in Figure 2(a). The set G of all endpoints is
{1, 2, 3, 4}. There are two states of L, S 1, and S 2, as shown in Figures 2(b) and (c). The associated
pairings Ŝ 1 and Ŝ 2 are represented by the permutations (1, 3) (2, 4) and (1, 2) (3, 4), respectively. The
segment cycles of states S 1 and S 2 are shown in Figure 3. Then, |S 1|cyc = 1 and |S 2|cyc = 2.

1

2

3

4

(a) Hopf linkoid

1

2

3

4

(b) State S 1

1

2

3

4

(c) State S 2

Figure 2. Hopf linkoid and its states.

1

Ŝ 1(1) = 3Ŝ 1(4) = 2

L̂(3) = 4

(a) Ŝ 1 = (1, 3)(2, 4)

3

Ŝ 2(3) = 4

1

Ŝ 2(1) = 2

(b) Ŝ 2 = (1, 2)(3, 4)

Figure 3. Segment cycles of two states.

2.2. Jones polynomial

The bracket polynomial of linkoids in S 2 or R2 is defined through an extension of the bracket
polynomial of links. The following initial conditions and diagrammatic relations are sufficient for the
skein computation of the bracket polynomial of linkoids.
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Definition 2.1. Let L be a linkoid diagram with n components. The bracket polynomial of the linkoid
is uniquely determined by the following skein relation and initial conditions:〈

L ∪
〉
= (−A2 − A−2)⟨L⟩,

〈 〉
= A

〈 〉
+ A−1

〈 〉
,

〈 〉
= (−A2 − A−2)|cyc|,

where |cyc| denotes the number of distinct segment cycles.
The bracket polynomial of L can be expressed as the following state sum expression:

⟨L⟩ =
∑

S

Aσ(S )d|S |circ−1d|S |cyc ,

where S is a state corresponding to a choice of smoothing over all crossing points in L; σ(S ) is the
algebraic sum of the smoothing labels of S ; |S |circ is the number of disjoint circles in S , |S |cyc is the
number of distinct segment cycles in S ; and d = (−A2 − A−2).

The normalized bracket polynomial is defined as follows:

fL = (−A−3)−Wr(L) ⟨L⟩ ,

where Wr(L) is the writhe of the linkoid diagram L.
Now, consider curves in 3-space. A regular projection of curves fixed in 3-space can result in

different linkoid diagrams depending on the projection direction chosen. Barkataki and Panagiotou
in [25] define the bracket polynomial of curves in 3-space as the average of the bracket polynomial
of a projection of the curve over all possible projection directions. This definition is made precise as
follows:

Definition 2.2. [25, Definition 4.1.] Let L be a collection of disjoint open or closed curves in the
3-space. Let (L)ξ denote the projection of L on a plane with normal vector ξ. The normalized bracket
polynomial of L is defined as follows:

fL =
1

4π

∫
ξ∈S 2

(−A3)−Wr((L)ξ)⟨(L)ξ⟩dS ,

where each (L)ξ is a linkoid diagram, and its bracket polynomial can be calculated using Definition 2.1.
Note that the integral is taken over all vectors ξ ∈ S 2, excluding a set of measure zeros (corresponding
to the irregular projections). This gives the Jones polynomial of a collection of disjoint open or closed
curves in the 3-space with substitution A = t−

1
4 .

Proposition 2.1. [25, Proposition 4.1.]

• For open curves, the Jones polynomial has real coefficients and is a continuous function of the
curve coordinates.
• As the endpoints of the open curves tend to coincide in 3-space, the Jones polynomial tends to

that of the corresponding link.

3. Localized Jones polynomials

The Jones polynomial of a collection of disjoint open or closed curves in 3-space describes the
entanglement of the curves within the entire collection. However, in many applications, it is desirable to
extract the local structural information of the curves. Two methods for localizing the Jones polynomial
are proposed to capture the entanglement of a collection of curves and to meet the needs of practical
applications.
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3.1. Multi-scale Jones polynomial

Let L be a collection of disjoint open or closed curves in the 3-space. Given a segmentation Pn =

{l1, l2, . . . , ln} of L, where each li represents a finite curve segment of L, the segments li, 1 ≤ i ≤ n can
be connected sequentially to reconstruct L.

To investigate the entanglement properties between each curve segment and its neighboring
segments, multi-scale analysis is a suitable approach. Multi-scale analysis requires the definition of
a distance metric between the curve segments. The distance between segments, denoted d(li, l j), can
be specified by different metrics, depending on the application context. In this study, for simplicity, we
define the distance d(li, l j) as the upper bound of the Eulerian distances between a point of one curve
segment and another curve segment.

For any curve segment li, consider the set of segments within Pn whose distances from li fall within
the range [r,R), where r ⩽ d(li, l j) < R. This set, which includes li itself, is denoted as

Pi
r,R = {l j ∈ Pn | r ⩽ d(li, l j) < R} ∪ {li}.

The Jones polynomial of the set of curve segments Pi
r,R, denoted by JPi

r,R, quantifies the
entanglement of the curve segment li with other segments as r and R vary. By selecting two sets
of distance parameters, {r1, r2, . . . , rm} and {R1,R2, . . . ,Rm}, with ri < Ri for 1 ≤ i ≤ m, we obtain a set
of characteristic polynomials for li:

{JPi
r1,R1
, JPi

r2,R2
, . . . , JPi

rm,Rm
}.

Applying this procedure to all curve segments in Pn, we obtain an n × m matrix:
JP1

r1,R1
JP1

r2,R2
· · · JP1

rm,Rm

JP2
r1,R1

JP2
r2,R2

· · · JP2
rm,Rm

...
...

. . .
...

JPn
r1,R1

JPn
r2,R2

· · · JPn
rm,Rm

 ,
capturing both local and global entanglement properties for the collection of disjoint open or closed
curves L.

Each matrix entry is a polynomial. For practical applications, the Jones polynomial can be evaluated
at a specific parametrization, such as t = 10, resulting in an n × m characteristic matrix for the
segmentation Pn of L:

mJ(Pn) =


JP1

r1,R1
(10) JP1

r2,R2
(10) · · · JP1

rm,Rm
(10)

JP2
r1,R1

(10) JP2
r2,R2

(10) · · · JP2
rm,Rm

(10)
...

...
. . .

...

JPn
r1,R1

(10) JPn
r2,R2

(10) · · · JPn
rm,Rm

(10)

 ,
where each entry is a real number.

Remark 3.1. For specific application contexts involving research objects that can be represented as a
collection of disjoint open or closed curves L, the choice of segmentation Pn = {l1, l2, . . . , ln} plays a
critical role. The choice of an appropriate segmentation, tailored to the requirements of the application,
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allows for a more precise capture of the entanglement properties inherent to the research objects,
and, thus, a more accurate reflection of their characteristics. Similarly, the choice of parameters
{r1, r2, . . . , rm} and {R1,R2, . . . ,Rm} influences the robustness and precision of the final assessment of
the entanglement features of the objects.

3.2. Persistent Jones polynomial

To address different application scenarios and to better capture the information about entanglement
of curves in the 3-space, a second localization of the Jones polynomial has been proposed. This
adaptation of the Jones polynomial for a collection of disjoint open or closed curves, aimed
at quantifying the complexity of entanglement, serves as an extension of the classical Jones
polynomial [25].

Let L be a collection of disjoint open or closed curves with a segmentation denoted by Pn =

{l1, l2, . . . , ln}, where li is a segment of L. The segments li, 1 ⩽ i ⩽ n, can be connected sequentially
to reconstruct L. To effectively represent these multiple segments, both the Čech complex and the
Vietoris-Rips complex, constructed here from the distance matrix,

d(Pn) =


0 d(l1, l2) · · · d(l1, ln)

d(l2, l1) 0 · · · d(l2, ln)
...

...
. . .

...

d(ln, l1) d(ln, l2) · · · 0


from Pn = {l1, l2, . . . , ln}, are suitable methods. Given the similarity between the Čech complex and the
Vietoris-Rips complex, we will focus on the Vietoris-Rips complex in the following discussion. Let r
denote the variable parameter of the Vietoris-Rips complex.

Definition 3.1. A critical value of the Vietoris-Rips complex is a real number r such that, for any
sufficiently small ε > 0, the map Kr−ε ↪→ Kr+ε is an inclusion but not an isomorphism, where Kr

denotes the complex at the Vietoris-Rips parameter r.

Remark 3.2. For a segmentation Pn of L into finite curve segments, the Vietoris-Rips complex has a
finite number of critical values.

Let r0 < r1 < r2 < · · · < rm represent the critical values of the Vietoris-Rips complex for a
segmentation Pn of L. This generates a sequence of complexes from Pn that form a filtration F (Pn):

Kr0 ⫋ Kr1 ⫋ Kr2 ⫋ · · · ⫋ Krm ,

where the final complex Krm is an (n−1)-simplex. For any x < y, let Vy
x : Kx ↪→ Ky denote the inclusion

map.

Lemma 3.1. [36, Critical Value Lemma] If a closed interval [x, y] does not contain a critical value of
the Vietoris-Rips complex, then Vy

x : Kx → Ky is an isomorphism.

Within the filtration F (Pn), consider a complex Kr. Each vertex va ⊂ Kr corresponds to a segment
la of the curve segments in Pn. An edge {va, vb} ⊂ Kr indicates that the distance between segments la

and lb is less than the Vietoris-Rips parameter r. A simplex ∆ = {va, vb, . . . , vt} ⊂ Kr means that the
pair-wise distances among the corresponding segments {la, lb, . . . , lt}, collectively denoted by ∆(Pn),
are all less than r.
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Definition 3.2. Let K be a simplicial complex. The maximal faces of K with respect to inclusion are
named the facets of K. The simplicial complex K, characterized by the facets F1, . . . , Fq, is denoted by

K = ⟨F1, . . . , Fq⟩,

and the set {F1, . . . , Fq} is called the set of facets of K.
Each complex within the filtration F (Pn) can be described by its facets. Thus, the filtration F (Pn)

can be expressed as:

⟨Fr0
1 , . . . , F

r0
q0
⟩ ⫋ ⟨Fr1

1 , . . . , F
r1
q1
⟩ ⫋ . . . ⫋ ⟨Frm

1 , . . . , F
rm
qm
⟩.

Definition 3.3. The birth of a facet F in the filtration F (Pn) is the smallest index rb such that F appears
as a facet in the complex Krb but not in Krb−ε for any sufficiently small ε > 0.

The death of a facet F in the filtration F (Pn) is the largest index rd such that F is a facet in Krd but
not in Krd+ε for any sufficiently small ε > 0.

The life-span of a facet F in the filtration F (Pn) is the interval [rb, rd].
Therefore, F (Pn) can be represented as a sequence of facets, each associated with a birth-and-death

interval,
{(F1, [r1

b, r
1
d]), (F2, [r2

b, r
2
d]), . . . , (Ft, [rt

b, r
t
d])}.

Similar to persistent barcodes in persistent homology, a barcode can represent the facets within a
filtration. For any given dimension, each bar corresponds to a facet, with the start and end points of the
bar indicating the birth and death of the associated facet, respectively.

Definition 3.4. The barcode B(Pn) for the filtration of facets F (Pn) consists of horizontal line segments
[ri, r j], where ri ≤ r j, representing the birth and death times of the associated facet.

A barcode provides a visual representation of a filtration as a collection of horizontal line segments
on a plane, where the horizontal axis corresponds to the parameter, and the vertical axis represents an
ordering of the facets.

Definition 3.5. For each facet F = {va, vb, . . . , vt} in the filtration F (Pn), there exists a corresponding
subset of segments F(Pn) = {la, lb, . . . , lt} in the segmentation Pn. The Jones polynomial of F(Pn),
denoted by JF(Pn), is defined as the weight of the facet F. Consequently, the Jones polynomial can
be treated as a weighting function for filtration F (Pn). The resulting weighted filtration is denoted by
JF (Pn),

{(F1, [r1
b, r

1
d], JF1(Pn)), (F2, [r2

b, r
2
d], JF2(Pn)), . . . , (Ft, [rt

b, r
t
d], JFt(Pn))}

referred to as the persistent Jones polynomial of the segmentation Pn of L.
Since filtration F (Pn) can be expressed by a barcode of facets, the persistent Jones polynomial

of the segmentation Pn of L can also be expressed by a barcode, with the Jones polynomials of the
associated facets as weights. The weights in the persistent Jones polynomial of Pn are polynomials. To
improve applicability in specific scenarios, setting the Jones polynomial variable t = 10 converts these
weights to real numbers, producing a real-number weighted barcode BJ(Pn)(10).
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Remark 3.3. The persistent Jones polynomial and the classical persistent homology perform a multi-
scale analysis of the data through filtration using Vietoris-Rips complexes or other types of complexes.
However, they focus on different aspects of data analysis. The persistent Jones polynomial uses
tools from geometric topology to capture the entanglement complexity of curves in 3-space, whereas
classical persistent homology uses methods from algebraic topology to investigate the behavior
of connected components, one-dimensional loops, two-dimensional cavities, and high-dimensional
cavities (i.e., generators of homology groups) within a point cloud data.

4. Stability

The stability of a model is characterized by the property that small perturbations in the collection
of disjoint open or closed curves L result in only minor variations in the localized measures of the
multi-scale Jones polynomial and the persistent Jones polynomial.

Let f : L→ f (L) be a continuous function acting on a collection of disjoint open or closed curves L
in the 3-space. The difference between f (L) and L is measured using the supremum norm ∥ f (L)− L∥∞,
defined as:

∥ f (L) − L∥∞ = sup
x∈L
| f (x) − x|.

For a given segmentation Pn = {l1, l2, . . . , ln} of L, where each li (1 ⩽ i ⩽ n) is a finite curve segment
and L can be reconstructed by connecting these segments end-to-end, consider a continuous mapping
f : L → f (L) such that ∥ f (L) − L∥∞ < ε for a sufficiently small ε > 0. This induces a corresponding
segmentation f (Pn) = { f (l1), f (l2), . . . , f (ln)} of f (L).

The characteristic matrices of the multi-scale Jones polynomial for Pn and f (Pn), denoted
mJ(Pn) and mJ( f (Pn)), respectively, exhibit only minor differences at the corresponding positions.
Furthermore, the weighted Bottleneck distance between the weighted persistence diagrams of
persistent Jones polynomials for Pn and f (Pn) is also minimal.

Remark 4.1. The Jones polynomial evaluated at t = 10 can be viewed as a function on collections of
curves in 3-space. Let L be a collection of curves in R3. According to Proposition 2.1, let f : L →
f (L) be a continuous function. If ∥ f (L) − L∥∞ < ε for all sufficiently small ε > 0, then |J(L)(10) −
J( f (L))(10)| < εJ for some sufficiently small εJ > 0.

4.1. Stability of multi-scale Jones polynomial

Let L be a collection of disjoint open or closed curves in the 3-space, and let Pn = {l1, l2, . . . , ln}

denote a segmentation of L into n segments. Consider a continuous function f : L → f (L), which
induces a corresponding segmentation of f (L), represented by f (Pn) = { f (l1), f (l2), . . . , f (ln)}.

Proposition 4.1. Suppose f : L → f (L) is a continuous function such that ∥ f (L) − L∥∞ < ε for all
sufficiently small ε > 0. Then, the two sets of curve segments f (Pi

r,R) and f (P)i
r,R are equal:

f (Pi
r,R) = f (P)i

r,R,

where:

• f (Pi
r,R) is the image of the set Pi

r,R under the function f : L→ f (L);
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• f (P)i
r,R represents the set of curve segments in the segmentation f (Pn) such that their distance

from f (li) is within [r,R), including of f (li) itself.

Proof. By definition, we have

Pi
r,R = {l j ∈ Pn | r ≤ d(li, l j) < R} ∪ {li},

f (Pi
r,R) = { f (l j) ∈ Pn | r ≤ d(li, l j) < R} ∪ { f (li)},

and
f (P)i

r,R = { f (l j) ∈ f (Pn) | r ≤ d( f (li), f (l j)) < R} ∪ { f (li)},

for any lk ∈ Pi
r,R, and it holds that r ≤ d(li, lk) < R. Since ∥ f (L) − L∥∞ < ε, the difference between each

segment of the curve and its image under f is less than ε: ∥ f (li) − li∥∞ < ε and ∥ f (lk) − lk∥∞ < ε, and,
thus, the distances satisfy d( f (li), li) < ε and d( f (lk), lk) < ε.

li
d(li, lk)

lk

f (li) f (lk)

< ε < ε

Then, we have:
d(li, lk) − 2ε < d( f (li), f (lk)) < d(li, lk) + 2ε.

Therefore,
r − 2ε < d( f (li), f (lk)) < R + 2ε,

which implies f (lk) ∈ f (P)i
r−2ε,R+2ε. Thus, f (Pi

r,R) ⊆ f (P)i
r−2ε,R+2ε.

Similarly, we can show that:
f (P)i

r−2ε,R+2ε ⊆ f (Pi
r−4ε,R+4ε).

Consequently, we obtain:
f (Pi

r,R) ⊆ f (P)i
r−2ε,R+2ε ⊆ f (Pi

r−4ε,R+4ε).

Since ε > 0 is sufficiently small, we conclude that Pi
r−4ε,R+4ε = Pi

r,R, f (P)i
r−2ε,R+2ε = f (P)i

r,R, and
f (Pi

r,R) = f (P)i
r,R. □

Theorem 4.1. Suppose f : L → f (L) is a continuous function such that ∥ f (L) − L∥∞ < ε for all
sufficiently small ε > 0. Consider two sets of distances {r1, r2, . . . , rm} and {R1,R2, . . . ,Rm}. There exist
two characteristic matrices for the segmentation Pn of L and for the segmentation f (Pn) of f (L), given
by

mJ(Pn) =


JP1

r1,R1
(10) JP1

r2,R2
(10) · · · JP1

rm,Rm
(10)

JP2
r1,R1

(10) JP2
r2,R2

(10) · · · JP2
rm,Rm

(10)
...

...
. . .

...

JPn
r1,R1

(10) JPn
r2,R2

(10) · · · JPn
rm,Rm

(10)

 ,
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mJ( f (Pn)) =


J f (P)1

r1,R1
(10) J f (P)1

r2,R2
(10) · · · J f (P)1

rm,Rm
(10)

J f (P)2
r1,R1

(10) J f (P)2
r2,R2

(10) · · · J f (P)2
rm,Rm

(10)
...

...
. . .

...

J f (P)n
r1,R1

(10) J f (P)n
r2,R2

(10) · · · J f (P)n
rm,Rm

(10)

 .
Then, the difference between the corresponding entries in these two matrices is less than εJ, where εJ

is sufficiently small.

Proof. We have
∥Pi

r j,R j
− f (Pi

r j,R j
)∥∞ ≤ ∥L − f (L)∥∞ < ε.

From Remark 4.1, it follows that

|JPi
r j,R j

(10) − J f (Pi
r j,R j

)(10)| < εJ,

where εJ is sufficiently small. By Proposition 4.1, we know that f (Pi
r,R) = f (P)i

r,R. Therefore,

|JPi
r j,R j

(10) − J f (P)i
r j,R j

(10)| < εJ,

where εJ is sufficiently small. □

Remark 4.2. The stability of the method used in [20] can be proved in a manner similar to that of
Theorem 4.1. Suppose f : L → f (L) is a continuous function such that ∥ f (L) − L∥∞ < ε for all
sufficiently small ε > 0.

For the Gauss linking integral, there exist two Gauss linking integral matrices for the segmentation
Pn = {l1, l2, . . . , ln} of a collection of disjoint open or closed curves L in 3-space, as well as for f (Pn)
of f (L). These matrices are given by:

GL(Pn) =


g(l1, l1) g(l1, l2) · · · g(l1, ln)
g(l2, l1) g(l2, l2) · · · g(l2, ln)
...

...
. . .

...

g(ln, l1) g(ln, l2) · · · g(ln, ln)

 ,

GL( f (Pn)) =


g( f (l1), f (l1)) g( f (l1), f (l2)) · · · g( f (l1), f (ln))
g( f (l2), f (l1)) g( f (l2), f (l2)) · · · g( f (l2), f (ln))

...
...

. . .
...

g( f (ln), f (l1)) g( f (ln), f (l2)) · · · g( f (ln), f (ln))

 ,
where

g(li, l j) =

GL(li, l j), if li ∩ l j = ∅;
0, otherwise.

Here, GL(li, l j) denotes the Gauss linking integral of the curve segments li and l j.
As stated in [24, page 3], we can treat the Gauss linking integral of a curve as a continuous function

of the coordinates of the curve. Similar to Theorem 4.1, we also have

|g(li, l j) − g( f (li), f (l j))| < εGL

for sufficiently small εGL.
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4.2. Stability of the persistence Jones polynomial

In this section, we state and prove the stability of the persistent Jones polynomial, which asserts
that small changes in the collection of disjoint open or closed curves L lead to only small changes
in the persistent Jones polynomial. As discussed in Section 3.2, the persistent Jones polynomial is
represented by a weighted Jones polynomial filtration, which can be expressed as a Jones polynomial
weight barcode of facets. For a given barcode, there is a corresponding diagram where each bar in the
barcode can be mapped to a point in the diagram. The x-coordinate of this point represents the birth
time of the corresponding bar, while the y-coordinate represents its death time.

Let L be a collection of disjoint open or closed curves in the 3-space, and let Pn = {l1, l2, . . . , ln}

denote a segmentation of L into n segments. Consider a continuous function f : L → f (L), which
induces a corresponding segmentation of f (L), represented by f (Pn) = { f (l1), f (l2), . . . , f (ln)}. Let
r1 < r2 < · · · < rm be the critical values of the Vietoris-Rips complex of Pn. We denote an interleaved
sequence (bi)i=0,1,...,m such that bi−1 < ri < bi for all i. We set b−1 = r0 = −∞ and bm+1 = rm+1 = +∞.

For two integers 0 ⩽ i < j ⩽ m+ 1 and a fixed integer k, we define the multiplicity of the pair (ri, r j)
as

µ
j
i = β

b j

bi−1
− β

b j

bi
+ β

b j−1

bi
− β

b j−1

bi−1
,

where βy
x is the number of k-facets contained in Kx that remain in Ky for all −∞ ⩽ x ⩽ y ⩽ +∞.

To visualize this definition, consider βy
x as the value of a function β at the point (ri, r j) ∈ R̄2, where

R̄ = R ∪ {−∞,+∞}. Thus, µ j
i is the alternating sum of β in the corners of the box [bi−1, bi] × [b j−1, b j],

as depicted in Figure 4.
Note that if x and x′ are in the open interval (ri, ri+1), and y and y′ are in (r j−1, r j), then βy

x = β
y′

x′ .
Therefore, the multiplicities µ j

i are well-defined and always nonnegative.

+ − + −

− + − +

+ − + −

− + − +

bi−1 ri bi

b j−1

r j

bi

Figure 4. The multiplicity of the point (ri, r j) is the alternating sum at the corners of the
lower right square. When other multiplicities are added, cancellations between plus and
minus signs occur.

Definition 4.1. The diagram D(Pn) ⊂ R̄2 of the persistent Jones polynomial for Pn consists of points
(ri, r j) with Jones polynomial weights, counted with multiplicity µ j

i for 0 ≤ i < j ≤ m + 1, along with
all points on the diagonal, which are counted with infinite multiplicity.

Each off-diagonal point in the diagram represents the lifespan of a k-facet in the filtration. Similar
to the weighted persistent barcode, the Jones polynomial corresponding to the set of curve segments
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for the k-facet can be used as the weight. This approach results in a weighted persistent diagram for
the persistent Jones polynomial.

4.2.1. Bottleneck distance

The Bottleneck distance is a classical measure used to quantify the difference between two persistent
diagrams. It naturally extends to the comparison of weighted persistent diagrams, allowing for a precise
demonstration of the variations between two persistent Jones polynomials.

To better capture the differences between persistent Jones polynomials, we apply a slight
modification to the traditional definition of the Bottleneck distance. Let C and D be two multi-sets
of pairs (⟨a, b⟩,w), where ⟨a, b⟩ denotes an interval that can be any well-defined member of the set
{[a, b], [a, b), (a, b], (a, b)}, and w ∈ R represents the weight of the interval ⟨a, b⟩.

A matching between the sets C andD is defined as a collection of pairs χ = {(I, J) ∈ C×D}, where
each element I ∈ C and each element J ∈ D appears in at most one pair within χ. A matching forms a
bijection between a subset of C and a subset ofD. If a pair (I, J) ∈ χ, we say that I is matched with J.
Conversely, if an element I does not appear in any pair, it is considered unmatched.

The cost c(I, J) of the matching elements I = (⟨a, b⟩,w1) and J = (⟨c, d⟩,w2) is defined as follows:

c(I, J) = max
{
|c − a|, |d − b|, |w1 − w2|

}
.

Similarly, the cost c(I) of leaving an unmatched element I is defined as:

c(I) =
b − a

2
.

Finally, the cost of a matching χ is given by:

c(χ) = max
(

sup
(I,J)∈χ

c(I, J), sup
unmatched I∈C∪D

c(I)
)
.

Definition 4.2. The weighted Bottleneck distance between C andD is defined as

dB(C,D) = inf{c(χ) | χ is a matching between C andD}.

The modified Bottleneck distance increases the emphasis on weight factors compared to the
classical Bottleneck distance.

4.2.2. Stability

Let L be a collection of disjoint open or closed curves in the 3-space, and let Pn = {l1, l2, . . . , ln}

denote a segmentation of L into n segments. Consider a continuous function f : L → f (L), which
induces a segmentation of f (L), denoted by f (Pn) = { f (l1), f (l2), . . . , f (ln)}.

There are two persistent Jones polynomials based on Pn and f (Pn), represented as JF (Pn) and
JF ( f (Pn)), respectively. The facet weights in these persistent Jones polynomials are polynomials. By
setting the Jones polynomial variable t = 10, the weight of each facet is converted to a real number.
Thus, the converted persistent Jones polynomials can be denoted by JF (Pn)(10) and JF ( f (Pn))(10).
These can be expressed using weighted persistent diagrams, denoted by D(Pn) and D( f (Pn)).
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Suppose ∥ f (L) − L∥ < ε for all sufficiently small ε > 0. Then, for all lpi ∈ Pn(p), we have
∥lpi − f (lpi)∥∞ < ε. Let lpi , lp j be any two curve segments in Pn(p). Then, there exists

lpi

d(lpi , lp j)
lp j

f (lpi) f (lp j)

< ε < ε

.

Thus,

d(lpi , lp j) − 2ε ≤ d( f (lpi), f (lp j)) ≤ d(lpi , lp j) + 2ε.

There is an important lemma, proved in [36].

Lemma 4.1. [36, Box Lemma] For a < b < c < d, let R = [a, b] × [c, d] be a box in R2, and let
R2ε = [a+ 2ε, b− 2ε]× [c+ 2ε, d− 2ε] be the box obtained by shrinking R on all sides by 2ε. It follows
that:

#(D(Pn) ∩ R2ε) ⩽ #(D( f (Pn)) ∩ R).

Theorem 4.2. Let L be a collection of disjoint open or closed curves, and let Pn = {l1, l2, . . . , ln}

denote a segmentation of L into n segments. Suppose f : L → f (L) is a continuous function such that
∥ f (L) − L∥∞ < ε for all sufficiently small ε > 0. Then, the weighted Bottleneck distance between the
weighted persistent diagrams of the persistent Jones polynomials, dB(D(Pn),D( f (Pn))), is sufficiently
small.

Proof. Let L be a collection of disjoint open or closed curves in 3-space, and let Pn = {l1, l2, . . . , ln}

denote a segmentation of L into n segments. Consider a continuous function f : L → f (L), which
induces a segmentation of f (L), denoted by f (Pn) = { f (l1), f (l2), . . . , f (ln)}. There are two persistent
Jones polynomial diagrams for Pn and f (Pn), denoted by D(Pn) and D( f (Pn)).

Consider the minimum distance between two distinct off-diagonal points or between an off-diagonal
point and the diagonal:

δL = min{∥p − q∥∞ | p , q ∈ D(Pn) − ∆}.

Assuming that ε > 0 is sufficiently small, we take ε < δL/4.

By drawing cubes of radius 2ε around points in D(Pn), we obtain a thickened diagonal plane along
with a finite set of disjoint cubes that are also disjoint from the thickened diagonal, as shown in Figure
5.
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Figure 5. The shaded squares are centered at the black points of D(Pn).

Let µ denote the multiplicity of a point p in D(Pn) \ ∆, and let □2ε represent the cube centered at p
with radius 2ε. According to Lemma 4.1,

µ ≤ #(D( f (Pn)) ∩ □2ε) ≤ #(D(Pn) ∩ □4ε).

Since 4ε < δL, p is the only point in D(Pn) within □4ε, which implies that #(D( f (Pn)) ∩ □2ε) = µ.
Now, let p = (x, y) be an off-diagonal point in the diagram D(Pn) with multiplicity µ = 1.

A corresponding collection of curve segments Pn(p) = {lp1 , lp2 , . . . , lpt} exists in Pn. Applying
the continuous function f to these segments yields the transformed collection f (Pn(p)) =

{ f (lp1), f (lp2), . . . , f (lpt)}.
According to the definition of the persistent Jones polynomial, the point p = (x, y) indicates that

Pn(p) = {lp1 , lp2 , . . . , lpt} forms a facet with birth x and death y in the filtration F (Pn). This implies that
any two segments in Pn(p) are at a distance less than x, and any segment l ∈ Pn \ Pn(p) is at least a
distance y from all lpi ∈ Pn(p), for 1 ≤ i ≤ t.

Since
d(lpi , lp j) − 2ε ≤ d( f (lpi), f (lp j)) ≤ d(lpi , lp j) + 2ε,

then any two curve segments in f (Pn(p)) are within a distance of x + 2ε. Furthermore, for f (l) ∈
f (Pn \ Pn(p)) and f (lpi) ∈ f (Pn(p)), the distance is at least y − 2ε.

Thus, the segment collection f (Pn(p)) forms a facet within F ( f (Pn)), corresponding to a point f (p)
in D( f (Pn)), within the region [x, x+ 2ε]× [y− 2ε, y], indicating that ∥ f (p)− p∥∞ < 2ε. Moreover, we
have #(D( f (Pn)) ∩ □2ε) = 1; hence, f (p) is the only point in D( f (Pn)) ∩ □2ε.

For off-diagonal points p1 = p2 = · · · = pµ = (x, y) with µ > 1, this indicates µ distinct
facets in F (Pn) with the same birth x and death y, but distinct curve segment collections Pn(p1),
Pn(p2), . . . ,Pn(pµ). Analogous to the case when µ = 1, the images f (p1), f (p2), . . . , f (pµ) lie within
[x, x + 2ε] × [y − 2ε, y], which gives ∥ f (pi) − pi∥∞ < 2ε for 1 ≤ i ≤ µ. Moreover, we have that
#(D( f (Pn)) ∩ □2ε) = µ; hence, f (p1), f (p2), . . . , f (pµ) are the µ points in D( f (Pn)) ∩ □2ε.

The weights of p and f (p) are JPn(p)(10) and J f (Pn(p))(10), respectively. Since

∥ f (Pn(p)) − Pn(p)∥∞ ≤ ∥ f (L) − L∥∞ < ε,
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by Remark 4.1, the weight difference satisfies |J f (Pn(p))(10) − JPn(p)(10)| < εJ, where εJ > 0 is
sufficiently small.

After examining all the off-diagonal points in D(Pn), the only points in D( f (Pn)) that are not images
f (p) for some p ∈ (D(Pn) \ ∆) lie beyond 2ε from D(Pn) \ ∆.

Let q ∈ D( f (Pn)) be a point for which there is no corresponding point p ∈ D(Pn) such that f (p) = q.
Suppose the distance from q to ∆ is greater than 2ε. Then, there exists a square □q

2ε centered at
q with a radius of 2ε such that D(Pn) ∩ □q

2ε = ∅. This contradicts Lemma 4.1, which states that
1 ≤ #(D(Pn) ∩ □q

2ε) , 0. Therefore, the distance from q to ∆ must be less than 2ε.
There exists a natural matching between D(Pn) and D( f (Pn)), represented as χ={(p, f (p)) | p ∈

D(Pn) \ ∆}, with unmatched points in D( f (Pn)) regarded as not corresponding to any point in D(Pn).
Therefore, by the definition of the weighted Bottleneck distance,

dB(D(Pn),D( f (Pn))) < max{2ε, εJ},

where ε and εJ are sufficiently small, thus, completing the proof. □

In other words, the weighted persistent diagrams of persistent Jones polynomials are stable under
small-amplitude or possibly irregular perturbations.

5. Applications

The utility of the proposed multi-scale and persistent Jones polynomial models is demonstrated
through their application to real-world problems. These models provide robust frameworks for
analyzing both local and global structural properties of curves in the 3-space. By leveraging their
capacity to encode entanglement complexity features, these models provide new perspectives and tools
for understanding protein flexibility, stability, and entanglement.

In this section, we illustrate two important applications of the proposed models. The first
application focuses on predicting the B-factor of protein residues, a critical indicator of protein
flexibility. This application demonstrates the practical utility of the multi-scale Jones polynomial in
processing curve structural data. The second application uses persistent Jones polynomial to analyze
the topological features of protein secondary structures, specifically α-helix and β-sheets. These
applications demonstrate the versatility and potential of the proposed models to advance computational
structural biology.

5.1. Multi-scale Jones polynomial for B-factor prediction

B-factors, also known as Debye-Waller factors, measure atomic displacements within protein
structures and provide insight into molecular flexibility and stability. Analysis of B-factors enables a
deeper understanding of protein dynamics and aids in predicting regions with high structural mobility,
which is crucial for understanding protein function and interactions.

To eliminate the influence of irrelevant atomic information and better capture the geometric and
topological properties of the protein structure, each amino acid is represented by its Cα atom. These
Cα atoms are sequentially connected to form a Cα chain L. Let C = {c0, c1, . . . , cn} denote the set of
Cα atoms arranged in the sequence of the protein. The Cα chain of the protein is considered a disjoint
open curve. Segmentation of the Cα chain is achieved by cutting the midpoint between each Cα atom
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and its adjacent Cα atom, denoted by Pn = {l0, l1, . . . , ln}. The distance between two curve segments is
defined as the distance between the Cα atoms contained in the segments, that is, d(li, l j) = d(ci, c j).

In this study, we select the radius r to range from 4Å to 15Å with a step size of 0.25Å. We set
R = (r + 1)Å, so the radius R ranges from 5Å to 16Å. In total, the interception range is from 4Å to
16Å. Thus, there is a characteristic matrix for Pn of the protein Cα chain L,

JP1
4Å,5Å

(10) JP1
4.25Å,5.25Å

(10) · · · JP1
15Å,16Å

(10)
JP2

4Å,5Å
(10) JP2

4.25Å,5.25Å
(10) · · · JP2

15Å,16Å
(10)

...
...

. . .
...

JPn
4Å,5Å

(10) JPn
4.25Å,5.25Å

(10) · · · JPn
15Å,16Å

(10)

 .
This choice is motivated by the fact that the average distance between Cα atoms is approximately
3.8Å. The selected radius scheme results in a powerful feature extraction method that provides rich
representations of local protein structures. To minimize the influence of overly complex machine
learning models, and to emphasize the effectiveness of the multi-scale Jones polynomial and avoid
overfitting, we chose to use a Lasso regression model with parameter 0.16 for B-factor prediction.

To validate the effectiveness of the multi-scale Jones polynomial in predicting Cα atom B factors
across proteins of varying sizes, we compared our method with several previous approaches, including
mGLI [20], evolutionary homology (EH) [37], atom-specic persistent homology (ASPH) [38], optimal
flexibility-rigidity index (opFRI) [39], parameter free flexibility-rigidity index (pfFRI) [39], Gaussian
network model (GNM) [30], and normal mode analysis (NMA) [30]. The comparison was performed
on three sets of proteins from [30], as shown in Figure 6.

Figure 6. Comparison of B-factor predictions on three protein datasets between our multi-
scale Jones polynomial method and other approaches from the literature.

The multi-scale Jones polynomial method achieved average correlation coefficients of 0.899, 0.808,
and 0.720 for small, medium, and large protein sets, respectively. Our results on these three datasets
outperformed previous methods.

To further illustrate the performance of the multi-scale Jones polynomial (mJP) analysis, we present
a case study involving a potential antibiotic synthesis protein (PDBID: 1V70) containing 105 residues,
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as shown in Figure 7(a). After processing with the mJP model, as shown in Figure 7, a characteristic
matrix is generated. The normalized characteristic matrix is then used as the input to the Lasso
regression model, as illustrated in Figure 7(b). The Lasso regression model is used to predict the
B-factor of each residue and compare the predicted values with the experimentally determined values,
as shown in Figure 7(c).

Figure 7. The process of mJP analysis for protein B-factor prediction. (a) The 3D structure of
the protein 1V70; (b) The normalized characteristic matrix; (c) A comparison of the predicted
B-factors with experimentally determined values.

Compared to traditional B-factor analysis methods, which focus on individual atoms, their spatial
positions in the 3-space, and the thermal motion and disorder of atoms within the protein structure, our
approach effectively captures the torsional entanglement of the peptide chain at each Cα atomic position
by incorporating the Jones polynomial. This torsional entanglement of the peptide chain significantly
influences the observed B-factor values.

The torsional entanglement of protein peptide chains, captured through the multi-scale Jones
polynomial, provides critical insight into the structural and functional dynamics of proteins. By
analyzing torsional entanglement, this approach reveals patterns of molecular flexibility and rigidity
that allow for an in-depth understanding of protein stability and function. Furthermore, this method
improves our ability to model and predict regions of structural mobility, offering potential applications
for protein engineering and drug discovery.
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5.2. Barcodes of persistent Jones polynomial of α-helix and β-sheets

In molecular biology, α-helices and β-sheets are fundamental secondary structures in proteins,
stabilized by hydrogen bonding patterns that contribute to the overall stability and function of the
protein. Additionally α-helices are typically more rigid than β-sheets. To explore the local structural
complexity and stability of these structures, we employed topological analysis using the barcode
representation of the persistent Jones polynomial (pJP). Using protein data from the Protein Data
Bank (PDB), we demonstrated this approach with examples, including the analysis of an α-helix chain
consisting of 19 residues of the protein with PDB ID 1C26. Additionally, we extracted two parallel
β-sheets consisting of 16 residues from the protein 2JOX to explore their barcodes representations of
the persistent Jones polynomial.

Figure 8. The process of the pJP analysis for the α-helix and β-sheets. (a) (b) The 3D
structures of the α-helix and β-sheets. (c) The colored barcodes visualizing the α-helix. (d)
The colored barcodes visualizing the β-sheets. The colored barcodes obtained through the
pJP model can be applied to machine learning for protein structure analysis.

To eliminate the influence of irrelevant atomic information and better capture the geometric and
topological properties of the protein structure, each amino acid is represented by its Cα atom, as shown
in Figure 8(a) and (b). These Cα atoms are sequentially connected to form a Cα chain, which is treated
as a disjoint open curve. Segmentation of the Cα chain is achieved by cutting the midpoint between
each Cα atom and its adjacent Cα atom. The distance between two curve segments is defined as the
distance between the Cα atoms contained within these segments.

The process of the pJP model is illustrated in Figure 8, using colored barcodes to represent the
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α-helix and β-sheets structures.
Figure 8(c) represents the barcodes corresponding to the α-helix. In the 0-facets panel, there are 19

bars with Jones polynomial weights of 0. Each bar has a length of approximately 3.8Å, which is the
average distance between two Cα atoms. Additionally, the 1-facets panel contains 18 bars with similar
birth times and life-spans, starting around 3.8Å and persisting until approximately 5.4Å, each with
a Jones polynomial weight of 0. These bars correspond to facets formed by two adjacent Cα atoms.
Moreover, 16 short-lived bars represent facets formed by two nonadjacent Cα atoms. As shown in the
2-facets panel, the bars capture the persistence of facets formed by three Cα atoms, along with the
complexity of entanglement of the corresponding polyline system.

Figure 8(d) represents the barcodes corresponding to the β-sheets. Similar to the α-helix case, the
segmentation and distance definitions are consistent. The 0-facets panel includes 16 0-facets bars,
indicating the presence of 16 Cα atoms. In the 1-facets panel, there are 14 bars for facets formed by
two adjacent Cα atoms and 8 for facets formed by nonadjacent Cα atoms. The bars in the 2-facets
panel represent facets formed by three Cα atoms and provide information about the complexity of
entanglement. The longer lifespans of the bars in the 2-facets panel of the β-sheets compared to the
α-helix suggest that the Cα atoms in the β-sheets are more spatially dispersed.

The color of the barcodes reflects the value of the Jones polynomial weight, which indicates the
difference of the torsional entanglement of the set of curve segments in the system. It is important to
note that the color gradient, whether it tends to red or blue, does not imply a higher or lower degree of
entanglement complexity in the represented set of curve segments. Rather, a greater color difference
between two bars indicates a greater difference between the sets of curve segments they represent.

From the color bars in Figures 8 (c) and (d), it can be observed that the Jones polynomial weight
for the α-helix ranges from −86 to 0, while for the β-sheets it ranges from −6 to 0. This indicates a
greater variability in the sets of curve segments represented by the facets within the α-helix compared
to the β-sheets, suggesting that the α-helix exhibits more complex entanglement, as observed.

The persistent Jones polynomial effectively captures the torsional entanglement of secondary
structures, such as α-helices and β-sheets, within protein peptide chains. This torsional entanglement
plays a critical role in the analysis of protein structure and function as it provides insight beyond atomic
positions alone. By incorporating the Jones polynomial, our approach reveals important topological
characteristics that are important for protein stability and functionality.

6. Concluding remarks

In this study, the selection of the segmentation Pn = {l1, l2, . . . , ln} for a collection of curves
L is crucial to capture the topological and geometric characteristics of the curve structure L. The
segmentation serves as the basis for defining and calculating both the multi-scale analysis of the Jones
polynomial and the persistent Jones polynomial. First, the outcomes of these two models depend
not only on the spatial positions of the segments but also on their relative lengths in relation to the
entire curve. As the segment length approaches zero, the results of the models tend toward triviality.
Similarly, when the segment extends to cover the entire curve, the models recover global information.
In both of these cases, the models cannot extract meaningful local information for spatial data. Thus,
the choice of segmentation depends on the specific application.

Knot theory has traditionally focused on global invariants, but real-world applications often require
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local structural insights. Classical knot invariants mainly reflect global topology and fail to capture
crucial local structural details in applications like molecular biology and highway crossing design.
To address this gap, localized versions of invariants such as the multi-scale Jones polynomials
and persistent Jones polynomials have been developed. These localized models decompose global
invariants for analyzing local topology in the context of the entire structure, promoting the application
of KDA or CDA in systems where both global and local structures matter.

The stability of the model is crucial for practical applications. In real-world data, noise and minor
perturbations pose challenges. Stability ensures that minor input changes do not cause disproportionate
changes in the calculated invariants. It is critical in biological or physical contexts. For multi-
scale Jones polynomial and persistent Jones polynomial models, we demonstrate stability under small
perturbations. Minor adjustments in the collection L result in slight modifications to characteristic
matrices and barcodes or diagrams. This stability makes the models reliable for structural topology
and is applicable in KDA or CDA for real-world data.

The torsional entanglement of protein peptide chains, captured through both multi-scale and
persistent Jones polynomials, provides crucial insights into the structure and function of proteins. By
analyzing torsional entanglement, this approach reveals patterns of molecular flexibility and rigidity
that allow a detailed understanding of protein structure and function. Furthermore, this method
improves our capacity to model and predict regions of structural mobility and reactivity, offering
valuable implications for enzyme kinetics and protein engineering.

In Section 5.2 of this manuscript, the barcodes of the persistent Jones polynomial represent the
birth, death, and lifespan of the facets in the complexes under filtration. In contrast, persistent
homology barcodes capture the changes in the homology classes of the complexes during filtration,
i.e., the changes in the generators of the homology groups of the complexes (the number of generators
corresponds to the Betti number). Despite these differences, there are important similarities between
the two concepts. Both are based on filtration and provide insight into data characteristics by
examining the evolution of the complexes during filtration. In addition, the bars in the barcodes
of the persistent Jones polynomial represent facets formed by subsets of curve segments from the
segmentation Pn = {l1, l2, . . . , ln} of the collection of curves L. Therefore, these bars are constructed
based on the distance conditions between the curve segments in the segmentation Pn. Similarly, in the
case of point cloud data, persistent homology barcodes are also constructed according to the distance
conditions of the points in the point cloud data.

The multi-scale Gauss link integral model [20] and the present multi-scale Jones polynomial and
persistent Jones polynomial models represent solid advances in computational geometric topology.
These approaches have great potential for real-world applications when combined with machine
learning and artificial intelligence.
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