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In the past decade, topological data analysis has emerged as a powerful algebraic
topology approach in data science. Although knot theory and related subjects are a focus
of study in mathematics, their success in practical applications is quite limited due to the
lack of localization and quantization. We address these challenges by introducing knot
data analysis (KDA), a paradigm that incorporates curve segmentation and multiscale
analysis into the Gauss link integral. The resulting multiscale Gauss link integral
(mGLI) recovers the global topological properties of knots and links at an appropriate
scale and offers a multiscale geometric topology approach to capture the local structures
and connectivities in data. By integration with machine learning or deep learning, the
proposed mGLI significantly outperforms other state-of-the-art methods across various
benchmark problems in 13 intricately complex biological datasets, including protein
flexibility analysis, protein–ligand interactions, human Ether-à-go-go-Related Gene
potassium channel blockade screening, and quantitative toxicity assessment. Our KDA
opens a research area—knot deep learning—in data science.

knot data analysis | Gauss link integral | multiscale analysis

Knots are ubiquitous in nature, from animal nests, interlocked tree branches, vines,
tendrils, chromosome chains, to DNA double helices. Humans have been intrigued by
knot tying due to their practical functions, aesthetic appeal, and spiritual symbolism
since prehistoric times. Mathematical theory of knots dated back to 1,771 by Alexandre-
Théophile Vandermonde. Knot theory is one of the most active areas of mathematical
studies, concerning the embeddings of a closed circle S1 into the three-dimensional
(3D) Euclidean space, their classification, equivalence after continuous deformations, or
ambient isotopy (1). Some of the most important knot invariants, which differentiate
knots, include knot crossing number, knot group (2), knot polynomials (1), knot Floer
homology (3), Khovanov homology (4), etc.

Knot theory has been applied to various fields such as physics (5), biochemistry (6),
and biology (7–9), with limited success. Most real-world objects might not be a closed
circle. In applications, ambient isotopy typically has major different properties, while
keeping the global knot information unchanged. For instance, the realization of many
object functions, such as the molecular recognition of DNA, depends on local structures.
Therefore, it is imperative to develop knot theory-based tools that are robust and effective
for applications.

Several attempts have been made to address the aforementioned challenge. Jamroz et al.
proposed the protein topology database KnotProt to study knot and slipknot type of
proteins (10). Dabrowski-Tumanski et al. extend the database to include links and
spatial graphs, and also enable the calculation of topological polynomials invariant of
those structures (11). Recently, Panagiotou and Kauffman have proposed new invariants
for open curves in 3-space (12). In addition, Baldwin et al. (13) attempted to localize
knot information by intercepting some specific intervals in the linear structure of an open
curve. Nevertheless, these approaches are still global topological in nature.

Multiscale analysis can offer a viable localization scheme for knot data analysis, given
its remarkable success in diverse areas such as wavelet theory and topological data
analysis (TDA). Persistent homology, as a prominent technique in TDA, combines
concepts from algebraic topology, geometry, and multiscale analysis to analyze complex
datasets (14, 15). It uncovers the complex topological invariants and patterns of data at
various scales, which are not easily discernible with traditional geometric and statistical
techniques. Topological features facilitate valuable representation learning, and their
efficacy is demonstrated through integration with deep learning models, specifically in
the context of topological deep learning (TDL) coined by us in 2017 (16). Compelling
applications which consistently demonstrate the relevant advantages of TDL over existing
methods are the victories of TDL in the D3R Grand Challenges, a worldwide annual
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competition series in computer-aided drug, (17), the discovery
of SARS-CoV-2 evolution mechanisms (18), and the successful
forecasting of SARS-CoV-2 variants BA.2 (19), and BA.5 (20)
about two months in advance.

Mathematically, linking number is a knot invariant that
measures the extent of linkage between two closed curves in 3D
space, representing the number of times that each curve winds
around the other. The Gauss linking integral (21), also known as
Gauss’s integral, gives an explicit formulation for the linking
number. It serves as a fundamental tool for studying knots,
links, and other topological structures within 3D space. This
tool holds significance in various fields, including knot theory,
geometric topology, differential geometry, and quantum field
theory. For example, for idealized Dirac-string center vortices, the
Chern–Simons number can be given by the Gauss link integral
(22). High-order link integrals were proposed (23). However,
these approaches are typically global and qualitative.

The objective of this work is to introduce knot data analysis
(KDA) as a paradigm for data science. To this end, we propose
a framework called multiscale Gauss linking integral (mGLI)
by integrating multiscale analysis with classical knot and knot-
related theories. The proposed mGLI can capture both local
and global information of knots, curves, and other curve-like
objects by admitting a family of open balls around each segment
on the objects. We define a metric to describe the degree of
the local entanglement within each ball. By increasing the ball
radius, the metric will incorporate additional local information
in objects and finally reveal the global properties of the original
structure such as knots and entangled links. The proposed mGLI
effectively captures intrinsic structures, and patterns in complex
data offering valuable low-dimensional embeddings of the data.
To assess the performance of mGLI, we consider 13 benchmark
datasets across various domains, including protein flexibility
analysis, protein–ligand binding affinity prediction, human
Ether-à-go-go-Related Gene (hERG) blockade classification, and
quantitative toxicity predictions. The performance of mGLI is
compared with that of other state-of-art approaches, including
TDA, unlocking geometric topology’s potential.

In contrast to the previous qualitative and descriptive knot
theory approaches, the mGLI is a quantitative and predictive
strategy. It offers a tool in knot theory analysis and opens an area
in data analysis and knot learning.

Results

Overview of KDA. Fig. 1 outlines the proposed KDA platform.
Like TDA, KDA utilizes a multiscale strategy to capture local
structural information of data at various scales and represent the
information in a knot invariant, the Gauss link integral or Gauss
link number. While globally the Gauss link number quantifies
the linking or entanglement between two curves or loops in 3D
space, our mGLI further measures local entanglements at each
pair of link or curve segments. As shown in Fig. 1A, such local
information is systematically collected across scales and assembled
over all segments, giving rise to a vectorization of the original
structure.

A specific application of mGLI to a protein–ligand complex is
given in Fig. 1B. An element-specific mGLI strategy is introduced
to elucidate physical and chemical interactions (Fig. 1C ) and
to ensure the scalability across different complexes via statistics
(Fig. 1D). In the case of protein–ligand complex characteriza-
tion, chemical and biological information, such as hydrogen
bonds, electrostatics, hydrophilicity, and hydrophobicity can

be delineated by element-specific mGLI strategy. The intrinsic
molecular properties in the 3D structures are properly decoded
into low-dimensional topological representations, which are suit-
able for downstream molecular property analysis and prediction.
Theoretical details are provided in Methods.

The proposed mGLI method captures stereochemical infor-
mation that is crucial for molecular interactions. In complement,
pretrained deep language models are able to access evolutionary
and constitutional information of the problem under study.
Specifically, we use a transformer-based pretrained model for pro-
tein embedding (24), while transformer and autoencoder-based
pretrained models are utilized for small molecule embedding
(25, 26) as indicated in Fig. 1E . These embeddings are paired
with mGLIs for downstream prediction tasks as shown in Fig. 1F .

mGLI. It is intrinsic to describe real-world data by mathematical
objects, such as knots, knotoids, lassos, links, linkoids, cysteine
knots, etc. (Fig. 5A). The mGLI involves partitioning knots and
other curved objects into segments and conducting a multiscale
analysis at each segment. Upon curve segmentation, Gauss link
integrals are defined at various scales to quantitatively capture
structure, connectivity, and entanglement. The global topological
invariant properties are ultimately recovered when a sufficiently
large scale is reached. Below, we give some essential formulations
of the proposed mGLI method.

Definition 1 [Gauss linking integral]: Given two disjoint open
or closed curves l1 and l2, parameterized as 1(s) and 2(t),
respectively, the following double integral gives the Gauss linking
integral that characterizes the degree of interlinking between l1
and l2 (27):

L(l1, l2) =
1

4�

∫
[0,1]

∫
[0,1]

det(̇1(s), ̇2(t), 1(s)− 2(t))
|1(s)− 2(t)|3

ds dt,

[1]
where ̇1(s) and ̇2(t) are derivative of 1(s) and 2(t), respec-
tively.

Definition 2 [Segmentation of Gauss linking integral]: Given
finite curve segments Pn andQm for disjoint open or closed curves
l1and l2, respectively, the segmentation of Gauss linking integral
induced by the curve segments is defined as the following n×m
segmentation matrix:

G =


L(p1, q1) L(p1, q2) · · · L(p1, qm)
L(p2, q1) L(p2, q2) · · · L(p2, qm)

...
...

. . .
...

L(pn, q1) L(pn, q2) · · · L(pn, qm)

 , [2]

where pi ∈ Pn and qj ∈ Qm are curve segments of l1 and l2,
respectively. Examples of segmentation of Gauss linking integral
for Hopf link are offered in SI Appendix, section 1A.

Remark 1: The segmentation of the Gauss linking integral serves
as the basis for our multiscale modeling. Since the objects in the
segmentation of Gauss linking integral are curve segments, we
define the distance of curve segments d(pi, qj) with Euclidean
distance.

Definition 3 [Scaled Gauss linking integral]: Given a finite set
of real numbers R = {r0, r1, r2, r3, · · · , rk}, where 0 = r0 <
r1 < r2 < · · · < rk, the Gauss linking integral at scale [rt , rt+1]
is defined as Eqs. 3 and 4.
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Fig. 1. The conceptual diagram of the knot data analysis (KDA) platform for biological data learning. (A) An illustration of multiscale Gauss linking integral-
based KDA on a (2, 8) torus. (B) mGLI is applied to the assessment of biomolecular 3D structures with multiple radius scales applied around each atom. (C) An
element-specific mGLI strategy is introduced to embed physical and chemical interactions. (D) Atom-specific mGLI features are extracted to characterize atomic
interactions in the protein–ligand complex. Statistics is used to ensure the scalability across different complexes. (E) Sequence-based features are generated for
the amino acid sequence and the SMILES string, respectively, using pretrained natural language processing models. (F ) The mGLI features and sequence-based
features are paired for downstream predictions and analysis using gradient-boosting decision tree models or deep neural networks. Colors of frames and large
arrows indicate the workflows in different modules: (A–D) denote a structure-based module (blue), (E) highlights a sequence-based module (orange), and (F )
represents a prediction module (purple).

Grt ,rt+1 =


�[rt ,rt+1](d(p1, q1))L(p1, q1) �[rt ,rt+1](d(p1, q2))L(p1, q2) · · · �[rt ,rt+1](d(p1, qm))L(p1, qm)
�[rt ,rt+1](d(p2, q1))L(p2, q1) �[rt ,rt+1](d(p2, q2))L(p2, q2) · · · �[rt ,rt+1](d(p2, qm))L(p2, qm)

...
...

. . .
...

�[rt ,rt+1](d(pn, q1))L(pn, q1) �[rt ,rt+1](d(pn, q2))L(pn, q2) · · · �[rt ,rt+1](d(pn, qm))L(pn, qm)

 , [3]
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where

�[rt ,rt+1](x) =
{

1, if x ∈ [rt , rt+1]
0, else

. [4]

Remark 2: The scaled Gauss linking integral is used to extract
appropriate linking integral within the scale. As shown in the
curve segmentation for a (2, 8) torus of Fig. 1A, each torus has
a collection of segments. We have G0,r1

ij = 0, Gr1,r2
ij = L(pi, qj),

and Gr2,r3
ij = 0. The scaled integral provides a way to capture

local interactions between segments for a given scale. Cumulative
integrals across expanding scales offer additional local structural
insights, gradually unveiling broader global characteristics and
relationships. Accordingly, multiscale Gauss linking integral
features can be designed for various systems (Methods).

Definition 4 [Localized scaled Gauss linking integral]: For
given scale [rt , rt+1], we can define the localized scaled Gauss
linking integral at pi or qj by the followings:

J rt ,rt+1(pi) =
m∑
s=1

Grt ,rt+1
is , [5]

J rt ,rt+1(qj) =
n∑

s=1
Grt ,rt+1
sj . [6]

Remark 3: By examining Gauss linking integrals at different
scales, we obtain multiscale representation. The localized scaled
Gauss linking integral gives rise to a measurement for each curve
segment in the curve. By considering different scales, the localized
scaled Gauss linking integral provides a featurization of each curve
segment u:

Feature(u) = (J r1,r2(u), J r2,r3(u), · · · , J rk−1,rk(u)). [7]

In the case of biomolecular data characterization, curve
segmentation is centered at atoms. Consequently, a scaled Gauss
linking integral is tailored in an atom-specific or element-specific
manner. Localized scaled Gauss linking integrals characterize
atomic interactions across various scales, facilitating molecular
multiscale analysis.

KDAofBiologicalData. Biological systems are intricately complex
and pose grand challenges. We evaluate the performance of mGLI
with 13 benchmark datasets in four classes of biological systems,
including protein flexibility analysis, protein–ligand binding
affinity prediction, the classification of hEGR channel blockers,
and quantitative toxicity prediction. To develop predictive
machine learning models, we incorporate mGLI features with
linear regression algorithm, gradient boosting decision trees
(GBDT), deep neural networks (DNN), and multitask deep
neural networks (MTDNN). Extensive comparison with the
state-of-the-art is carried to demonstrate utility, reliability, and
robustness of the proposed mGLI-based KDA platform.
Protein flexibility analysis. Proteins are inherently flexible and
undergo various motions to maintain their functions. Protein
flexibility is often experimentally measured with B-factors, also
known as temperature factors or atomic displacement parameters.
High B-factors indicate increased atomic mobility, suggesting the
location of the protein that is flexible or involves conformational
changes. Low B-factors, on the other hand, indicate rigid
regions with limited atomic motion. We assess the effectiveness
of the proposed mGLI-base features in predicting protein
B-factors (Methods). The mGLI features are integrated with

linear regression algorithm. It has been a tradition in B-factor
predictions for all methods to utilize the same simple machine
learning algorithm, thereby ensuring a fair comparison of various
approaches.

Typically, the B-factor prediction focuses on C� atoms in
a protein as shown in Fig. 2A for protein (PDBID: 1J27).
We segment the protein polymer chain structure into C�
atoms to facilitate Gauss linking integral calculations of atomic
interactions among C� atoms. The resulting atom-wise mGLI
matrix is depicted in Fig. 2B with reference to the secondary
structure. It is noteworthy that the Gauss linking integral depends
on the orientations of segments or curves. Eliminating this
orientation factor may lead to a more insightful analysis for
specific tasks, regardless of curve orientation. To completely
disregard orientation impact, we consider the absolute Gauss
linking integral as

L̄(l1, l2) =
1

4�

∫
[0,1]

∫
[0,1]

∣∣∣∣det(̇1(s), ̇2(t), 1(s)− 2(t))
|1(s)− 2(t)|3

∣∣∣∣ ds dt,
[8]

along with its corresponding integral segmentation matrix. The
absolute Gauss linking integral of Fig. 2B is given in Fig. 2C . In
the rest of this work, we use absolute Gauss linking integral in
our computations.

Fig. 2 C–H show the absolute mGLIs at various scales
from large to small. At the smallest scale (Fig. 2H ), only the
nearest neighbor interactions are recorded in Gauss linking
integral. This multiscale analysis characterizes each C� atom’s
local environment and interactions.

Numerous computational methods have been developed for
B-factor predictions, such as Gauss network model (GNM)
(28), anisotropic network model (29), normal mode analysis
(NMA) (30). However, Park et al. (31) demonstrated that both
GNM and NMA were ineffective in analyzing a wide range
of protein structures. Their findings revealed that, on average,
the correlation coefficients for GNM and NMA, across three
protein sets categorized by size (small, medium, and large), were
consistently below 0.6 and 0.5, respectively. Recently, advanced
methods have emerged to address this challenge, including
flexibility rigidity index-based approaches such as pfFRI (32) and
opFRI (32), as well as topology-based methods like atom-specific
persistent homology (ASPH) (33) and evolutionary homology
(EH) (34).

To evaluate the performance of the proposed mGLI for protein
flexibility analysis, we employed a dataset consisting of 364
protein structures, sourced from ref. 32. This dataset served as
a benchmark for comparing mGLI against established methods,
specifically opFRI (32), pfFRI (32), and GNM (31).

In SI Appendix, Table S11, we present the comparative results
of mGLI with previous methods for each protein in the dataset.
Remarkably, mGLI outperformed previous methods in 320
out of 364 proteins. On average, mGLI achieved the highest
correlation coefficient of 0.725, surpassing the values of 0.673
for opFRI, 0.626 for pfFRI, and 0.565 for GNM, as illustrated
in Fig. 2I . This represents a significant improvement of 7.7%,
15.8%, and 28.3%, respectively.

In addition, to validate the effectiveness of mGLI for predicting
C� atom B-factors in proteins of different sizes, we compared
our method with previous approaches including EH (34), ASPH
(33), opFRI (32), pfFRI (32), GNM (31), and NMA (31) on
three protein sets, as shown in Fig. 2J . mGLI achieved average
correlation coefficients of 0.899, 0.776, and 0.708 for the small,
medium, and large protein sets, respectively. Our results on the
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B-factor modeling comparisons for
 three additional benchmark datasets

Comparisons of B-factor
 predictions on 364 proteins

B-factor predictions for protein 1V70

β4

K
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J

>

Fig. 2. An illustration of mBLI analysis for protein B-factor predictions. (A) The 3D structure of protein 1J27 consisting of two �-helices and four �-sheets. (B) The
segmentation of the Gauss linking integral of protein 1J27. (C) The absolute value of Gauss linking integral matrix of protein 1J27. (D) The absolute Gauss linking
integral matrix of protein 1J27. (E–H) Absolute Gauss linking integral matrices of protein 1J27 at different scales. (I) The comparison of B-factor predictions
between our mGLI method and other literature approaches on a benchmark dataset of 364 proteins. (J) The comparison of B-factor predictions on three
additional benchmark datasets between our mGLI method and other literature approaches (refer to SI Appendix, Table S2 for detailed information). (K ) The
visualization of protein 1J27 B-factors obtained from experiments, mGLI, and GNM (28). (L) Comparison of protein 1J27 B-factors obtained from experiments,
mGLI, and GNM (28). Here, GNM7 and GNM8 indicate the cutoff value at 7 Å and 8 Å for the GNM. The x-axis represents the residue number, and the y-axis
represents the B-factor value. (M) The visualization of mGLI features with the maximal cutoff at 30Å. The x-axis represents the residue number and the y-axis
represents the scale range. Note that all values that exceed 3.0 are labeled as red.

three datasets significantly outperformed the previous methods,
demonstrating improvements of 16.3%, 6.4%, and 6.5% on the
small, medium, and large protein sets, respectively, compared to
the previous state-of-the-art method EH (34).

To understand mGLI’s performance, we present a case study
with a potential antibiotic synthesis protein (PDBID: 1V70) 105
residues. Fig. 2K shows the protein colored with B-factor values.
Apparently, mGLI-predicted B-factor values are very close to
those of the experimental ones, whereas, GNM predicted values
are unmatched. Fig. 2L presents detailed comparison. GNM
methods have large errors around residues 1 to 10, which can
also be seen in Fig. 2K . In contrast, mGLI gives accurate B-factor
prediction for these residues. The mGLI features are presented
in Fig. 2M . For each scale, we calculate the cumulative absolute
Gauss linking integral, represented by a colored bar along with
its accumulated value below. We designate the values exceeding
a specific threshold (3.0 in this case) as red. Consequently, it
becomes evident that the pattern of mGLI values in Fig. 2M
matches the experimental B-factors in Fig. 2L directly. This

observation holds true in a broader sense and is further validated
in SI Appendix, Figs. S6 and S7.
Protein–ligand binding affinity predictions. Protein–ligand bind-
ing affinity describes the interaction strength between a potential
drug molecule and its target protein or receptor, and its prediction
plays a crucial role in drug design and discovery (35, 36). The
development of machine learning models for protein–ligand
binding affinity prediction represents a pivotal advancement in
computational biology (37). We explore the utility of mGLI
for machine learning predictive models. The PDBbind database
(38) offers a comprehensive repository of protein–ligand complex
structures along with their corresponding binding affinity data
(36). In our study, we have included two of the most commonly
utilized protein–ligand databases, namely, PDBbind-v2013 and
PDBbind-v2016 (39). It is challenging to improve performance
on these datasets as they have been studied by numerous
researchers. The detailed information for the two datasets and
related rigorous training-test splittings can be found in SI
Appendix, Table S1.
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A C

B D

Fig. 3. The performance summary of our mGLI-assisted machine learning predictions for two PDBbind datasets. (A and B) The Pearson correlation coefficient
(R) comparison for the binding affinity predictions of PDBbind-v2013 and PDBbind-v2016 core sets. Our models outperform other state-of-art methods (refer
to SI Appendix, Table S4 for detailed information). (C and D) The comparison between the experimental binding affinity (BA) and the predicted BA from our best
models across the two PDBbind datasets.

In Methods, we propose two mGLI featurization approaches
on two distinct scale intervals [rt , rt+1] or [0, rt+1], on which
localized scaled Gauss linking integral is given. We use notations
mGLI-bin and mGLI-all to indicate the protein–ligand complex
features and mGLI-lig-bin and mGLI-lig-all to indicate two
sets of ligand features. The mGLI-lig-all features can be used
as additional features for protein–ligand interactions. We also
utilize pretrained natural language processing (NLP) models,
i.e., transformer features (TF), to complement mGLI features
(see details in Methods). Gradient boosting decision algorithm
is used for the predictions. Given a training dataset, models
are built 20 times with different random seeds to address
initialization-related errors. The median of Pearson correlation
coefficient (R) values from the 20 experiments are reported
below.

Fig. 3A illustrates the comparison of Pearson correlation
coefficients (R) obtained from our model and the literature
ones. Our mGLI-assisted model outperforms existing models
for the two PDBbind datasets. The R values of 0.819 and 0.862,
are achieved by our models in modeling PDBbind-2013 and
PDBbind-2016, respectively, and are the highest values ever
reported in the literature. This highlights our model’s superiority
and establishes it as a state-of-the-art protein–ligand binding
affinity prediction model. Notably, our model demonstrates a
significant improvement in R values in modeling the PDBbind-
v2013 and PDBbind-v2016 datasets compared to others. The
PDBbind-v2013 and PDBbind-v2016 datasets contain 2,764
and 3,767 complexes, respectively.

Persistent homology (40) and persistent spectral theories
(41–43) give rise to competitive molecular representation and
are widely utilized for molecular properties predictions. For
example, TopBP (40), PerSpect-ML (42), and PPS-ML (43) rank

among the top-performing models in binding affinity prediction,
as demonstrated in Fig. 3A. The efficacy of these models can
be further augmented when additional physical information is
integrated. For instance, the average R value of PerSpect-ML
(42) across the two datasets increased from 0.806 to 0.817, while
that of PPS-ML (43) increased from 0.804 to 0.817. Our mGLI-
assisted models, which are based on mGLI-all&mGLI-lig-all or
mGLI-bin&mGLI-lig-all features, provide accurate predictions
across the two PDBbind datasets, as shown in SI Appendix,
Table S3. The symbol “&” denotes feature concatenation. The
average R values of the two mGLI-based models across the two
PDBbind datasets are 0.814 and 0.818. The best consensus
models, formed by averaging predictions from mGLI-all&mGLI-
lig-all or mGLI-bin&mGLI-lig-all feature-based models along
with the transformer feature-based models further enhance the
modeling performance, achieving an average R value of 0.838
and 0.841 across the two PDBbind datasets. This exceeds the
average R of 0.835 obtained from persistent homology (40), as
well as the averages of 0.817 from PerSpect-ML (42) and 0.817
from PPS-ML (43).

Fig. 3B offer visualization comparison between the experimen-
tal and predicted binding affinities generated by our best models
for the two PDBbind datasets. The details of our models are
provided in SI Appendix, Table S3.
hERG blockade classification predictions. Ligand-based virtual
screening plays a significant role in drug discovery. Appropriate
molecular descriptors are of vital importance for predictive
accuracy. We investigate the performance of our mGLI molecular
features in several ligand-based virtual screening prediction tasks.
Predictions for hERG blockage are critically important in drug
discovery due to the potential cardiac safety risks associated with
drugs that inhibit the hERG potassium channel (44).
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Fig. 4. The performance summary of our machine learning models for hERG blockade classification and drug toxicity predictions. (A) Accuracy (ACC)
comparisons of our mGLI-assisted consensus model with literature models. These comparisons indicate that our model represents the state-of-the-art machine
learning predictive tool. (B) ROC curves of our model for four hERG blockade classification tasks. (C) Prediction comparisons of our model with literature models
for the four toxicity datasets in terms of the squared Pearson correlation coefficient (R2) (Refer to SI Appendix, Table S7 for detailed comparative information).

Several machine learning predictive models are available in the
literature (44–48), and we benchmark our mGLI-based models
against them. Among these models, the persistent Laplacian
theory (41, 44) was used in conjunction with several NLP molec-
ular embeddings (26, 49) to build predictive models, yielding the
best hERG blockade prediction model. The persistent Laplacian
approach, rooted in spectral graph theory, can be regarded as an
extension of persistent homology theory. It preserves the topolog-
ical persistence as persistent homology, while revealing additional
geometric insights from those nonharmonic portions of the
spectrum. We provide a detailed discussion of these two theories
in SI Appendix, section 7. Here, we employ mGLI theory along-
side several other molecular descriptors, including the same two
NLP embeddings as in ref. 44, and algebraic graph (AG)-based
molecular features (50). The NLP embeddings are paired with
artificial neural network algorithms, while mGLI and AG features
are used with GBDT algorithms. Our final prediction model is
obtained with the consensus prediction of these four models.

Three hERG blockade datasets with binary classification labels
from the literature were used to investigate the performance of
our models. Details of these datasets and five utilized evalu-

ation metrics including area under the curve (ACC), Accuracy
(ACC), Matthews correlation coefficient (MCC), sensitivity, and
specificity are included in SI Appendix, Table S1 and section 1.
Among these metrics, ACC gives the percentage of the correctly
predicted blockers and nonblockers. Given a training dataset,
each individual model was built ten times with different random
seeds. In the comparison with other literature models, the highest
ACC scores, along with corresponding metrics evaluations from
the ten prediction results, are reported in SI Appendix, Table S5.
Our models yield state-of-the-art predictions. Fig. 4A displays
the ACC score comparisons across the three datasets, while
the comparison in terms of AUC and MCC is displayed in
SI Appendix, Fig. S12. Fig. 4B exhibits the receiver operating
characteristic (ROC) curves of our model in predicting the test
sets of the three datasets.

Zhang et al. (45) investigated their model performance with a
hERG dataset containing 1,163 compounds. Different training
and test sets were partitioned from the 1,163 compounds. Various
thresholds defined by IC50 values were used to discriminate
hERG blockers from nonblockers. Their support vector machine
model had the best ACC scores of 0.848 on the test set with
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threshold of 30 μM. Zhang et al.’s model (46) had a boosted
prediction ACC score of 0.856. Feng et al.’s model (44) achieved
much higher improvement in many metric. Our model has
significantly higher predictive power than Feng et al.’s model
(44) with ACC scores increased from 0.864 to 0.881, and MCC
results boosted from 0.518 to 0.587, respectively, while it also
achieved high sensitivity and specificity scores.

Li et al. (47) constructed two consensus models based on their
dataset composed of 3,721 compounds with a threshold of IC50
equals to 1 μM classifying blockers and nonblockers. Their best
consensus results on a test set of 1,092 compounds achieved an
ACC score of 0.842. Feng et al.’s model (44) improved the results
of Li et al. (47) and Zhang et al.(46). The AUC, ACC, and MCC
scores of our mGLI-assisted model are 0.924, 0.893, and 0.661,
which are even higher than the corresponding scores of 0.917,
0.885, and 0.629 in Feng et al.’s model (44).

Cai et al. (48) developed a multitask deep neural network-
based model and had their best predictive power on a hERG
dataset with blockade threshold value of 80 μM. The reported
AUC and ACC scores achieved 0.967 and 0.925. Feng et al.’s
(44) model had boosted performance. Our model accomplished
perfect scores of 1.000 in all the five evaluation metrics. The
detailed performance of our individual models is provided in SI
Appendix, Table S6 or Fig. S13. The mGLI models outperform
or achieve comparable results. This indicates the critical impact
of mGLI modeling on the resulting consensus predictions. Our
model consistently exhibits outstanding predictive performance,
placing it among the top-tier machine learning models for hERG
blocker/nonblocker classification.
Quantitative toxicity predictions. Toxicity in drug discovery refers
to the potential harmful effects or adverse reactions that a drug
or chemical compound may have on living organisms (51).
Assessing drug toxicity is essential in drug discovery. We assess
the performance of our mGLI-assisted predictive models on
four toxicity datasets, including IGC50, LC50, LC50DM, and
LD50. Information about the toxicity datasets is provided in SI
Appendix, Table S1 and section 5B.

In addition to mGLI, we also employ transformer (TF) (49)
and autoencoder (AE) models (26) to enhance the modeling
performance. We pair GBDT with mGLI features to model
the four datasets. Due to the similarity of the toxicity datasets,
a MTDNN was employed to enhance modeling performance
(25, 51, 52). We employed TF and AE features to build two
MTDNN models, resulting in two additional sets of predictions.
Our final predictive model is obtained by averaging these three
sets of predictions. Given a training dataset, models are built 10
times with random seeds.

SI Appendix, Table S7 presents the detailed comparison in
terms of squared Pearson correlation coefficients (R2) and root
mean squared error. The comparisons in terms of R2 are depicted
in Fig. 4B. Our model stands out in toxicity predictions,
achieving the higher R2 values of 0.842, 0.793, 0.778, and
0.690 for the IGC50, LC50, LC50DM, and LD50 datasets,
respectively. SI Appendix, Fig. S16 presents a comparison between
the experimental toxicity and our predicted toxicity values for the
four datasets. The high consistency underscores the effectiveness
of our machine learning models.

Two competitive models were proposed by Gao et al. (52),
namely the 2D-GBDT and 2D-MTDNN consensus models,
which utilize traditional 2D molecular fingerprints along with
various machine learning algorithms. Their multitask learning
consensus model achieved R2 values of 0.794, 0.765, 0.725,
and 0.639 for the IGC50, LC50, LC50DM, and LD50

datasets, respectively. They surpassed many other models in the
literature, including those from Toxicity Estimation Software
Tool (T.E.S.T) and related approaches, such as hierarchical,
FDA, nearest neighbor, and T.E.S.T consensus (53). Wu et al.
(51) introduced molecular fingerprints using persistent homology
theory and developed a consensus multitask learning model.
Additional molecular descriptors based on physical attributes,
including energy, surface energy, and electric charge, were
incorporated into their consensus model, significantly enhancing
predictive performance. Their model achieved R2 values of
0.802, 0.789, 0.678, and 0.653 for the aforementioned datasets.
Our model outperforms these exceptional models. Several other
models have recently been developed based on traditional
molecular fingerprints such as estate1, estate2, daylight MACCS,
or other advanced strategies. However, our model outperforms
them by a significant margin, as observed in Fig. 4, and
detailed comparisons are provided in SI Appendix, Table S7.
This demonstrates that our mGLI-based knot theory provides an
effective approach for molecular representation learning.

In addition, SI Appendix, Table S7 or Fig. S15 displays the de-
tailed performance results of our GBDT and MTDNN models.
We compared the mGLI-based GBDT model with GBDT
models based on TF or AE features. The mGLI-GBDT model
is competitive across the four prediction tasks, outperforming
the TF-GBDT model in all tasks except for LC50DM. The
inferior performance for the LC50DM task can be primarily
attributed to overfitting issues. The large number of features in
the mGLI model makes it less suitable for the LC50DM dataset,
whose training set only has 283 molecules. The comparisons
indicate that mGLI provides valuable 3D structure-based features
for small molecule representations compared to NLP molecular
features and is competitive in modeling individual tasks.

Discussion

Generalization to Other Topological Objects and Real-World
Structures. It is intriguing to consider the range of data to which
the present KDA can be applied. Mathematically, the multiscale
Gauss link integral theory proposed in this work can naturally
extend to a wide variety of other topological objects, such as
knotoids (54), links, linkoids (55), lassos (56), and cysteine knots
(57) in Fig. 5A, as well as curve segments in Fig. 5 B and
C, tangles, and braids. These types of curved structures are
ubiquitous in real-world objects, ranging from ropes, shoelaces,
highways, and powerline networks to polymers, DNA, RNA,
nucleosomes, chromosomes, and the trajectories of space vehicles
and interceptor missiles. In a comparative analysis, our KDA deals
with curved data, whereas TDA handles point cloud data defined
on simplicial complexes, graphs, hypergraphs, etc. Additionally,
our earlier persistent Hodge Laplacian is defined on manifolds
and addresses volumetric data (58).

Curve Segment Size and Multiscale Granularity. In principle,
our method allows for the arbitrary combination of curve
segmentation with any multiscale schemes. However, in practical
applications, the performance of mGLI is highly dependent on
their selection. First and foremost, the values of the Gauss linking
integral of a local curve segment depend not only on their spatial
alignment but also on their relative lengths compared to the
global curve. When the length of a curve segment approaches
zero, the corresponding Gauss linking integral approximates
to 0. Similarly, as curve segments expand to cover the global
curve, the Gauss linking integral returns global information.
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Ligand element-specific mGLI using summation
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Fig. 5. (A) Examples of topological objects which can be studied by the multiscale Gauss linking integral. (B) Hopf link with two types of curve segmentations. (C)
Slipknot with seven curve segments. (D) Lasso with four curve segments. (E) Left is the absolute Gauss linking integral matrix for protein 1J27. Right is the transient
probability matrix (TPM) for protein 1J27. Points in Top row and Left column are colored green or yellow, denoting �-sheet or �-helix of 1J27. (F ) The protein or
ligand element-specific mGLI features based on summation statistics for protein 1PXO, as formulated in Eq. 16. Additional features for other element-specific
cases are offered in SI Appendix, Fig. S2, while features based on median statistics are provided in SI Appendix, Fig. S3. (G) The curve segmentation illustration of
molecule 2-Trifluroacetyl along with radius scales centered at each atom. (H) The feature of element-specific mGLI under three scales for the molecule using
median statistics, as formulated in Eq. 16. The magnitude of feature values increases as the scales increase. Features with alternative statistics measures for
element-specific mGLI features are presented in SI Appendix, Figs. S4 and S5.

In both cases, the Gauss linking integral fails to extract useful
spatial information regarding local alignments. The choice of
segmentation depends on the specific application. For example,
in dealing with molecular properties, atomic segments are needed.
In modeling a crowded highway, the segment of individual car
size is a natural choice. Second, the selection of the multiscale
range impacts the featurization of the Gauss linking integral.
Ideally, different scales should capture distinct spatial structure
information, and the choice of scales should reflect important
interactions in the data. If the information between different
scales is negligible, it can result in a large number of identical or
trivial features. Conversely, if the scale is too coarse, it may lead
to information loss.

The Superiority ofmGLI for Biomolecular Data. Proteins, DNA,
and RNA are polymers and are naturally modeled as curved
structures at certain scales. The proposed multiscale Gauss linking
integral proves to be a superior tool for biomolecular data analysis
compared to previous methods. The analysis of biomolecular
structures using mGLI can lead to insights. To demonstrate

this, we conducted a structural analysis of protein 1J27 by
segmenting the absolute multiscale Gauss linking integral and
compared it with the previous transient probability matrix (TPM)
(59). The structural information that was previously obscured
becomes considerably more evident and clear when using mGLI,
as depicted in Fig. 5E . For instance, in the TPM, interactions
such as �1-�1 and �2-�2 are represented as slightly thicker
yellow blocks along the diagonal. In contrast, mGLI portrays
these interactions as larger, more expressive, and prominently
red blocks. This enhanced visualization enables a more precise
distinction between the self-interaction of the alpha chain and
other structural elements, such as the self-interaction between the
�2 and �3 regions. Furthermore, the contrast between different
values within each block is more pronounced in mGLI compared
to TPM. This distinction is particularly noticeable in blocks
representing interactions like �1-�2, �1-�2, �1-�2, and so forth.

Topological Data Analysis vs. Knot Data Analysis. Recent years
have witnessed the rapid growth of TDA in data science, driving
its success in various domains, particularly in computational
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biology (17–19). However, the major tool of TDA, persistent
homology, has many drawbacks (20), including its qualitative and
global nature, as well as the lack of localization. It is imperative
to develop new mathematical/topological methods that overcome
the drawbacks of TDA and potentially impact various domains
of data science.

The proposed mGLI is a local method but recovers global
topological properties at sufficiently large scales. Therefore,
mGLI-based KDA models can outperform TDA models, as
shown in this work. A direct comparison of TDA and KDA
in protein B-factor prediction shows that KDA has a 17.2%
improvement over TDA as sown in Fig. 2I (ASPH vs. mGLI).
Besides, our mGLI models demonstrate superiority over TDA
models (42, 43) for predicting protein–ligand binding affinity.
Our model, based on mGLI features, achieves an average R value
of 0.818 across the two PDBbind datasets. This surpasses the
R values of 0.806 from PerSpect-ML (42) and 0.804 from PPS-
ML (43) as well. The proposed KDA is computationally efficient,
as it takes only a few minutes on a personal computer to generate
mGLI features for a moderately sized dataset. Recently, a new
KDA tool, persistent Khovanov homology, has also been reported
(60). Given the tremendous success of TDA, we expect that KDA
will become a powerful new topological learning tool for a wide
variety of problems in data science.

Methods

Multiscale Gauss Linking Integral. We introduced several essential defini-
tions related to the Gauss linking integral in Results. Additional important
proposition or theorems are presented below.

Proposition 1. The Gauss linking integral in Eq. 1 is identical to the average of
half the algebraic sum of intercrossings in the projection of the two curves in any
possible projection direction for both open and closed curves.

Theorem 1. [Panagiotou et al. (12)]. For closed curves, the Gauss linking
integral is an integer and a topological invariant. For open curves, the Gauss
linking integral is a real number and a continuous function of curve coordinates.

Theorem 2. [The grand sum of the segmentation matrix]. The grand sum of
the segmentation matrix of two curves equals the Gauss linking integral of the
original curves:

L(l1, l2) =
∑
i

∑
j

L(pi, pj). [9]

Remark 4 [Generalization of Gauss linking integral]: Vassiliev measure, a
generalization of Gauss linking integral, can be applied to open and closed
curves in 3-space (55). Similarly, the proposed mGLI obtained by combining the
Gauss linking integral and multiscale process can naturally be applied to links,
linkoids, open and closed curves, and other segmentable objects as shown in Fig.
5B. It can be noticed that any element in the segmentation of the Gauss linking
integral is defined on local curve segments. This indicates that one can define a
generalized form of the multiscale Gauss linking integral if the segmentation of
the Gauss linking integral is well defined on local curve segments. In fact, for any
topological or geometric structure that can be segmented into curve segments
Pn, Qm, we can define the following segmentation matrix:

Ḡ =


g(p1, q1) g(p1, q2) · · · g(p1, qm)
g(p2, q1) g(p2, q2) · · · g(p2, qm)

...
...

. . .
...

g(pn, q1) g(pn, q2) · · · g(pn, qm)

 , [10]

where

g(pi, qj) =

{
L(pi, qj) if pi ∩ qj is a null-set,
0 else.

[11]

In the above definition, unlike in Eq. 2, the curve segments in Pn andQm are
allowed to intersect or even be equal. Thus, the mGLI can be applied in multiple
topological/geometric structures as long as they can locally be represented as
curve segments. Featurization can be similarly derived as in Eq. 7.

mGLI Featurization for B-Factor Prediction. We consider a protein as an
open curve, acknowledging that the polypeptide chain of a protein molecule
can be seen as an open polygon l whose vertices are corresponding to the C�
atoms, while the edges represent the pseudobonds that connect a C� atom to
another one in an adjacent amino acid residue. We propose a curve segmentation
induced by C� atoms:

pi =
{
x ∈ l1|f(x, ci) = inf

c∈C
f(x, c)

}
, 1 ≤ i ≤ n, [12]

where f(a, b) is the distance of points a and b along l, ci is the 3D coordinates
of a C� atom, and C is the set of C� atoms. Then, the d(pi, qj) assumed in Eq. 3
can be defined:

d(pi, qj) = dE(ci, cj), [13]

where dE is the Euclidean distance in the 3D space.
Then, according to the generalized multiscale Guass linking integral, the

segmentation of Gauss linking integral that investigates the intercrossings
between segments of the protein can be given:

G =


L(p1, p1) L(p1, p2) · · · L(p1, pn)
L(p2, p1) L(p2, p2) · · · L(p2, pn)

...
...

. . .
...

L(pn, p1) L(pn, p2) · · · L(pn, pn)



=


0 L(p1, p2) · · · L(p1, pn)

L(p2, p1) 0 · · · L(p2, pn)
...

...
. . .

...

L(pn, p1) L(pn, p2) · · · 0

 .

The localized scaled Gauss linking integral, detailed in Remark 3, is a natural
way to characterize each C� atom in B-factor predictions. We naturally choose
a segment that precisely covers a single C� atom along the polymer chain.
Additionally, in our study, the multiscale scheme is selected to start from 5 Å and
extend up to 17 Å, with each scale interval set at 1 Å. This choice is based on the
fact that the average distance between C� atoms is approximately 3.8 Å. Such
a selection of the multiscale scheme results in a powerful featurization method
that provides abundant representations of local protein structures.

Traditional B-factor analysis methods predominantly concentrate on
individual atoms and their spatial positions in three-dimensional space,
accounting for the thermal motion and disorder of atoms within a protein
structure. However, the incorporation of bonding interactions between atoms,
which indirectly impacts the observed B-factor values, is rarely employed in
B-factor analysis. Through the incorporation of mGLI, our method introduces
the notion of pseudobonds between protein atoms, effectively capturing
the influence of bonding interactions. The integration of knot theory with
the multiscale procedure enables the precise localization of measurements,
capitalizing on the spatial positions and atomic environments. The synergy
between multiscale analysis and knot theory culminates in a robust method for
predicting protein B-factors, showcasing the potential of multiscale approaches
in effectively pinpointing measurements derived from knot theory.

mGLI Featurization for Protein–Ligand Complex. Localized scaled Gauss
linking integral is also utilized to characterize protein–ligand interactions.
This approach defines distinct curve segments and computes integrals with
other segments across various scales. For molecular structures, we adopt atom-
specific curve segmentation. Each atom ci in a protein or ligand molecule is
linked by multiple covalent bonds to neighboring atoms, determining the curve
segmentation specific to ci. These segments originate from the central atom and
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extend to the midpoint of associated covalent bonds, resulting in atom-specific
curve segmentation.

pi =
{
x ∈ l|f(x, ci) ≤

1
2
f(c, ci), c ∈ C

}
, [14]

Here, C represents the set of adjacent atoms connected to atom ci by covalent
bonds, and l denotes the straight line along each covalent bond.

We focus on the binding core region where protein–ligand interactions
primarily occur, extracting protein atoms within a 12 Å cutoff distance from the
ligand. We can obtain atom-specific curve segmentations for both the protein and
ligand. Using these segmentations (pi in protein and qj in ligand), we compute
atom-by-atom Gauss linking integrals (a-GLI) L(pi, qj). Multiple segment pairs
between the two atoms may exist, resulting in numerous Gauss linking integral
between a segment pair. We consider the absolute Gauss linking integrals to
mitigate curve orientation effects. Due to the multiple integrals between pairs,
we utilize statistical analysis, specifically median and SD, to define L(pi, qj).

Element-specific approach is used in designing mGLI protein–ligand features.
Specifically, we primarily focus on the protein atom groups of four elements
(C, N, O, and S) within the protein, while considering atom groups of ten
elements (C, N, O, H, S, P, F, Cl, Br, and I) within the ligand. We extract these
atom groups in the core binding region, and then apply mGLI to characterize
pairwise interactions between these atom groups from the protein and ligand.

Let PCn and QNm represent collections of carbon (C) atom-specific curve
segmentations in the protein and nitrogen (N) atom-specific curve segmen-
tations in the ligand, respectively, given by PCn = {pCi |i = 1, 2, · · · , n} and

QNm = {qNj |j = 1, 2, · · · , m}. We use the two groups to illustrate element-
specific mGLI for protein–ligand featurization. The atomic coordinates in the
two groups are labeled as {rCi |i = 1, 2, · · · , n} and {rNj |j = 1, 2, · · · , m}.

With the atom-by-atom Gauss linking integral L(pCi , q
N
j ) defined, we further

determine the multiscale element-by-element Gauss linking integral. Assuming
a scale R = {r0, r1, r2, r3, · · · , rk}, where 0 = r0 < r1 < r2 < · · · < rk ,
the distance between pCi and qNj is denoted as d(pCi , q

N
j ) = dE(r

C
i , r

N
j ) (in Å),

wheredE(·, ·) indicates the Euclidean distance. The scaled Gauss linking integral
Grt ,rt+1 in Eq. 3 for curve segments generalizes to atom-by-atom Gauss linking
integral. Atom-specific localized scaled Gauss linking integrals between two
atom groups can be similarly derived as in Eqs. 5 and 6:

Jrt ,rt+1(pCi , Q
N
m) =

m∑
s=1

G
rt ,rt+1
is ,

Jrt ,rt+1(qNj , P
C
n ) =

n∑
s=1

G
rt ,rt+1
sj ,

where the second variable inJrt ,rt+1 indicates linking atom sets with the specified
atom in the first variable. These expressions quantify the intercrossing between
a C atom-specific segmentation pCi in the protein and a set of C atom-specific
segmentations in the ligand within a given scale from rt to rt+1, or between
a N atom-specific segmentation qNi in the ligand and a set of C atom-specific
segmentations in the protein within a given scale.

To provide a scalable description of atomic interactions between two atom
groups, we compute all atom-specific localized scaled Gauss linking integrals
Jrt ,rt+1(pCi , Q

N
m) for i = 1, 2, · · · , n, and Jrt ,rt+1(qNj , P

C
n ) for j = 1, 2, · · · , m.

Statistical measures are then used to determine the multiscale element-specific
Gauss linking integral (e-GLI) through the following formulations:

Jrt ,rt+1(PCn , Q
N
m) = statistics of{

Jrt ,rt+1(pC1 , Q
N
m), Jrt ,rt+1(pC2 , Q

N
m), · · · , Jrt ,rt+1(pCn , Q

N
m)
}
,

Jrt ,rt+1(QNm, P
C
n ) = statistics of{

Jrt ,rt+1(qN1 , P
C
n ), J

rt ,rt+1(qN2 , P
C
n ), · · · , J

rt ,rt+1(qNm, P
C
n )
}

[15]

We employ various statistical measures such as sum, minimum, maximum,
mean, and median in Eq. 15, which depict the atomic interactions between
C atom-specific segmentations in the protein and N atom-specific segmentations
in the ligand within the scale [rt , rt+1]. We consider the two formulations in
Eq.15asproteinandligandelement-specificGauss linkingintegral, respectively.

We can extend the starting point of the scale interval to 0, giving rise to
following formulation:

J0,rt+1(PCn , Q
N
m) = statistics of{

J0,rt+1(pC1 , Q
N
m), J0,rt+1(pC2 , Q

N
m), · · · , J0,rt+1(pCn , Q

N
m)
}
,

J0,rt+1(QNm, P
C
n ) = statistics of{

J0,rt+1(qN1 , P
C
n ), J

0,rt+1(qN2 , P
C
n ), · · · , J

0,rt+1(qNm, P
C
n )
}

[16]

We refer to the first and second approaches as mGLI-bin and mGLI-
all featurization, respectively. In characterizing protein–ligand complexes, we
define the scale radius set as R = {0, 2, 3, · · · , 11, 12} (in Å). Each of these
featurization approaches results in an mGLI feature vector with a length of 40
(number of element combinations)× 2 (e-GLI fro two formulations in Eq. 15)×
11 (scale number) × 5 (statistics for e-GLI) × 2 (statistics for a-GLI) = 8,800.
Fig. 5 E and F give an illustration of protein and ligand element-specific mGLI
features.

Fig. 5F illustrates a few cases of protein or ligand element-specific mGLI over
the radius scales based on statistics of summation for two formulations in Eq.16.
Additional cases are provided in SI Appendix, Figs. S2 and S3.

We investigate the potential improvements in modeling performance
resulting from employing statistical measures for mGLI features. SI Appendix,
Figs. S8–S10 demonstrate the effectiveness of utilizing various statistical
measures. Comparative analysis in SI Appendix, section 4B validates the
enhancement induced by incorporating additional statistical measures.

Adjusting the upper scale of protein-specific mGLI features could lead to
an improvement in modeling performance. SI Appendix, Fig. S11 presents
the resulting performance comparisons across various upper scales rk , ranging
from 12 to 20. Despite the increase in upper scales, the modeling performance
remains consistent, indicating that an upper scale of 12 Å is adequate for ensuring
optimal mGLI feature performance. The scale range and equal partitioning with
an increment of 1 Å are appropriate for capturing local atomic interactions and
recovering global molecular interactions.

mGLI Featurization for Small Molecules. The mGLI featurization for small
molecules can utilize the same approach based on the aforementioned 10
atom groups. Two mGLI feature strategies for ligands are available: mGLI-bin-
lig and mGLI-all-lig, depending on local integral scale ranges. For a ligand
with atom-specific curve segmentations pi and qj, the atom-by-atom Gauss
linking integral L(pi, qj) is determined using median statistics, adhering to
the element-specific strategy to capture more atomic interactions. For atom-
specific curve segmentations pCi (i = 1, 2, · · · , n) and qNj (j = 1, 2, · · · , m),
statistics including summation, minimum, maximum, mean, and median
are applied to the multiscale element-specific Gauss linking integral in
equations such as Eqs. 15 or 16. The scale values are defined as R =
{0, 2.0, 2.44, 2.98, 3.63, 4.43, 5.41, 6.59, 8.05, 10} for characterizing small
molecules. Both mGLI-bin-lig and mGLI-all-lig features have a length of 2,475.
The upper scale of 10 Å is reasonable based on the 3D structure size of general
small molecules as analyzed for hERG blockade molecules in SI Appendix,
Fig. S14.

An illustration of the multiscale element-specific Gauss linking integral for a
molecule is depicted in Fig. 5 G and H, with corresponding additional feature
analysis provided in SI Appendix, Figs. S4 and S5.

Additional Molecular Descriptors and Machine Learning Algorithms. In
this work, transformer and autoencoder-based NLP molecular descriptors are
employed to enhance mGLI knot learning for various predictive tasks. Details
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about these descriptors are provided in SI Appendix, section 5C. Additionally,
the integration of various molecular descriptors with machine learning and deep
learning algorithms is discussed in SI Appendix, section 6.

Data, Materials, and Software Availability. All data and the code needed to
reproduce this paper’s result can be found at https://github.com/WeilabMSU/
mGLI-KDA (61).
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