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Abstract. In algebraic topology, the differential (i.e., boundary operator)

typically satisfies d2 = 0. However, the generalized differential dN = 0 for an

integer N ≥ 2 has been studied in terms of Mayer homology on N -chain com-
plexes for more than eighty years. We introduce Mayer Laplacians on N -chain

complexes. We show that both Mayer homology and Mayer Laplacians offer

considerable application potential, providing topological and geometric insights
to spaces. We also introduce persistent Mayer homology and persistent Mayer

Laplacians at various N . The bottleneck distance and stability of persistence

diagrams associated with Mayer homology are investigated. Our computa-
tional experiments indicate that the topological features offered by persistent

Mayer homology and spectrum given by persistent Mayer Laplacians hold sub-

stantial promise for large, complex, and diverse data. We envision that the
present work serves as an inaugural step towards integrating Mayer homology

and Mayer Laplacians into the realm of topological data analysis.

1. Introduction. Topological data analysis (TDA) stands at the forefront of in-
novative methodologies in the field of data science, employing tools derived from
algebraic topology and differential geometry to analyze the topological invariants
and geometry shapes of complex datasets. In contrast to conventional approaches
that often concentrate on numerical attributes of data, TDA distinguishes itself
by prioritizing the extraction of significant topological invariants and geometrical
shapes. These features play a pivotal role in capturing the nuanced patterns and
relationships embedded within the data. The power of TDA is exemplified in the
topological deep learning paradigm [7].

A particularly noteworthy aspect of TDA is persistent homology, a concept that
extends the utility of traditional topological techniques [9]. As a key tool of TDA,
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persistent homology enables the identification and preservation of topological fea-
tures across various scales within the dataset. Unlike methods of static data anal-
yses, persistent homology captures the evolution of features over different scales,
providing a dynamic and comprehensive understanding of the underlying topologi-
cal structures. By incorporating this filtration of data, persistent homology excels
at discerning persistent patterns and revealing the enduring topological signatures
that may be overlooked by traditional methods. This synergy enhances the robust-
ness and depth of insights gained from TDA, making it an invaluable approach for
unraveling complex relationships within diverse datasets.

As early as 1942, Walther Mayer introduced a novel homology theory that was
not based on chain complexes, but rather on a structure known as an N -chain com-
plex [21]. This N -chain complex can be understood simply as having a boundary
operator d that satisfies dN = 0, rather than the typical d2 = 0 in persistent homol-
ogy. This kind of structure appears to be more intriguing and facilitates the Mayer
homology (sometimes called generalized homology). In [23], Mayer considered N -
chain complexes with coefficients in the field of integers modulo p. He provided
a correspondence between Mayer homology of simplicial complexes and simplicial
homology. This demonstrates that Mayer homology and simplicial homology can
be mutually derived from each other. Reviewing the traditional differentials in sim-
plicial complexes, Mayer homology and simplicial homology typically involve linear
combinations of face operators with coefficients of +1 or -1. Drawing inspiration
from this concept, we extend these coefficients to be the N -th primitive roots of
unity. This adjustment results in an N -chain complex and its corresponding alge-
braic theory. Let q represents the primitive N -th root of unity. Utilizing q enables
the construction of an N -differential. This construction gives rise to the deriva-
tion of a q-analog for a differential graded algebra, subsequently allowing for the
computation of Tor- and Ext-groups [14, 16]. The tensor product structure on the
q-differential graded algebra has been explored, as discussed in [22]. It is worth
noting that there are multiple ways to construct an N -chain complex from a simpli-
cial complex in the literature [15]. In [1], the author applied the q-differential to a
reduced quantum plane and studied the corresponding exterior calculus on the re-
duced quantum. Recently, other research on N -chain complexes has been proposed
[19, 20].

Inspired by N -chain complexes and Mayer homology, we believe that Mayer ho-
mology can reveal additional topological and geometric features of a space, which
is highly beneficial for the TDA of large, complex, and diverse data. In a simplicial
complex, simplices of different dimensions form its algebraic and geometric struc-
ture. The standard chain complex provides a boundary operator that describes the
connections between simplices of adjacent dimensions. In contrast, for a general N -
chain complex, the N -differential and its composition establish connections between
simplices of different dimensions. This feature is absent in traditional chain com-
plexes where the composition of differentials results in zero. In this sense, N -chain
complexes better capture profound relationships between simplices of varying di-
mensions. Consequently, Mayer homology and the corresponding Mayer Laplacian
can more effectively characterize these relationships among simplices of different
dimensions.

Persistent homology theory is the main workhorse in TDA and has seen substan-
tial enrichment and development in recent years. From the standpoint of persistent
parameters, researchers have delved beyond single persistent homology, exploring
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multi-persistent homology [10, 9], Zig-zag persistent homology [8], Cayley persis-
tent homology [4], and many other variants. However, persistent homology has
its limitations. It focuses on the topological features of data points but may not
be sufficiently sensitive to the geometric structure of these points. Wei and his
coworkers introduced persistent Laplacians on smooth manifolds [13] and point
clouds [24] to address the limitations of persistent homology. The harmonic part of
the spectrum of the persistent Laplacian operator corresponds to persistent homol-
ogy information, while the non-harmonic part provides geometric insights into the
simplicial complex. Persistent Laplacians show superior performance over persis-
tent homology, leading to successful forecasting emerging dominant viral variants
[12]. Both persistent homology and persistent Laplacian can be defined on many
topological objects beyond simplicial complex, resulting in persistent hypergraph
homology/Laplacian [5, 18], persistent sheaf Laplacian [26], persistent path Lapla-
cian [25], and persistent hyperdigraph homology/Laplacian [11].

However, it is worth noting that all the aforementioned formulations are built
upon the construction of chain complexes. The N -chain complex exhibits character-
istics distinct from those of usual chain complexes. In this work, we introduce persis-
tent Mayer homology and persistent Mayer Laplacians on N -chain complexes. Our
computations indicate that persistent Mayer homology often provides a wealth of
multiscale information, comparable in many instances to the information obtained
by combining the usual persistent homology as well as its associated persistent
Laplacians. This underscores the strong capability of persistent Mayer homology
in characterizing both geometric and topological features. Furthermore, the com-
putation of persistent Mayer homology is significantly faster than computing the
usual persistent Laplacian, highlighting a distinct advantage of persistent Mayer
homology.

In this work, we employ the N -chain complex and Mayer homology to con-
struct a generalized version of persistent homology theory based on N -differentials.
Specifically, by considering the multiscale information from datasets, we introduce
persistent Mayer homology (PMH) and persistent Mayer Laplacians (PMLs). We
investigate the Wasserstein distance and the stability of the persistence diagram
corresponding to PMH. For a given simplicial complex, an N -chain complex can
be constructed over the complex number field C, and the N -differential on this
N -chain complex is determined by N -th primitive roots of unity. This aligns with
the conventional notion of differentials on chain complexes, where differentials are
linear combinations of face operators with coefficients +1 and -1 (quadratic roots
of unity). It is worth noting that the Mayer Laplacian can be precisely formulated
as a well-behaved construction on the complex number field C with the Hermitian
adjoint. For a given persistence parameter, PMH and PMLs provide a family of
topological features (q = 1, 2, . . . , N−1). By computing examples on real molecules,
we observe that these features exhibit richer topological and geometric information
compared to the usual persistent simplicial homology. Computations and examples
are presented to elucidate the characteristics of PMH and PMLs.

The paper is organized as follows. In Section 2, we review the N -chain complex
and Mayer homology to establish notations. In Section 3, we introduce persistent
Mayer homology and persistent Mayer Laplacians for simplicial complexes. Section
5 illustrates the applications of the proposed persistent Mayer homology and persis-
tent Mayer Laplacians with two molecules. Finally, Section 6 provides a summary
of our work and discusses potential future directions.
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2. N-chain complex and Mayer homology. In this section, we review funda-
mental concepts, including the N -chain complex and Mayer homology. Moreover,
for a given simplicial complex, it is possible to construct multiple N -chain com-
plexes. We concentrate on a specific construction, which will be applied to our
examples and dataset later on. Additionally, we introduce Laplacian operators on
N -chain complexes. This section encompasses some properties of N -chain com-
plexes and Mayer homology, along with examples of related computations. From
now on, the ground field is assumed to be the field K. The N -chain complex and
Mayer homology can be also built on a commutative ring with unit.

2.1. Mayer homology. From now on, N is always an integer ≥ 2.

Definition 2.1. An N -chain complex consists of a graded K-linear space C∗ =
(Cn)n≥0, equipped with a linear map d : C∗ → C∗−1 of degree −1 satisfying dN = 0.
The linear map d∗ : C∗ → C∗−1 is called the N -differential (N -boundary operator).

The following diagram illustrates the N -differential within the N -chain complex.
Each horizontal sequence represents a chain complex corresponding to stage q. The
vertical sequences are given by the identity map (id) or by the N -differential d.

· · · d // Cn+N−1
dN−1

//

d

��

Cn
d //

id

��

Cn−1
dN−1

//

d

��

Cn−N
d //

id

��

Cn−N−1
dN−1

//

d

��

· · ·

· · · d2 // Cn+N−2
dN−2

//

d��

Cn
d2 //

id��

Cn−2
dN−2

//

d��

Cn−N

id��

d2 // Cn−N−2
dN−2

//

d��

· · ·

· · ·
...

d

��

...

id

��

...

d

��

...

id

��

...

d

��

· · ·

· · · dN−2
// Cn+2

d2 //

d

��

Cn
dN−2
//

id

��

Cn−N+2
d2 //

d

��

Cn−N
dN−2
//

id

��

Cn−2N+2
d2 //

d

��

· · ·

· · · dN−1
// Cn+1

d // Cn
dN−1
// Cn−N+1

d // Cn−N
dN−1
// Cn−2N+1

d // · · ·

In particular, when N = 2, the N -chain complex reduces to the usual chain complex.

Definition 2.2. A morphism f : (C∗, d) → (C ′∗, d
′) of N -chain complexes is a

linear map of degree zero such that f ◦ d = d′ ◦ f .

Let (C∗, d) be an N -chain complex. For each 1 ≤ q ≤ N − 1, the space of the
q-th n-cycles is defined by Zn,q = {x ∈ Cn|dqx = 0}. The space of the q-th n-
boundaries is given by Bn,q = {dN−qx|x ∈ CN−q+n}. It follows that Bn,q ⊆ Zn,q.
Let us denote dn : Cn → Cn−1. In particular, for N = 3, we can prove that
dnCn ⊆ Bn−1,2, dnZn,2 ⊆ Zn−1,1 ∩Bn−1,2, dnZn,1 = 0, and dnBn,2 ⊆ Bn−1,1. The
Mayer homology of the N -chain complex (C∗, d) is defined as

Hn,q(C∗, d) := Zn,q/Bn,q, n ≥ 0. (1)

The rank of Hn,q(C∗, d) is defined as the Mayer Betti number of the N -chain com-
plex (C∗, d). The idea of Mayer homology was first introduced by Mayer in 1942
[21]. In Mayer’s paper, he constructed the N -chain complex on simplicial complexes
over the field Z/p. Here, p is a prime number. And the name of Mayer homology
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Figure 1. Illustration of the boundary operators and chain, cycle,
and boundary groups of the N -chain complex for N = 3.

first appeared in [23], which showed the relationship between Mayer homology and
the classical homology of simplicial complexes.

Example 2.1. Consider the graded vector space Z3[x], with the grading (Z3[x])n =
Z3x

n and the basis 1, x, x2, . . . , xk, . . . . Here, Z3 is the field with elements 0, 1, 2
modulo 3. Consider the linear map d : Z3[x] → Z3[x] given by dxn = nxn−1 and
d(1) = 0. It follows that d3 = 0. By a straightforward calculation, we have

Zn,1 = Bn,1 =

{
Z3x

n, n = 3k, k ∈ Z≥0;
0, otherwise.

Zn,2 = Bn,2 =

{
Z3x

n, n = 3k, 3k + 1, k ∈ Z≥0;
0, otherwise.

By definition, the Mayer homology is given by

Hn,1(Z3[x]) = Hn,2(Z3[x]) = 0, n ≥ 0.

Now, let Am = Z3{1, x, . . . , x3m+1} be the graded vector space generated by

1, x, . . . , x3m+1.

One has

Zn,1 =

{
Z3x

n, n = 3k, k = 0, 1, . . . ,m;
0, otherwise.

Zn,2 =

{
Z3x

n, n = 3k, 3k + 1, k = 0, 1, . . . ,m;
0, otherwise.

Bn,1 =

{
Z3x

n, n = 3k, k = 0, 1, . . . ,m− 1;
0, otherwise.

Bn,2 =

 Z3x
n, n = 3k, 3k + 1, k = 0, 1, . . . ,m− 1;

Z3x
n, n = 3m;

0, otherwise.

It follows that

Hn,1(Am) =

{
Z3x

n, n = 3m;
0, otherwise

(2)

and

Hn,2(Am) =

{
Z3x

n, n = 3m+ 1;
0, otherwise.

(3)
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Let f : (C∗, d) → (C ′∗, d
′) be a morphism of N -chain complexes. Since f com-

mutes with the N -differential, it induces the morphism of Mayer homology

f∗,q : H∗,q(C∗, d)→ H∗,q(C
′
∗, d
′), [z] 7→ [f(z)] (4)

for any 1 ≤ q ≤ N − 1. Moreover, one has

Proposition 2.3. ([15, Proposition 1]) If f∗,1 : H∗,1(C∗, d) → H∗,1(C ′∗, d
′) and

f∗,N−1 : H∗,N−1(C∗, d)→ H∗,N−1(C ′∗, d
′) are isomorphisms, then

f∗,q : H∗,q(C∗, d)→ H∗,q(C
′
∗, d
′)

is an isomorphism for any 1 ≤ q ≤ N − 1.

The above proposition shows that if f∗,q : H∗,1(C∗, d) → H∗,1(C ′∗, d
′) is an iso-

morphism for q = 1, N − 1, then it is an isomorphism for any 1 ≤ q ≤ N − 1.
There are various distinctive properties associated with Mayer homology. For
instance, it has been demonstrated in [15] that there exists an isomorphism of
linear spaces, H∗,q(C∗, d) ∼= H∗,N−q(C∗, d). However, it does not have to be
Hn,q(C∗, d) ∼= Hn,N−q(C∗, d) for a given n.

Let Nchain be the category of N -chain complexes, whose objects are the N -
chain complexes, and whose morphisms are the morphisms of N -chain complexes.
Let VecK be the category of vector spaces over K. Then we have the following
proposition.

Proposition 2.4. The Mayer homology H∗,q : Nchain → VecK is a functor for
1 ≤ q ≤ N − 1.

Proof. For morphisms f : (C∗, d)→ (C ′∗, d
′) and g : (C ′∗, d

′)→ (C ′′∗ , d
′′) of N -chain

complexes, one has

g∗,qf∗,q([z]) = g∗,q([f(z)]) = [gf(z)] = (g ◦ f)∗,q([z]). (5)

Here, z ∈ H∗,q(C∗, d). The left can be verified step by step.

It is worth noting that the functorial property of Mayer homology is crucial for
us to develop the persistence for Mayer homology. More specifically, morphisms
at the N -chain level can always induce morphisms at the homology level. Indeed,
we also require the functorial property that maps the morphisms at the simplicial
complex level to morphisms at the N -chain level.

The N -chain complex is a kind of generalization of the usual chain complex
by changing the boundary operator by an N -boundary operator. Other than the
homology of N -chain complexes, the homotopy for N -chain complexes can be also
built. More precisely, two morphisms f, g : (C∗, d)→ (C ′∗, d

′) of N -chain complexes
are homotopic if there exist linear maps hk : (C∗, d) → (C ′∗+1, d

′) of degree 1 for

0 ≤ k ≤ N − 1 such that f − g =
N−1∑
k=0

hkd
k. If f, g : (C∗, d)→ (C ′∗, d

′) are N -chain

homotopic, then they induce the same morphism of Mayer homology, i.e., f∗,q = g∗,q
for 1 ≤ q ≤ N − 1.

2.2. N-chain complex on simplicial complexes. From now on, for the sake
of simplicity, we will always consider the case where N is a prime number, and

the field K is taken to be the complex number field C. Let ξ = e2π
√
−1/N be the

primitive N -th root of unity. It follows that
N−1∑
i=0

ξi = 0. Moreover,
k∑
i=0

ξi 6= 0 for

any 0 ≤ k ≤ N − 2.
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Let K be a simplicial complex. Let Cn(K;C) be the linear space generated by
the n-simplices of K over C. Consider the linear map dn : Cn(K;C)→ Cn−1(K;C)
given by

dn〈v0, v1, . . . , vn〉 =

n∑
i=0

ξi〈v0, . . . , v̂i, . . . , vn〉, n ≥ 1 (6)

and d0 = 0. Then d : C∗(K;C)→ C∗(K;C) is a linear map of degree -1. Moreover,
we have

Lemma 2.5. dN = 0.

Proof. Let ∂i : Kn → Kn−1, 〈v0, v1, . . . , vn〉 7→ 〈v0, . . . , v̂i, . . . , vn〉 denote the i-th
face map of simplicial complex K. If n < N , we have dN = 0. For r ≤ n, by
induction, we can prove

dr =

(
r∏

k=1

(1 + ξ + · · ·+ ξk−1)

) ∑
j1<···<jr

ξj1+···+jr−
r(r−1)

2 ∂j1 · · · ∂jr . (7)

Note that 1 + ξ + · · ·+ ξN−1 = 0. It follows that dN = 0.

Then the construction (C∗(K;C), d) is an N -chain complex. There are various
ways to construct N -chain complexes on a simplicial complex, and these different
constructions lead to different Mayer homology [15]. In this work, we will study the
N -chain complex constructed above. The N -chain complex (C∗(K;C), d) is over
the field C, which is more computationally feasible. In addition, we can consider
the inner product structure on the N -chain complex (C∗(K;C), d), which leads to
the Laplacians on the N -chain complex.

For 1 ≤ q ≤ N − 1, the Mayer homology of the simplicial complex K is defined
by

Hn,q(K;C) := Hn,q(C∗(K;C), d), n ≥ 0. (8)

The Betti numbers corresponding to the Mayer homology are called the Mayer Betti
numbers of simplicial complex, denoted by βn,q.

Proposition 2.6. The construction C∗(−;C) : Cpx → Nchain is a functor from
the category of simplicial complexes to the category of N -chain.

Proof. Let φ : K → L be a morphism of simplicial complexes. The induced mor-
phism

C∗(φ) : (C∗(K;C), dK)→ (C∗(L;C), dL)

of N -chain complexes is given by

C∗(φ)(σ) = φ(σ).

Indeed, for any σ = 〈v0, v1, . . . , vn〉, we have

dC∗(φ)(σ) =

n∑
i=0

ξi〈φ(v0), . . . , ˆφ(vi), . . . , φ(vn)〉

= φ(

n∑
i=0

ξi〈v0, . . . , v̂i, . . . , vn〉)

= C∗(φ)(dσ).

(9)

Obviously, C∗(φ) preserves identity. The desired result follows.
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Corollary 2.7. The Mayer homology H∗,q(−;C) : Cpx→ VecK is a functor from
the category of simplicial complexes to the category of vector spaces over K.

Proof. It is a directed corollary of Proposition 2.4 and Proposition 2.6.

The generalized Mayer homology contains the information of the usual simplicial
homology. It is worth noting that the Mayer homology here is different from the
simplicial homology. Thus, we can obtain additional topological information from
the Mayer homology defined above.

Lemma 2.8. Let Mn,q be the representation matrix of dn,q = dn−q+1 · · · dn−1dn :
Cn(K;C)→ Cn−q(K;C). Then we have

βn,q = dimCn(K;C)− rank(Mn,q)− rank(Mn+N−q,N−q). (10)

Proof. Consider the short exact sequence

0 // Zn,q
� � // Cn(K;C)

dn,q // Bn−q,N−q // 0. (11)

Indeed, we have the decomposition

Cn(K;C) ∼= Zn,q ⊕Bn−q,N−q ∼= Hn,q(K;C)⊕Bn,q ⊕Bn−q,N−q. (12)

Note that rank(Mn,q) = dimBn−q,N−q. It follows that

dimBn,q = rank(Mn+N−q,N−q).

Thus we have

dimCn(K;C) = βn,q + rank(Mn+N−q,N−q) + rank(Mn,q). (13)

The desired result follows.

Example 2.2. Consider the simplicial complex ∆[3] with the simplices

{0}, {1}, {2}, {3}, {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3},
{0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3}, {0, 1, 2, 3}.

(14)

Consider the 3-chain complex C∗(∆[3];C) with the 3-boundary operator given by

d3{0, 1, 2, 3} = {1, 2, 3}+ ξ{0, 2, 3}+ ξ2{0, 1, 3}+ {0, 1, 2},
d2{0, 1, 2} = {1, 2}+ ξ{0, 2}+ ξ2{0, 1},
d2{0, 1, 3} = {1, 3}+ ξ{0, 3}+ ξ2{0, 1},
d2{0, 2, 3} = {2, 3}+ ξ{0, 3}+ ξ2{0, 2},
d2{1, 2, 3} = {2, 3}+ ξ{1, 3}+ ξ2{1, 2}

(15)

and d1{v, w} = {w}+ ξ{v} for 0 ≤ v < w ≤ 3. The representation matrices of d1,
d2 and d3 with the simplices as basis are given by

B1 =


ξ 1 0 0
ξ 0 1 0
ξ 0 0 1
0 ξ 1 0
0 ξ 0 1
0 0 ξ 1

 , B2 =


ξ2 ξ 0 1 0 0
ξ2 0 ξ 0 1 0
0 ξ2 ξ 0 0 1
0 0 0 ξ2 ξ 1

 , (16)

and

B3 =
(

1 ξ2 ξ 1
)
. (17)
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The representation matrices of d1d2 and d2d3 are listed as follows.

B2B1 =


−ξ −1 −ξ2 0
−ξ −1 0 −ξ2
−ξ 0 −1 −ξ2
0 −ξ −1 −ξ2

 , B3B2 =
(
−1 −ξ2 −ξ −ξ −1 −ξ2

)
.

Moreover, have have that B3B2B1 = O4×4, which shows that d3 = 0 on C∗(∆[3];C).
On the other hand, a straightforward calculation shows that

Z3,1 = Z3,2 = Z2,1 = B2,1 = 0,

Z2,2 = B2,2 = span{{1, 2, 3}+ ξ{0, 2, 3}+ ξ2{0, 1, 3}+ {0, 1, 2}},
Z1,1 = span{{0, 2} − {0, 3} − {1, 2}+ {1, 3}, ξ{0, 1} − ξ{0, 2} − {1, 3}+ {2, 3}},
B1,1 = span{ξ{0, 1}+ {0, 2}+ ξ2{0, 3}+ ξ2{1, 2}+ ξ{1, 3}+ {2, 3}},
Z1,2 = span{{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}},
B1,2 = span{{1, 2}+ ξ{0, 2}+ ξ2{0, 1}, {1, 3}+ ξ{0, 3}+ ξ2{0, 1},

{2, 3}+ ξ{0, 3}+ ξ2{0, 2}, {2, 3}+ ξ{1, 3}+ ξ2{1, 2}},
Z0,1 = span{{0}, {1}, {2}, {3}},
B0,1 = span{{0} − {1}, {1} − {2}, {2} − {3}},
Z0,2 = B0,2 = span{{0}, {1}, {2}, {3}}.

(18)

By definition, one has

H3,1(∆[3];C) = H3,2(∆[3];C) = H2,2(∆[3];C) = H2,1(∆[3];C) = H0,2(∆[3];C) = 0
(19)

and

H1,1(∆[3];C) ∼= C, H1,2(∆[3];C) ∼= C2, H0,1(∆[3];C) ∼= C. (20)

However, the simplicial homology of ∆[3] is Hn(∆[3];C) =

{
C, n = 0;
0, otherwise.

This

indicates that even for contractible spaces, Mayer homology may not be trivial.

Example 2.3. Many common geometric shapes can be viewed as simplicial com-
plexes through simplicial triangulations. In this example, we compute the Mayer
Betti numbers for the simplicial complexes ∆[3], ∂∆[3], and a hexagon. Addition-
ally, we perform simplicial triangulations for the Möbius strip, torus, and octahe-
dron, and calculate the Mayer Betti numbers for these simplicial complexes. The
simplicial complex ∂∆[3] has the simplices listed as follows:

{0}, {1}, {2}, {3},
{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3},
{0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3}.

(21)

A hexagon is a simplicial complex with the simplices listed as follows:

{0}, {1}, {2}, {3}, {4}, {5},
{0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5}, {0, 5}.

(22)

Now, we provide simplicial triangulations for the Möbius strip, torus, and octa-
hedron, and compute the corresponding Mayer Betti numbers.
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Figure 2. The simplicial triangulations of the Möbius strip,
hexagon, torus, and octahedron.

The simplicial triangulations of the Möbius strip, torus, and octahedron are
shown in Figure 2. Using our algorithm’s computations, Mayer Betti numbers can
be obtained, as illustrated in Table 1.

Table 1. The Mayer Betti numbers for the simplicial complexes
∆[3], ∂∆[3], a hexagon, and the simplicial triangulations of the
Möbius strip, torus, and octahedron.

simplicial complexes β0,1 β1,1 β2,1 β0,2 β1,2 β2,2
∆[3] 1 1 0 0 2 0
∂∆[3] 1 2 0 0 2 1

Hexagon 6 0 0 0 6 0
Möbius trip 1 6 0 0 6 1

Torus 1 18 0 0 9 10
Octahedron 1 3 1 0 2 3

2.3. The Mayer Laplacians on N-chain complexes. Now, let K be a simplicial
complex. Then we have a chain complex (C∗(K;C), d). One can endow C∗(K;C)
with an inner product given by

〈λσ, µτ〉 =

{
λ · µ, σ = τ ;
0, otherwise.

(23)

Here, λ, µ ∈ C, and µ is the complex conjugate of µ. Consider the adjoint operator
d∗ of d, i.e., 〈dx, y〉 = 〈x, d∗y〉 for any x, y ∈ C∗(K;C). Note that

〈dqx, y〉 = 〈dq−1x, d∗y〉 = · · · = 〈x, (d∗)qy〉. (24)

By the definiteness of inner product, one has (dq)∗ = (d∗)q. For 1 ≤ q ≤ N − 1, the
Mayer Laplacian ∆∗,q : C∗(K;C)→ C∗(K;C) is defined as

∆∗,q := (dq)∗ ◦ dq + dN−q ◦ (dN−q)∗. (25)

Choose the simplices of K as an orthogonal basis of the N -chain complex C∗(K;C)
over C. Let B be the representation matrix of the linear operator d : C∗(K;C) →
C∗−1(K;C) with respect to the chosen orthogonal basis under left multiplication.
Then the representation matrix of ∆∗,q is given by

Lq = Bq(B
q
)T + (B

N−q
)TBN−q. (26)
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Here, B
T

is the conjugate transpose or Hermitian transpose matrix of B. For the
graded case, the Mayer Laplacian ∆n,q : Cn(K;C)→ Cn(K;C) is given by

∆n,q = (dn)∗ ◦ · · · ◦ (dn−q+1)∗ ◦ dn−q+1 ◦ · · · ◦ dn
+ dn+1 ◦ · · · ◦ dn+N−q ◦ (dn+N−q)

∗ ◦ · · · ◦ (dn+1)∗.
(27)

Here, dn : Cn(K;C) → Cn−1(K;C) is the operator of d restricted to Cn(K;C).
Let Bn be the representation matrix of dn with respect to the chosen orthogonal
basis, and the representation matrix of ∆n,q is given by

Ln,q = Bn · · ·Bn−q+1Bn−q+1
T · · ·Bn

T

+Bn+1
T · · ·Bn+N−q

T
Bn+N−q · · ·Bn+1.

(28)

Here, Bn is a complex matrix and Bn
T

is the conjugate transpose of Bn.

Proposition 2.9. The Laplacian ∆n,q on Cn(K;C) is a self-adjoint and non-
negative definite operator.

The proof of Proposition 2.9 is a straightforward verification, one can refer to
[11]. It is worth noting that even over the complex number field C, the eigenvalues
of the Laplacian operator are non-negative.

Proposition 2.10. For any n and 1 ≤ q ≤ N − 1, we have dim ker ∆n,q = βn,q.

Proof. It is a classic result. One can obtain a detailed proof in a [17].

Example 2.4. Let us compute the Mayer Laplacians on ∂∆[3]. We can obtain the
N -chain complex C∗(∂∆[3];C) with the differential given by d0 = 0,

d1


{0, 1}
{0, 2}
{0, 3}
{1, 2}
{1, 3}
{2, 3}

 =


ξ 1 0 0
ξ 0 1 0
ξ 0 0 1
0 ξ 1 0
0 ξ 0 1
0 0 ξ 1



{0}
{1}
{2}
{3}

 (29)

and

d2


{0, 1, 2}
{0, 1, 3}
{0, 2, 3}
{1, 2, 3}

 =


ξ2 ξ 0 1 0 0
ξ2 0 ξ 0 1 0
0 ξ2 ξ 0 0 1
0 0 0 ξ2 ξ 1



{0, 1}
{0, 2}
{0, 3}
{1, 2}
{1, 3}
{2, 3}

 . (30)

We denote the representation matrix of dn by Bn. Observe that B0 = B3 = O. It
follows that

L0,1 =


3 2ξ2 −1 2ξ
2ξ 3 2ξ2 −1
−1 2ξ 3 2ξ2

2ξ2 −1 2ξ 3

 , L0,2 =


3 ξ2 ξ2 ξ2

ξ 3 ξ2 ξ2

ξ ξ 3 ξ2

ξ ξ ξ 3

 , (31)
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L1,1 =


2 1 1 ξ2 ξ2 0
1 2 1 1 0 ξ2

1 1 2 0 1 1
ξ 1 0 2 1 ξ2

ξ 0 1 1 2 1
0 ξ 1 ξ 1 2

 , L1,2 =


2 ξ2 ξ2 ξ ξ 0
ξ 2 ξ2 ξ2 0 ξ
ξ ξ 2 0 ξ2 ξ2

ξ2 ξ 0 2 ξ2 ξ
ξ2 0 ξ ξ 2 ξ2

0 ξ2 ξ ξ2 ξ 2

 .

(32)
The spectra of L0,1, L0,2, L1,1, and L1,2 are

Spec(L0,1) ={0, 4− 2
√

3, 4, 4 + 2
√

3},

Spec(L0,2) ={2−
√

3, 3, 5, 2 +
√

3},

Spec(L1,1) ={0, 0, 2−
√

3, 3, 5, 2 +
√

3},

Spec(L1,2) ={0, 0, 2−
√

3, 3, 2 +
√

3, 5}.

(33)

Let ω(∆n,q) denote the number of zero eigenvalues of the operator ∆n,q. It is worth
noting that ω(∆0,1) = 1, ω(∆0,2) = 0, ω(∆1,1) = 2, ω(∆2,2) = 2. This is consistent
with the Betti numbers corresponding to Table 1.

Example 2.5. Now, we will compute the Mayer Laplacians of the hexagon. As
described in Example 2.3, the 3-chain of a hexagon is a graded vector space with
the corresponding 3-differential given by

d1


{0, 1}
{1, 2}
{2, 3}
{3, 4}
{4, 5}
{0, 5}

 =


ξ 1 0 0 0 0
0 ξ 1 0 0 0
0 0 ξ 1 0 0
0 0 0 ξ 1 0
0 0 0 0 ξ 1
ξ 0 0 0 0 1




{0}
{1}
{2}
{3}
{4}
{5}

 (34)

and dn = 0 for n 6= 1. The calculation for N = 3 is shown in Table 2. For the case

Table 2. Illustration of Mayer Laplacians for N = 3.

n,q n=0,q=1 n=0,q=2

Ln,q O6×6


2 ξ2 0 0 0 1
ξ 2 ξ2 0 0 0
0 ξ 2 ξ2 0 0
0 0 ξ 2 ξ2 0
0 0 0 ξ 2 1
1 0 0 0 1 2


βn,q 6 0

Spec(Ln,q) {0,0,0,0,0,0} {0.12,0.47,1.65,2.35,3.53,3.88}
n,q n=1,q=1 n=1,q=2

Ln,q


2 ξ2 0 0 0 1
ξ 2 ξ2 0 0 0
0 ξ 2 ξ2 0 0
0 0 ξ 2 ξ2 0
0 0 0 ξ 2 1
1 0 0 0 1 2

 O6×6

βn,q 0 6

Spec(Ln,q) {0.12,0.47,1.65,2.35,3.53,3.88} {0,0,0,0,0,0}
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N = 5, we have the corresponding 5-differential given by

d1


{0, 1}
{1, 2}
{2, 3}
{3, 4}
{4, 5}
{0, 5}

 =


ξ5 1 0 0 0 0
0 ξ5 1 0 0 0
0 0 ξ5 1 0 0
0 0 0 ξ5 1 0
0 0 0 0 ξ5 1
ξ5 0 0 0 0 1




{0}
{1}
{2}
{3}
{4}
{5}

 (35)

and dn = 0 for n 6= 1. Here, ξ5 is the primitive 5-th root of unity. The calculated
result at this point is shown in Table 3. Our calculations demonstrate that the

Table 3. Illustration of Mayer Laplacians for N = 5.

n, q n = 0,q = 1 n = 0,q = 2 n = 0,q = 3 n = 0,q = 4

Ln,q O6×6 O6×6 O6×6



2 ξ45 0 0 0 1

ξ5 2 ξ45 0 0 0
0 ξ5 2 ξ45 0 0

0 0 ξ5 2 ξ45 0

0 0 0 ξ5 2 1
1 0 0 0 1 2


βn,q 6 6 6 0

Spec(Ln,q) {0,0,0,0,0,0} {0,0,0,0,0,0} {0,0,0,0,0,0} {0.04,0.66,1.38,2.62,3.34,3.96}
n, q n = 1,q = 1 n = 1,q = 2 n = 1,q = 3 n = 1,q = 4

Ln,q



2 ξ45 0 0 0 1
ξ5 2 ξ45 0 0 0

0 ξ5 2 ξ45 0 0

0 0 ξ5 2 ξ45 0
0 0 0 ξ5 2 1

1 0 0 0 1 2

 O6×6 O6×6 O6×6

βn,q 0 6 6 6

Spec(Ln,q) {0.04,0.66,1.38,2.62,3.34,3.96} {0,0,0,0,0,0} {0,0,0,0,0,0} {0,0,0,0,0,0}

eigenvalues are consistently non-negative. Moreover, the number of zero eigenvalues
of Laplacians coincides with the corresponding Mayer Betti numbers.

In an intuitive sense, the Mayer homology and Mayer Laplacian of a complex re-
flect connections between simplices at different dimensions. The corresponding Betti
numbers reveal the topological cycles representing interactions between simplices of
different dimensions, whereas the eigenvalues of the Laplacian operator deconstruct
the connectivity between simplices of various dimensions. These relationships are
more intricate and subtle, extending beyond what traditional simplicial homology
theory can capture.

3. Persistence on Mayer features. In this section, we will explore the persis-
tent versions of Mayer homology and Mayer Laplacians. Since Mayer homology and
Mayer Laplacians provide information different from the usual simplicial homology
and Laplacian, investigating Mayer features is highly meaningful for our study of
the topological characteristics and geometric structure of data. From now on, the
ground field is taken to be the complex number field C. Besides, we always consider
the case that N is a prime number for the sake of simplicity.
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3.1. Persistent Mayer homology. Let K be a simplicial complex, and let f :
K → R be a real-valued function defined on K such that f(σ) ≤ f(τ) for every
face σ of τ in K. For each real number a, we can obtain a sub complex Ka = {σ ∈
K|f(σ) ≤ a} of K. Moreover, for real numbers a ≤ b, one has Ka ⊆ Kb. Thus, we
can obtain a filtration of simplicial complexes

Ka1 ⊆ Ka2 ⊆ · · · ⊆ Kam (36)

for real numbers a1 < a1 < · · · < am. By Proposition 2.6, we have a sequence of
N -chain complexes

C∗(Ka1 ;C)→ C∗(Ka2 ;C)→ · · · → C∗(Kam ;C). (37)

By Proposition 2.4, this induces a sequence of Mayer homology

H∗,q(Ka1 ;C)→ H∗,q(Ka2 ;C)→ · · · → H∗,q(Kam ;C) (38)

for any 1 ≤ q ≤ N − 1. For any real numbers a ≤ b and 1 ≤ q ≤ N − 1, the
(a, b)-persistent Mayer homology is defined by

Ha,b
n,q := im(Hn,q(Ka;C)→ Hn,q(Kb;C)), n ≥ 0. (39)

The rank of Ha,b
n,q is the (a, b)-persistent Betti numbers. The persistent Betti num-

bers can also be visualized using a persistence diagram or barcode. It is worth noting
that for each 1 ≤ q ≤ N−1, we can obtain a persistence diagram, which means that
the persistent Mayer homology contains more information than the usual persistent
homology. Moreover, the fundamental theorems of persistent homology are also
applicable to persistent Mayer homology.

Let {Kai}i≥1 be a filtration of simplicial complexes. For each i ≥ 1, we have the
map x : H∗,q(Kai ;C)→ H∗,q(Kai+1

;C) induced by i→ i+ 1. Consider the persis-

tent homology, denoted as Hq =
∞⊕
i=1

H∗,q(Kai ;C), which encapsulates homological

information from all time steps. Then one has a map x : Hq → Hq, where x map
a generator at ai to a generator at ai+1. Let C[x] be a polynomial ring over the
complex number field C. The space Hq is a left C[x]-module given by

C[x]×Hq → Hq, (f(x), α) 7→ f(x)(α). (40)

Moreover, the module structure theorem for persistent Mayer homology is estab-
lished as follows.

Theorem 3.1. For a filtration of finite simplicial complexes {Kai}i≥1, the corre-
sponding persistent Mayer homology Hq has a decomposition as C[x]-module

Hq
∼=

(⊕
t

C[x] · αbt

)
⊕

(⊕
s

C[x]/xcs · βbs

)
. (41)

The proof of the above theorem is essentially a replica of the standard persistent
homology structure theorem. Similarly, the generators in the free part, denoted as
αbt , refer to those generators born at time bt and persist until infinity, while βbs
represents the generators born at time bs and dead at time bs + cs. Similarly, we
can define the barcode for persistent Mayer homology and give the fundamental
characterization theorem for barcodes.
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3.2. Wasserstein distance for Mayer persistence diagrams. Recall that the
r-th Wasserstein distance of persistence diagrams is defined by

Wr(D,D′) = inf
γ:D→D′

(∑
x∈D
‖x− γ(x)‖rs

)1/r

, (42)

where D,D′ are persistence diagrams, ‖·‖s denotes the Ls-distance on a persistence
diagram, and the infimum is taken over all matchings between D and D′.

In the context of a filtration of simplicial complexes, a family of persistence dia-
grams D1, . . . ,DN−1 can be obtained for the persistent Mayer homology concerning
the p-boundary operator. This collection is referred to as the Mayer persistence
diagram. To formalize the relationship between these diagrams, we introduce the
r-th Wasserstein distance for Mayer persistence diagrams, defined by

Wr({Dq}1≤q≤N−1, {D′q}1≤q≤N−1) =

(
N−1∑
q=1

Wr(Dq,D′q)
r

)1/r

. (43)

The case where r = ∞ is notably well-known. In this scenario, the Wasserstein
distance reduces to the bottleneck distance:

dB({Dq}1≤q≤N−1, {D′q}1≤q≤N−1) = sup
1≤q≤N−1

inf
γ:Dq→D′q

sup
x∈Dq

||x− γ(x)||s. (44)

The real number field R can be regarded as a poset category with the real numbers
as objects and the binary relations ≤ as morphisms. Recall that an R-indexed
diagram F in a category C is a functor F : R→ C from the poset category R to the
category C. Let FR be the category of R-indexed diagrams in C. Let Σ : FR → FR

be a functor on the category of R-indexed diagrams given by (ΣεF)(a) = F(a+ ε).

Definition 3.2. Let F and G be two R-indexed diagrams in a category C. We say
F and G are ε-interleaved if there are natural transformations Φ : F → ΣεG and
Ψ : G → ΣεF such that (ΣεΨ) ◦ Φ = Σ2ε|F and (ΣεΦ) ◦Ψ = Σ2ε|G .

Definition 3.3. Let F and G be two R-indexed diagrams in a category C. The
interleaving distance between F and G is defined by

dI(F ,G) = inf{ε ≥ 0|F and G are ε-interleaved}. (45)

Let f, g be two real-valued functions defined on a simplicial complex K. Then
one has two filtrations of simplicial complexes. Let ‖f − g‖∞ = sup

σ∈K
|f(σ)− g(σ)|.

Let Dq(K, f) and Dq(K, g) be the persistence diagrams of K filtered by f and g,
respectively. We have the following result.

Theorem 3.4. Let K be a finite complex. Then

dB({Dq(K, f)}1≤q≤N−1, {Dq(K, g)}1≤q≤N−1) ≤ ‖f − g‖∞. (46)

Proof. We construct the proof based on the concepts developed in [6, 3, 2]. We

consider Mayer persistent homology as the entities in the category VecR of diagrams
in the vector spaces category indexed by R. Similarly, we regard Mayer persistence
diagrams as the entities in the category MchR of diagrams in the matching category
indexed by R. By [3, Theorem 1.7] and [3, Proposition 4.3], one has

dB(Dq(K, f),Dq(K, g)) = dI(Hq(K, f),Hq(K, g)) (47)

Here, dI denotes the interleaving distance for diagrams indexed by R. For (K, f),
we have a diagram Kf : R → Simp in the category of simplicial complexes given
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by Kf
a = {σ ∈ K|f(σ) ≤ a}. Let ε = ‖f − g‖∞. Then there are inclusions of

simplicial complexes Kf
a ↪→ Kg

a+ε and Kg
a ↪→ Kf

a+ε for any real number a. Thus

one has natural transformations Φ : Kf
• ↪→ Kg

•+ε and Ψ : Kg
• ↪→ Kf

•+ε of R-indexed
diagrams. Here, K•(a) = Ka. By construction, we have

(ΣεΨ) ◦ Φ = Σ2ε|Kf
•
. (48)

Here, ΣεΨ : Kg
•+ε ↪→ Kf

•+2ε is given by (ΣεΨ)(Kg
•+ε)(a) = Kf

a+2ε and Σ2ε|Kf
•

:

Kf
• → Kf

•+2ε is given by Σ2ε|Kf
•
(Kf
• )(a) = Kf

a+2ε. Similarly, one has (ΣεΦ) ◦
Ψ = Σ2ε|Kg

•
. It follows that Kf and Kg are ε-interleaved. By definition, we have

dI(K
f ,Kg) ≤ ε. By [6, Proposition 3.6] and Corollary 2.7, we have

dI(Hq(K, f),Hq(K, g)) ≤ dI(Kf ,Kg) ≤ ε. (49)

It follows that

dB(Dq(K, f),Dq(K, g)) ≤ dI(Kf ,Kg) ≤ ε. (50)

By the definition of bottleneck distance, one has

dB({Dq(K, f)}1≤q≤N−1, {Dq(K, g)}1≤q≤N−1) ≤ ‖f − g‖∞. (51)

The desired result follows.

The aforementioned conclusion establishes the stability of persistent Mayer Betti
numbers under the bottleneck distance. This guarantees that the persistence of
Mayer Betti numbers is a steadfast and resilient topological feature, resistant to
noise.

3.3. Persistent Mayer Laplacians. Let {Kai}i≥1 be a filtration of simplicial
complexes. Endow C∗(Kam ;C) with an inner product structure over C. Con-
sequently, as subspaces, each C∗(Kai ;C) inherits the inner product structure of
C∗(Kam ;C).

Consider the inclusion ja,b : Ka → Kb of simplicial complexes. By Proposi-
tion 2.6, we have a morphism C∗(ja,b) : C∗(Ka;C) → C∗(Kb;C) of N -chain com-
plexes. For the sake of simplicity, we denote Can = Cn(Ka;C) with the corre-
sponding Mayer differential dan, and denote ja,bn = Cn(ja,b). Moreover, we denote
dan,q = dan−q+1 · · · dan−1dan : Can → Can−q. Let

Ca,bn,q = {x ∈ Cbn|dbn,qx ∈ Can−q}, 1 ≤ q ≤ N − 1. (52)

It follows that Ca,bn,q is a subspace of Cbn with the subspace inner product. Besides,

we have a linear map da,bn,q : Ca,bn,q → Can−q given by da,bn,q(x) = dbn,qx.

Can+N−q
dan+N−q,N−q //

� _

ja,b
n+N−q

��

Can

dan,q //
� _

ja,b
n

��

(da,b
n+N−q,N−q)

∗
yy

Can−q
(dan,q)

∗
oo � _

ja,b
n−q

��

Ca,bn+N−q,N−q

da,b
n+N−q,N−q

99

kK

yy
Cbn+N−q

dbn+N−q,N−q // Cbn
dbn,q // Cbn−q

(53)
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The (a, b)-persistent Mayer Laplacian ∆a,b
n,q : Can → Can is defined by

∆a,b
n,q := (dan,q)

∗ ◦ dan,q + da,bn+N−q,N−q ◦ (da,bn+N−q,N−q)
∗. (54)

In particular, if n < q, the persistent Mayer Laplacian is reduced to ∆a,b
n,q =

da,bn+N−q,N−q ◦ (da,bn+N−q,N−q)
∗. We arrange the positive eigenvalues of ∆a,b

n,q in as-
cending order as follows:

λa,bn,q(1), λa,bn,q(2), . . . , λa,bn,q(r), (55)

where r is the number of positive eigenvalues. Specifically, λa,bn,q(1) denotes the
smallest positive eigenvalue, serving as the spectral gap and bearing close relevance
to the Cheeger constant in geometry.

Recall that for simplicial homology, the harmonic component of the persistent
Laplacian and persistent homology are isomorphic. Similarly, the harmonic com-
ponent of the persistent Mayer Laplacian and persistent Mayer homology are also
isomorphic. This is presented follows.

Theorem 3.5. For any a ≤ b, we have an isomorphism ker ∆a,b
n,q
∼= Ha,b

n,q, where
n ≥ 0 and 1 ≤ q ≤ N − 1.

Proof. Note that dan,q ◦ d
a,b
n+N−q,N−q = 0. The result follows from [17, Proposition

3.1].

The above theorem indicates that, within the Mayer homology theory, the persis-
tent Mayer Laplacian contains more information than persistent Mayer homology.
The persistent Mayer Laplacian reflects the geometric characteristics of complexes.
It can be easily proven that the eigenvalues of the persistent Mayer Laplacian are
non-negative. We arrange the positive eigenvalues in ascending order, denoting
them as λn,q(1), . . . , λn,q(r). Here, r is the number of positive eigenvalues. Typ-
ically, attention is often focused on the smallest positive eigenvalue, the largest
positive eigenvalue, the average value of eigenvalues, and similar information. In
this paper, our examples and applications will involve computing the smallest ei-
genvalue.

4. Mayer features on Vietoris-Rips complexes. Let X be a finite set of points
embedded in Euclidean space. It is always possible to construct a filtration of sim-
plicial complexes. Common constructions include Vietoris-Rips complexes, alpha
complexes, cubical complexes, and others. These complexes offer diverse topolog-
ical descriptions for datasets. Now, we will focus on exploring the Mayer features
on Vietoris-Rips complexes.

Given a real number ε, the Vietoris-Rips complex on X is given by the simplicial
complex

VRε = {σ ⊆ X|every pair of points in σ has a distance not larger than ε}. (56)

From the Vietoris-Rips complex, one can derive the N -chain complex C∗(VRε;C).
Furthermore, for any real numbers ε ≤ ε′, the inclusion VRε ↪→ VRε′ induces
the inclusion C∗(VRε;C) ↪→ C∗(VRε′ ;C) of N -chain complexes. It leads to the
persistent Mayer homology

Hε,ε′

n,q = im(Hn,q(VRε;C)→ Hn,q(VRε′ ;C)), n ≥ 0. (57)

and the persistent Mayer Laplacian based on the Vietoris-Rips complexes, serving
as the primary tool in our work.
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Example 4.1. Consider the example where X1 consists of the following seven
points on a plane

(0, 0), (1, 1), (1,−1), (2, 1), (2.5, 1.5), (2.5, 0.5), (3, 1). (58)

Here, we exhibits a visualization of some of the corresponding Vietoris-Rips com-

Filtration

Figure 3. Illustration of the Vietoris-Rips complexes at different
filtration radius for pointset X1. Note that for the point set X1

in this example, we can obtain a maximum of 12 Vietoris-Rips
complexes with different filtration radius. For simplicity, we have
omitted 5 complexes between r5 and r6.

plexes in Figure 3, labeled by their filtration radius, namely r0 to r6, respectively. In
this example, the topological features we employed from the Mayer features include
the Betti numbers at dimension 0 and 1. We display comparisons of calculation
results of the persistent Mayer homology of the Vietoris-Rips complexes derived
from the set X with different N values.

We first compare the case N = 2 with N = 3, shown in Figure 4. The N = 2 case,
which also represents the classical persistent Betti numbers, exhibit fewer topolog-
ical features than the persistent Mayer Betti numbers for N = 3 case. Specifically,
the classical (N = 2) persistent homology can yield non-trivial Betti numbers for
dimensional 0 and 1 at filtration radius r0,r1,r2, and r1, respectively. In contrast,
for N = 3 case, the persistent Mayer homology reveals non-trivial Mayer Betti
number 0 at r0 (q = 1 and q = 2), r1 (q = 1 and q = 2), r2 (q = 1 and q = 2), r3
(q = 1), r4 (q = 1), r5 (q = 1), and r6 (q = 1). Additionally, the N = 3 case yields
non-trivial Mayer Betti number 1 at r1 (q = 1 and q = 2), r2 (q = 1 and q = 2), r3
(q = 1 and q = 2), r4 (q = 1 and q = 2), r5 (q = 1 and q = 2), and r6 (q = 1).

While in other cases, such as N = 5, and N = 7, more topological features
are encompassed. As illustrated in Figure 5, we consistently observe N − 1 Betti
curves, each reflecting distinct topological information. To provide a more accurate
description of the information content in the Betti curves obtained for different
values of N , we conducted a statistical analysis of the variations in Betti 0 and Betti
1 for different values of N , shown in Table 4. We observe that with the increase in
the value of N , the quantities of Betti 0 variations and Betti 1 variations strictly and
positively increase. The increasing effect is more pronounced for Betti 1, indicating
that, unlike the information obtained from the classical persistent homology of Rips
complexes, the one-dimensional information provided by persistent Mayer homology
also plays a crucial role.

Additionally, it is noteworthy that the average Betti variation in Table 4 indi-
cates that, for the majority of cases, increasing the value of N not only results
in obtaining more Betti curves but also enhances the topological information of
each Betti curve. The only exception is the case of Betti 0 for N = 7. This is
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N=2(classical)

N=3

Figure 4. Comparison of persistent Betti numbers between the
cases N = 2, N = 3.

primarily due to the fact that the point set considered in this example contains
only 7 points, leading to a sparse existence of high-dimensional simplices in the
corresponding Vietoris-Rips complex. In Mayer homology, Betti 0 variation implies
that 0-dimensional simplices are killed by some higher-dimensional simplices. If the
number of higher-dimensional simplices is too sparse, the difficulty of eliminating
0-dimensional simplices increases, leading to a reduction in the quantity of varia-
tions. However, in application scenarios, the number of points in the point set is
generally much larger than the value of N . In such cases, we can typically expect
an increase in the average Betti variations.

N value
variations

Betti 0 Avg. Betti 0 Betti 1 Avg. Betti 1
2 3 3 2 2
3 7 3.5 12 6
5 15 3.75 33 8.25
7 17 2.83 54 9

Table 4. A statistics of the Mayer Betti curves variation for dif-
ferent N value.



PERSISTENT MAYER HOMOLOGY AND PERSISTENT MAYER LAPLACIAN 603

N=5

N=7

Figure 5. Illustration of persistent Betti numbers between the
cases N = 5, N = 7. The Mayer degree, denoted by q, refers to
the stage of Mayer homology.

Example 4.2. In this example, we show the comparison of Betti numbers and the
smallest eigenvalues for the non-harmonic components of the Laplacians for the case
N = 5. Here, we consider example where points are distributed on the vertices of a
three-dimensional cube. Let X2 be a set with points given by

(0, 0, 1.3), (0, 0,−1), (0, 1, 0), (0,−1, 0), (1, 0, 0), (−1, 0, 0). (59)

Figure 6 shows the visualization of the Vietoris-Rips complexes.
We are interested to know whether persistent Mayer Laplacian detects more geo-

metric variations than persistent Mayer homology in characterizing data. To this
end, we compare the persistent Betti numbers and the smallest non-zero eigenvalues
of persistent Mayer Laplacians derived from X2 for the case N = 2, N = 3, and
N = 5 as shown in Figure 7, Figure 8, and Figure 9, respectively. Since the harmonic
spectra of persistent Mayer Laplacians fully recovery the topological information of
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Filtration

Figure 6. Illustration of the Vietoris-Rips complexes at different
filtration radius for pointset X2.

persistent Mayer homology, attention is given to whether Mayer Laplacian’s non-
zero eigenvalue can detect additional variations compared to Mayer Betti numbers.
Our results are summarized in Table 5. After comparison, we observe that the clas-
sical (N = 2) Laplacian’s nonharmonic spectra can detect more variations in both
dimension 0 and 1. While Mayer Laplacian’s first nonzero eigenvalue is superior in
dimension 0 for all N = 3 cases, and N = 5, q = 2, N = 5, q = 3, N = 5, q = 4
cases, and in dimension 1 for N = 3, q = 2, N = 5, q = 1, and N = 5, q = 4 cases.
It performs on par with Mayer Betti number in dimension 0 for N = 5, q = 1,
in dimension 1 for N = 3, q = 1. In addition, Mayer Laplacian’s first nonzero ei-
genvalue captures fewer variations than Mayer Betti number does in dimension 1
for N = 5, q = 2 and N = 5, q = 3. In summary, Mayer Laplacian exhibits su-
perior performance compared to Mayer Betti numbers, confirming that persistent
Mayer Laplacian indeed provides richer information compared to persistent Mayer
homology.

number

Figure 7. Comparison of persistent Betti numbers and the small-
est positive eigenvalues of persistent Laplacians for the case that
N = 2 (classical). The blue curves denote the Betti curves, while
the red curves represent changes of the smallest eigenvalues. The
notion βrn,q denotes the n-dimensional Betti number at stage q of
the Vietoris-Rips complex at distance r. The notion λrn,q(1) rep-
resents the smallest eigenvalue of the non-harmonic component of
the Laplacian ∆r

n,q at distance parameter r.

A more detailed analysis reveals that the reason for the use of Mayer Laplacian
lies in its inability to detect the variations from r0 to r1 and from r1 to r2 in the
1-dimensional case for N = 5, q = 2 and N = 5, q = 3. In both of these scenarios,
the smallest eigenvalues of persistent Laplacians are consistently 0. This indicates
that, in these cases, all 1-dimensional simplices precisely serve as representatives of
some Mayer homology classes. Therefore, we believe that while persistent Mayer
Laplacian’s first eigenvalue can offer more information compared to persistent Mayer
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number

Figure 8. Comparison of persistent Betti numbers and the small-
est positive eigenvalues of persistent Laplacians for the case that
N = 3. The blue curves denote the Betti curves, while the red
curves represent changes of the smallest eigenvalues. The notion
βrn,q denotes the n-dimensional Betti number at stage q of the
Vietoris-Rips complex at distance r. The notion λrn,q(1) repre-
sents the smallest eigenvalue of the non-harmonic component of
the Laplacian ∆r

n,q at filtration parameter r.

homology, it is not sufficient to replace the latter. The combination of both har-
monic and non-harmonic spectra is necessary to achieve better results in practical
applications.

Mayer N = 2 N = 3 N = 3 N = 5 N = 5 N = 5 N = 5
features q = 1 q = 1 q = 2 q = 1 q = 2 q = 3 q = 4

β0,q 2 3 2 2 1 3 2
λ0,q(1) 3 4 4 2 2 4 4
β1,q 0 4 3 3 3 4 3
λ1,q(1) 4 4 4 4 2 2 4
Table 5. A comparison of variation detection of the Mayer Betti
numbers with the Mayer Laplacian’s first non-zero eigenvalues for
N = 2, 3, and 5.

5. Applications. In this section, we will compute the persistent Mayer Betti num-
bers and spectral gaps of Mayer Laplacians for fullerene C60 and cucurbit[7]uril
CB7. We use the atomic coordinates of molecules as spatial points to construct
the Vietoris-Rips complex, and then build an N -chain complex on it. Typically, we
consider the cases N = 2, N = 3, and N = 5. Here, N represents the integer that
dN = 0. We focus on the Mayer Betti numbers denoted as βn,q and the smallest
positive eigenvalues of Mayer Laplacians (spectral gaps) denoted as λn,q(1). In this
work, n denotes the dimension of Mayer homology or Mayer Laplacians, and we
always compute the Mayer Betti numbers and the spectral gaps of Mayer Lapla-
cians for dimensions 0 and 1. The parameter q refers to the subscript of Mayer
homology or Mayer Laplacians, representing the q-th stage, where 1 ≤ q ≤ N − 1.
Specifically, for the case of N = 2, we obtain the usual simplicial homology and its
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number

Figure 9. Comparison of persistent Betti numbers and the small-
est positive eigenvalues of persistent Laplacians for the case that
N = 5. The blue curves denote the Betti curves, while the red
curves represent changes of the smallest eigenvalues. The notion
βrn,q denotes the n-dimensional Betti number at stage q of the
Vietoris-Rips complex at distance r. The notion λrn,q(1) repre-
sents the smallest eigenvalue of the non-harmonic component of
the Laplacian ∆r

n,q at filtration parameter r.

corresponding Laplacian, where q can only take the value of 1. This implies that for
a given dimension n, there is only one homology group and one Laplacian operator.

Figure 10. Structures of the fullerene C60 (Left) and the cucur-
bit[7]uril CB7 (Right).

In the depicted 3D structure showcased in Figure 10, the fullerene C60 is pre-
sented as a carbon molecule with a distinctive soccer ball-like arrangement, compris-
ing 60 carbon points. In contrast, the macrocyclic compound cucurbit[7]uril (CB7)
is intricately composed of 126 points, encompassing carbon, hydrogen, oxygen, and
nitrogen atoms. Given the more symmetrical and concise configuration of C60 in
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comparison to the complex structure of CB7, an effective featurization method is
anticipated to reveal more nuanced patterns for CB7.

In Figure 11 and Figure 12, as well as Figure 13 and Figure 14, distinct colors
represent the numerical values of different Betti numbers and spectral gaps. The
structural differences between C60 and CB7 are readily apparent from the compar-
isons in Figure 11 with Figure 13, and Figure 12 with Figure 14. The persistent
Mayer Betti numbers and persistent Mayer Laplacians of CB7 display more intri-
cate patterns, and the critical points of variation in these patterns involve a broader
range of filtration radius. This highlights the potential of persistent Mayer homol-
ogy and persistent Mayer Laplacian as highly effective tools for featuring molecular
structures.

N=2

N=3

N=5

Figure 11. Comparison of persistent Betti numbers and the
smallest positive eigenvalues of persistent Laplacians for fullerene
C60 in cases where N = 2, N = 3, and N = 5. Here, βn,q denotes
the n-dimensional Betti number at stage q for a given distance pa-
rameter. Similarly, λn,q represents the smallest eigenvalue of the
non-harmonic component of the Laplacian ∆n,q at a given distance
parameter.

In the above calculations, for convenience, we computed the persistent Betti
numbers and persistent spectral gaps of the 3-skeleton of the Vietoris-Rips complex.
However, this does not hinder us from obtaining the topological and geometric
characteristics of the structure. In the figures, we observe that for the case of
N = 2, the Betti numbers provide relatively limited information, while the spectral
gaps can complement the geometric information. For the cases of N = 3 and
N = 5, the information contained in the Betti numbers alone is already comparable
to the combined information of Betti numbers and spectral gaps for the N = 2
case. This implies that, for larger values of N , computing Mayer Betti numbers
alone is sufficient to capture the sum of harmonic and non-harmonic information
present in the N = 2 case. Generally, computing Betti numbers is much faster
than solving for spectral gaps, providing a more efficient approach for calculating
geometric features.
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N=2

N=3

N=5

Figure 12. Comparison of persistent Betti numbers and the
smallest positive eigenvalues of persistent Laplacians for fullerene
C60 in cases where N = 2, N = 3, and N = 5. Here, βn,q denotes
the n-dimensional Betti number at stage q for a given distance pa-
rameter. Similarly, λn,q represents the smallest eigenvalue of the
non-harmonic component of the Laplacian ∆n,q at a given distance
parameter.

N=2

N=3

N=5

Figure 13. Comparison of persistent Betti numbers and the
smallest positive eigenvalues of persistent Laplacians for cucur-
bit[7]uril CB7 in cases where N = 2, N = 3, and N = 5. Here,
βn,q denotes the n-dimensional Betti number at stage q for a given
distance parameter. Similarly, λn,q represents the smallest eigen-
value of the non-harmonic component of the Laplacian ∆n,q at a
given distance parameter.
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N=2

N=3

N=5

Figure 14. Comparison of persistent Betti numbers and the
smallest positive eigenvalues of persistent Laplacians for cucur-
bit[7]uril CB7 in cases where N = 2, N = 3, and N = 5. Here,
βn,q denotes the n-dimensional Betti number at stage q for a given
distance parameter. Similarly, λn,q represents the smallest eigen-
value of the non-harmonic component of the Laplacian ∆n,q at a
given distance parameter.

Despite the calculation cost of persistent Mayer Laplacian, which should be ap-
proximately N−1 times that of the classical persistent Laplacian if we omit some of
matrix multiplications, the persistent Mayer homology and persistent Mayer Lapla-
cian, from an applied perspective, successfully provide practical multichannel fea-
turization technique. As in applications, it is essential to obtain effective features of
sufficient dimensionality before engaging in machine learning tasks, especially when
dealing with datasets containing thousands or even millions of samples.

Traditional persistent homology and persistent Laplacian methods can only in-
crease the feature dimensionality by adding more filtrations. This approach faces
two main challenges. Firstly, there is an upper limit to the number of filtrations
that can be added, and the computational cost becomes prohibitively high when
dealing large filtration. Secondly, even with an increased number of filtrations, it
does not guarantee the acquisition of useful information. This issue significantly
impacts persistent homology, especially in higher dimensions (1-dimensional and
above). In such scenarios, to obtain the desired features, it is common to divide the
data into subgroups based on the physical understanding. For example, element-
specific persistent homology considers different types of elements in the data [7].
Persistent Laplacians not only consider the smallest positive eigenvalue but also
take into account the largest eigenvalue and some statistical measures of the posi-
tive eigenvalues [12].

Persistent Mayer homology and persistent Mayer Laplacian possess Mayer de-
grees, serving as an additional dimension. By selecting specific values of N , we can
effortlessly expand the feature dimensionality by a factor of N − 1. Moreover, as
the value of N increases, each Mayer degree can have additional effective filtration
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choices for its corresponding features. As shown in Figure 11 and Figure 13, more
patterns in the persistent Mayer Betti numbers as N increases.

6. Conclusion. To the best of our knowledge, currently known persistent homol-
ogy and persistent Laplacians are constructed on chain complexes. For a long time,
topological data analysis (TDA) relies on chain complexes to provide a framework
for constructing all persistent homology and other persistent features. However,
chain complex-based persistent homology and persistent Laplacians are limited in
their utility for dealing with real-world data challenges.

In this work, we consider N -chain complexes instead of chain complexes and con-
struct persistent Mayer homology (PMH) and persistent Mayer Laplacians (PMLs)
on N -chain complexes. Initially, we review some fundamental aspects of N -chain
complexes, encompassing topics such as N -chain complexes, Mayer homology, and
the construction of N -chain complexes on simplicial complexes. Additionally, we in-
troduce Mayer Laplacians on N -chain complexes. We provide several computational
examples of Mayer homology and Mayer Laplacians. In our work, we consistently
consider the simplicity of the case where N is a prime number. However, the case
in which N is any integer greater than or equal to 2 can also be applicable for
studying Mayer homology and Mayer Laplacians on N -chain complexes. In fact,
our computational codes are applicable to all integer N ≥ 2.

The exploration of persistence on Mayer homology and Mayer Laplacians is piv-
otal in our work. We introduce persistent Mayer homology and explore the persis-
tence diagram of persistent Mayer homology. Additionally, we investigate Wasser-
stein and bottleneck distances between Mayer persistence diagrams, establishing
the stability of Mayer persistence diagrams. On the other hand, we introduce per-
sistent Mayer Laplacians, providing additional geometric features to the spaces. On
a discrete set of points in space, Vietoris-Rips complexes are obtained, allowing for
the construction of N -chain complexes. Therefore, this work presents computations
for the persistent Mayer homology and persistent Mayer Laplacians of finite point
sets. The paper includes illustrative figures and examples.

Finally, we apply PMH and PMLs to small molecules, specifically the fullerene
C60 and the cucurbit[7]uril CB7. Considering the coordinates of atoms in C60 and
CB7 as points in Euclidean space, we can obtain the corresponding Vietoris-Rips
complexes. Subsequently, we compute the Mayer Betti numbers and spectral gaps
of Mayer Laplacians for N = 2, N = 3, and N = 5. Additionally, for a given N ,
we calculate the Mayer Betti numbers and spectral gaps of Mayer Laplacians for
1 ≤ q ≤ N − 1. These computational results unveil the distinctive properties of
Mayer homology and Mayer Laplacian.

We believe that our approach gives rise to an emerging paradigm in TDA and
offers fresh perspectives for data science. It will shed light on a wide range of un-
dertakings, providing novel insights into real world problems. On the mathematical
front, persistent Mayer homology and persistent Mayer Laplacians can be further
developed for various objects such as flag complex, path complex, directed graphs,
hypergraphs, and hyperdigraphs. Additionally, persistent Mayer Dirac on various
objects can be formulated. Theoretically, dN = 0 gives rise to N -chain Mayer
Laplacian operators. One can use discrete Mayer Laplacians for data smoothing,
image processing and many other applications. Conceptually, Mayer Laplacians
on manifolds may redefine heat equation, Schrödinger equation, Brownian motion,
and conservation laws. From an applied perspective, in the framework of topolog-
ical deep learning [7], persistent Mayer homology and persistent Mayer Laplacians
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are expected to become powerful new data analysis tools for tackling data science
challenges in diverse fields, including machine learning, physics, chemistry, biology,
and materials science.

Data and code availability. The data and source code obtained in this work
are publicly available in the Github repository: https://github.com/WeilabMSU/
Persistence-Mayer-Homology-and-Laplacian.
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