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A B S T R A C T

High-throughput deep mutational scanning (DMS) experiments have significantly impacted protein engi-
neering, drug discovery, immunology, cancer biology, and evolutionary biology by enabling the systematic
understanding of protein functions. However, the mutational space associated with proteins is astronomically
large, making it overwhelming for current experimental capabilities. Therefore, alternative methods for DMS
are imperative. We propose a topological deep learning (TDL) paradigm to facilitate in silico DMS. We utilize a
new topological data analysis (TDA) technique based on the persistent spectral theory, also known as persistent
Laplacian, to capture both topological invariants and the homotopic shape evolution of data. To validate our
TDL-DMS model, we use SARS-CoV-2 datasets and show excellent accuracy and reliability for binding interface
mutations. This finding is significant for SARS-CoV-2 variant forecasting and designing effective antibodies
and vaccines. Our proposed model is expected to have a significant impact on drug discovery, vaccine design,
precision medicine, and protein engineering.
1. Introduction

Protein mutations refer to changes in the DNA sequence that re-
sult in alterations in the amino acid sequence of a protein. These
changes can significantly affect the protein’s structure, function, and
stability, including protein folding stability, protein binding affin-
ity, and protein–protein interactions (PPIs). Protein mutations play a
paramount role in evolutionary biology, cancer biology, immunology,
directed evolution, and protein engineering.

Accurately analyzing the impact of mutations is crucial in many
fields, such as identifying deleterious and benign mutations and de-
veloping novel antibody therapies for emerging virus variants. How-
ever, experimental evaluation of mutational outcomes can be time-
consuming and expensive, as it requires the expression and purification
of variant proteins and measurement of their activity over time [1]. Fur-
thermore, measurements of site-directed mutagenesis for a single mu-
tation may vary dramatically across different experimental approaches
[2]. Therefore, leveraging accurate and reliable computational methods
to predict the impact of mutations could have a profound effect on the
throughput and accessibility of protein engineering and drug discovery.

∗ Corresponding author at: Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA.
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Recent computational predictions of the impact of mutations on
protein stability and PPI binding affinity have proven to be an im-
portant alternative to experimental mutagenesis analysis for systemat-
ically exploring protein structural functions, disease connections, virus
infectivity, structural instability, and organism evolution directions
[3–5]. Computational approaches offer a rapid, economical, and po-
tentially accurate alternative to site-directed mutational experiments.
Many computational methods have been employed for fields as diverse
as protein folding energy changes and PPI binding free energy changes
upon mutation.

Various computational methods have been developed to predict the
impact of mutations on protein stability, each with differing accuracies
and computational requirements. Such methods include I-Mutant [6],
FoldX [3], SDM [7], DUET [8], PoPMuSiC [9], Rosetta [10], SAAFEC
[11], PPSC [12], PROVEAN [13], ELASPIC [14], STRUM [15], EASE-
MM [16] etc. DUET, for instance, demonstrates a high correlation in
a blind test set and outperforms individual methods like SDM and
mCSM [8]. FoldX has the advantage of being easier to run locally,
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while PROVEAN offers reasonable results with lower computational
costs and without requiring a protein structure [17]. Computational
approaches designed to estimate PPI binding free energy changes upon
mutation typically rely on physical force fields, electrostatics, con-
formational sampling, and hydrophobic packing. These methods offer
a computationally efficient alternative, including DFIRE [18], FoldX
[3], Discovery Studio [19], EGED [20], CC/PBSA [21], Rosetta [22],
PoPMuSiC & BeAtMuSic [9,23], and mCSM [24,25]. Several studies
have compared the performance of various computational methods in
predicting protein stability and binding affinity changes upon mutation.
One such study assessed the performance of six methods, including
CC/PBSA, EGAD, FoldX, I-Mutant2.0, Rosetta, and Hunter, in predict-
ing protein stability changes [26]. Another investigation evaluated
the effectiveness of several methods, including bASA, dDFIRE, DFIRE,
STATIUM, Rosetta, FoldX, and Discovery Studio scoring potentials –
in predicting antibody binding affinity changes upon mutation. The
respective Pearson correlation were 0.22, 0.19, 0.31, 0.32, 0.16, 0.34,
and 0.45, respectively [27].

Computational approaches for calculating protein biophysical prop-
erties generally fall into three categories: empirical models, physical
models, and data-driven machine learning techniques. Empirical mod-
els implement potential terms and empirical functions to describe
the free energy perturbation under the constraint of the range of
conditions for which they are developed [28,29]. Physical modeling
makes use of multiscale implicit solvent models and molecular me-
chanics approaches. On the other hand, these approaches depend on
the accurate and self-sufficient predictions derived from the underlying
measurements [30].

Alternatively, data-driven approaches employ machine learning
(ML) and deep learning (DL) techniques to uncover the mechanism
linking protein stability/binding with complex structures or polypep-
tides. A major advantage of data-driven mutation modeling is its
ability to handle high-throughput and diverse mutation datasets. Im-
portantly, the predictive performance of DL approaches heavily relies
on the availability and accuracy of training sets. The computational
prediction of the impact of mutations on protein stability and protein–
protein interactions (PPIs) plays a crucial role in drug repositioning and
drug-target interaction. These predictions are essential for identifying
deleterious and benign mutations, developing novel antibody thera-
pies for emerging virus variants, and facilitating the throughput and
accessibility of protein engineering [31] and drug discovery [32–35].

Deep mutational scanning (DMS) – a high-throughput experimental
technique used to study the effects of thousands of mutations on
a protein’s function, such as fitness, stability, and reactivity [36] –
can directly benefit from increasing data availability. This approach
combines site-directed mutagenesis with next-generation sequencing
to measure the fitness of each mutation in a population based on its
enrichment (i.e., change in frequency) during selection or screening.
DMS has emerged as a primary approach for protein engineering [36–
38] and provides reliable analysis of mutational impacts on protein
stability, binding free energy, or evolutionary directions. DMS can
measure tens of thousands of variants in a single experiment, pro-
viding datasets for machine/deep learning studies. For example, the
stochastic gradient boosting model, Envision, uses 21,026 variant effect
measurements from nine mutational scan studies to create a unified
mutant effect predictor. This predictor outperforms other missense
variant effect predictors on both large-scale mutagenesis data and an
independent test dataset consisting of 2312 TP53 variants [39]. Sarfati
et al. combined deep mutational scanning data and machine learning
to predict mutant impacts using sequence and structure features of
variants. These were measured in the overall correlation between the
predicted and enrichment results [40].

With the advances in experimental techniques and computational
approaches, we are now better equipped to study the emergence
and evolution of viruses. Severe Acute Respiratory Syndrome Coron-
2

avirus 2 (SARS-CoV-2) has caused a global pandemic since late 2019,
evolving into many different variants which have resulted in several
waves of Coronavirus Disease 2019 (COVID-19) infections. SARS-CoV-2
exploits mutations to enhance its evolutionary fitness. Two mecha-
nisms of SARS-CoV-2 evolution, namely natural selection via infectivity
strengthening and antibody resistance, were identified in early 2020
[4] and late 2021 [41], respectively based on molecular biophysics,
topological deep learning, and genotyping of viral genomes isolated
from patients. The molecular model underlying the first mechanism is
that mutations on the spike protein (S protein) receptor-binding domain
(RBD) enhance the virus host cell entry by strengthening the binding of
RBD and host angiotensin-converting enzyme 2 (ACE2), giving rise to
more infectious variants [1,4,42–46]. The molecular model underlying
the second mechanism is that RBD mutations are able to disrupt the
RBD and antibody binding, leading to serious vaccine breakthroughs
in the populations of Europe and the US that had the earliest access to
vaccines [41].

DMS, recognized as a reliable option, is employed to measure the
impact of single-amino acid mutations on the RBD-ACE2 binding affin-
ity [47–50] and RBD-antibody binding affinity [48,51,52]. One study
reports the stabilization of the original SARS-CoV-2 spike protein RBD
through the integration of deep mutational scanning and computational
design [53].

Topological Deep Learning (TDL), first introduced in 2017 [54],
has emerged as a paradigm that amalgamates topological data analysis
(TDA) and deep learning techniques to analyze complex and high-
dimensional data. TDA is a branch of mathematics that focuses on
understanding the shape and structure of data [55,56]. It is most suc-
cessful in cases where standard approaches fare poorly, but it can also
significantly contribute in the situations where the standard approaches
work very well, by contributing novel topological fingerprints. The
basic idea behind TDL is to incorporate topological features of the
data into deep learning models to improve their performance. This
can be done by using topological descriptors to simplify the structural
complexity of biomolecules [57–59] and embed physical interactions
into topological invariants [54]. TopNetTree [60] model was designed
for predicting PPI binding free energy changes upon mutation. These
studies have significant implications for the field of computational
biology and complex biological systems. Topological deep learning
leverages the data analysis of intricate and high-dimensional data.
Recently, TopNetmAb model has further been validated with DMS data
and has been applied to predict RBD mutation-induced RBD-antibody
binding free energy (BFE) changes [5].

Persistent homology, a key method in TDA, was employed in early
TopNetTree [60] and TopNetmAb [5] models. We recently developed
a persistent Laplacian-based TDL model for predicting PPI binding
free energy changes upon mutation [61]. Persistent Laplacians, also
referred to as persistent spectral theory [62], are a particular instance
within a family of persistent topological Laplacians, including persis-
tent path Laplacians [63], persistent sheaf Laplacians [64], persistent
hyperdigraph Laplacians [65], etc. Persistent topological Laplacians are
designed to address the limitations of the current TDA methods.

In this work, we propose a TDL-DMS predictor for mutation-induced
protein–protein interaction BFE changes. We collect five DMS datasets
focusing on SARS-CoV-2 S protein RBD in RBD-ACE2 complexes and
RBD-antibody complexes, including deep mutational scanning of the
S protein receptor-binding domains (RBD) in the RBD-ACE2 complex
[49], in another RBD-ACE2 complex [47,48], in RBD-CTC-445.2 com-
plex [48], and in BA.1 and BA.2 variants [66]. We use an improved
TDL model based persistent spectral theory [62] to construct both
persistent topological invariants and persistent spectra for predicting
single-amino acid mutation impacts on protein–protein interactions
using the aforementioned DMS datasets as training sets. The three
dimensional (3D) structures of appropriate RBD-ACE2 complexes and
RBD-antibody complexes are also utilized in our TDL-DMS models. Our
models are validated through leave-one-dataset-out and 10-fold cross
– validation. Finally, we demonstrate the performance of TDL-DMS

models for in silico DMS.
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Table 1
The size of each SARS-CoV-2 RBD DMS dataset.
Dataset RBD-ACE2-1 [47] RBD-ACE2-2 [48] RBD-CTC-455.2 [48] BA.1-RBD-ACE2 [66] BA.2-RBD-ACE2 [66]

Sample size 3669 1539 2831 3800 3686
Fig. 1. Leave-one-out cross-validations of mutational scanning on the RBD in the original RBD-ACE2 complex [47] shows an 𝑅𝑝 of 0.63. Prediction results for different residue
region types according to Fig. 7 with 𝑅𝑝s of 0.73, 0.69, and 0.79 for the support, rim, and core, respectively. Note DMS data does not have a standard unit, and thus the values
(functional scores) are compared.
2. Results

There are five SARS-CoV-2 RBD DMS datasets collected as the
training set of the TDL model (see Table 1 for more details about
datasets). To illustrate the performance of this proposed model, we
employ dataset-level leave-one-out validations on these five SARS-CoV-
2 RBD DMS datasets (10-fold cross validations are described in the
Supplemental Material). Thus, the neural network model consists of
six hidden layers with 15,000 neurons in each layer and generates six
outputs for each dataset. For the validation process, we use five out of
the six DMS datasets as the training data, with the remaining dataset
serving as the test set for validation. We provide a comprehensive sta-
tistical analysis for each validation, showcasing the results in the form
of scatter and histogram plots based on the mutation locations. Addi-
tionally, we include five schematic representations, with the definitions
of their structural regions derived from the relative accessible surface
area (rASA) [67]. Residues with rASA can be classified into structural
regions such as interior and surface or interface categories like support,
rim, and core, which aids in analyzing TDL-DMS predictions of the
SARS-CoV-2 Spike protein RBD while accounting for continuous amino
acid exposure.

2.1. DMS of the RBD in the original RBD-ACE2 complex

To guide subsequent experiments and analyses by understanding the
mutational impacts on SARS-CoV-2 infectivity and antibody resistance,
we initially conducted an in silico DMS of the RBD in the original RBD-
ACE2 complex, using the dataset with experimental DMS results on
SARS-CoV-2 RBD by Starr, et al. [47]. The yeast-surface-display plat-
form was utilized to measure the expression of folded RBD protein and
its binding to ACE2. Functional scores for RBD-ACE2 binding affinity
were derived from per-barcode counts obtained during the experiments
[47]. The dataset was released at the beginning of the pandemic and
has been widely used for studying the SARS-CoV-2 RBD-ACE2 interac-
tion and for vaccine design and antibody design. Readers interested in
exploring the specifics can refer to the authors’ GitHub repository for
further information (https://github.com/jbloomlab/SARS-CoV-2-RBD_
DMS). In our leave-one-out TDL prediction, protein structure 6M0J of
RBD-ACE2 complex [68] (see Fig. 1) was used in our TDL model. There
are 3669 single mutations on RBD with an overall Pearson correlation
of 𝑅𝑝 = 0.63 between the experimental results and predicted results.
It is important to note that experimental DMS enrichment ratios were
converted into binding free energies with errors, and some discrepan-
cies were observed in the interior and surface mutations. Despite this,
higher correlations were observed in the support, rim, and core regions,
3

indicating that the TDL-DMS model performs well in predicting the
binding interface of the RBD-ACE2 complex. There were a significant
presence of very negative values (< − 4.0) in the DMS data, while the
predicted values are in the range from −5 to 1. For example, there
are 101 values that were set to be −4.8. On the interior and surface
mutations, the correlations are down to 0.52 and 0.57 respectively.
Obviously, these mutations with very negative values belong to the
interior and surface (see Figure S1). Nevertheless, correlations in the
support, rim, and core regions are higher than that of others, with 𝑅𝑝
of 0.73, 0.69, and 0.79, respectively. Therefore, the TDL-DMS model
performs well on the binding interface of the RBD-ACE2 complex,
which is the most relevant and important for understanding mutational
impacts to SARS-CoV-2 infectivity and antibody resistance (see Fig. 2).

Our next DMS dataset of the original SARS-CoV-2 RBD was provided
by Linsky et al. [48]. The authors studied the de novo design of hACE2
decoys to moderate SARS-CoV-2, and provide a monovalent decoy high
potently neutralizing SARS-CoV-2. In the experiment, approximately
1700 single mutations were tested, while our analysis considered 1539
single mutations, limited the 6M0J RBD protein structure, which lacks
residues at both ends [68]. Here, the proteins use yeast display and the
enrichment of DMS data is presented for experiments. Calculation detail
can be found at the Supplementary Materials of Ref. [48]. Overall,
the predicted values have a correlation of 0.72 (see Figure S2). It
is shown that there are two peaks in terms of population ranges for
experimental DMS data, while only one peak of that for predicted
results. One of the two peaks has the corresponding values around
−2.5, which indicates mutations moderating the RBD-ACE2 binding
(see Figure S2). Interestingly, when considering the interior mutations,
which contribute mostly to the second peak, the correlation is 0.53
(see Figure S2). This difference might be caused either by the TDL-
DMS model having lower performance for interior mutations or the
dataset has experimental bias in certain regions. For mutations near the
binding interface, i.e., support, rim and core, predictions have relatively
high correlations with the experimental data. In the interface, residues
have differences in their rASAs in monomer and complex, and play key
roles in SARS-CoV-2 mutations. High correlations on regions suggest
the TDL-DMS model has accurate predictions. The highest correlation
between the experimental data and predicted results is observed for
core mutations, 𝑅𝑝 = 0.81 (see Fig. 2).

2.2. DMS of the RBD in a variant RBD-CTC-455.2 complex

In the same work, Linsky, et al. test the RBD binding to their de novo
design protein CTC-445.2 and scan 1539 mutations on RBD [48]. The
experiments are the same as the last one. For this dataset, the overall

https://github.com/jbloomlab/SARS-CoV-2-RBD_DMS/blob/master/compute_binding_Kd.Rmd
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Fig. 2. Leave-one-out cross-validations of mutational scanning on the original RBD binding to ACE2 [48] shows an 𝑅𝑝 of 0.72. Prediction results for different residue region types
according to Fig. 7 with 𝑅𝑝s of 0.75, 0.78, and 0.81 for the binding interfaces: support, rim, and core, respectively. The average enrichment of the experimental data is compared.
Fig. 3. Leave-one-out cross-validations of DMS on the RBD in the RBD-CTC-445.2 complex [48] shows an 𝑅𝑝 of 0.67. Prediction results for different residue region types according
to Fig. 7 with 𝑅𝑝s of 0.57, 0.60, and 0.39 for the support, rim, and core, respectively. The average enrichment of the experimental data is compared.
Fig. 4. Leave-one-out cross-validations of mutational scanning on BA.1 RBD binding to ACE2 [66] shows an 𝑅𝑝 of 0.84. Prediction results for different residue region types
according to Fig. 7 with 𝑅𝑝s of 0.72, 0.55, and 0.83 for the support, rim and core, respectively.
correlation of our TDL-DMS is 0.67. The TDL-DMS model has the worst
performance in the interface for this particular dataset among the five
DMS datasets, with the correlation of support, rim, and core being 0.57,
0.60, and 0.39, respectively (see Fig. 3). It is observed suboptimal
performance of the TDL-DMS model, particularly in the classification
of the core region, potentially due to limited data quality and quantity.
Similar to the previous dataset, there are also two peaks in terms of
population distribution for experimental DMS data, and only one of the
peaks was predicted by TDL-DMS.

2.3. DMS of the RBD in variant RBD-ACE2 complexes

Lastly, we examine two datasets featuring distinct mutations on
the RBD. Figs. 4 and 5 show the correlations of predictions versus
DMS experimental data [66] of the RBD in BA.1 RDB-ACE2 complex
(PDB: 7T9L [69]) and BA.2 RBD-ACE2 complex (PDB: 7XB0 [70]),
respectively. The converted binding affinity of the experimental DMS
data is compared with our prediction values and a yeast-surface dis-
play platform was deployed [66]. For the calculation detail of con-
verted binding affinity, please check the author’s repository (https:
//github.com/jbloomlab/SARS-CoV-2-RBD_DMS_Omicron). The cor-
4

relation analysis for leave-one-out cross-validations on the RBDs in
BA.1 and BA.2 variants binding to ACE2 reveals a consistent Pearson
correlation coefficient (𝑅𝑝) of 0.84. For both RBDs, the prediction
results show varying 𝑅𝑝 values across the support, rim, and core regions
(see Figs. 4 and 5). The overall correlations for both datasets are
identical, and the correlations for interface mutations are notably high
as well. BA.1 and BA.2 exhibit seven unique mutations on the RBD
(BA.1: S371L, G446S, G496S; BA.2: S371F, T376A, D405N, R408S).
Thus, when performing leave-one-out cross-validation, our proposed
TDL-DMS model learns from one dataset and predicts the results for
other datasets.

To show the detailed performance, we demonstrate the experimen-
tal and predicted DMSs of the RBD in the BA.2 RBD-ACE2 complex in
Fig. 6. Overall, our prediction captures the general pattern very well.

3. Discussion

Firstly, residues with their rASA can be considered buried as rASA
is less than a certain cutoff, which prompts the definition of two
structural regions: the interior and the surface, as shown in Fig. 7. Due
to the discreteness caused by the cutoff, a concern might rise as amino

https://github.com/jbloomlab/SARS-CoV-2-RBD_DMS_Omicron
https://github.com/jbloomlab/SARS-CoV-2-RBD_DMS_Omicron
https://github.com/jbloomlab/SARS-CoV-2-RBD_DMS_Omicron
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Fig. 5. Leave-one-out cross-validations of the DMS of the RBD in the BA.2 RBD-ACE2 complex [66] shows an 𝑅𝑝 of 0.84. Prediction results for different residue region types
according to Fig. 7 with 𝑅𝑝s of 0.65, 0.73, and 0.82 for the support, rim, and core, respectively.
Fig. 6. The comparison of experimental [66] and predicted DMSs of the RBD in the BA.2 RBD-ACE2 complex. The top panels show experimental BFE changes (kcal/mol) upon
mutation converted from enrichment ratios. The predicted DMS results are given in bottom panels. In the 3D structure of the BA.2 RBD-ACE2 complex (PDB ID: 7XB0 [70]), ACE2
is in purple and RBD is in kelly green. Structures are plotted by the Illustrate [71].
acids’ relative exposure is continuous. However, with the studies of
Escherichia coli, Saccharomyces cervisiae, and Homo sapiens databases,
it was concluded that the rASA cutoff distinguishing the surface and
the interior easily is roughly 25% [67]. A similar concept is employed
when considering the interface of protein–protein complexes. Within
the same work [67], three regions of binding interfaces are defined
as support, rim, and core, which require including rASA on monomer
and complex (see Fig. 7). It is noted that interface residues contribute
mostly to the binding energy [72]. The classification on the interface
5

is crucial for analyzing TDL-DMS predictions of the RBD of the SARS-
CoV-2 Spike protein. In the following discussion, results are analyzed
in categories, i.e., interior, surface, support, rim, and core.

We present a comparison of correlations of experimental and pre-
dicted DMS values for each mutation in Fig. 8 from all five datasets.
There are 361 amino acid mutation types. Among them, 20 muta-
tion types (red color) have negative correlations of experimental and
predicted DMS values, while 5 mutation types (white color) have
no correlation. The rest mutation types have positive correlations,
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Fig. 7. The definitions of the structural regions on the Spike protein RBD (PDBID:
6M0J [68]). Amino acids are assigned to the surface, interior, support, rim, and core
based on the rASA in monomer and complex. Structures are plotted by Illustrate [71].

i.e., more than half mutation types (236) have 𝑅𝑝 > 0.50 and 76
mutation types have 𝑅𝑝 > 0.70.

The pattern of DMS results over different mutation types is cru-
cial for protein design, including the design of monoclonal antibodies
(mAbs). We evaluate how well our TDL-DMS model predictions resem-
ble the distribution in experimental data by examining the behavior of
our model for 20 distinct amino acid types across the five DMS datasets.
Remarkably, our predicted patterns align closely with the experimental
data in terms of both average DMS results and variance of DMS results
(see Fig. 9). The overall predictions exhibit more negative changes, in-
dicated by a higher prevalence of deep red-colored squares. In addition
to considering amino acid size, we also classify them into charged,
polar, hydrophobic, and special-case groups. Regarding changes in
DMS results, we observe that most mutations from charged/polar to
other residues yield a positive change (e.g., mutating from K or T to
others). This suggests that mutations from charged or polar residues
to other types contribute to increased stability within the SARS-CoV-
2 PPI system. Although our model exhibits a similar pattern in the
variance of value changes as experimental data, the variance of the
model predictions is generally lower, as shown in Fig. 9.

Although achieving accurate predictions with a diversity level com-
parable to experimental data remains a challenging task, future trends
are quite clear as shown in Fig. 9. Essentially, residues K, S, and T
are relatively stable. In contrast, residues R, C, I, and Y are prone to
mutations. Additionally, many mutations will generate D, E, and P.

In this study, we emphasize the leave-one-dataset-out validation
approach due to the unique nature of our data and the specific ob-
jectives of our research. The test data consists of multiple datasets,
each representing a specific SARS-CoV-2 spike RBD associated with
ACE2 and antibodies. These datasets are distinct and provide different
contexts for the evaluation of the proposed model. The leave-one-
dataset-out validation approach allows us to assess the generalizability
of the model across these different contexts. In this strategy, it can
be evaluated how well the model can adapt to new and unseen data.
This validation approach provides a robust estimate of the model’s
6

performance. It reduces the risk of overfitting, as the model is tested on
data that it has not seen during training. This gives us confidence that
our model’s good performance is not due to memorizing the training
data, but rather its ability to generalize from training.

In light of the findings and challenges encountered in this study,
future work will focus on refining the data collection and preprocessing
methods to reduce noise and improve data quality. The quality and
quantity of experimental data used for training and testing the model
significantly impact machine learning performances. It is important
to expand experimental datasets, particularly for regions where the
model’s performance was weak. Additionally, we aim to implement ex-
perimental validation as an additional check on the model’s predictions.
This will provide a more robust evaluation of the model’s performance
and help identify areas for improvement. We believe that these steps
will enhance the model’s predictive accuracy and contribute to the
development of more effective tools for predicting DMS. Furthermore,
we will continue to explore the potential of topological deep learning
in the analysis of intricate and high-dimensional data. We are partic-
ularly interested in leveraging topological descriptors to simplify the
structural complexity of biomolecules and embed physical interactions
into topological invariants. This development will have significant
implications for computational biology and complex biological systems.

4. Methods

This section provides an overview of spectral graph theory, simpli-
cial complex, and persistent Laplacian methods for feature generation.
These mathematical concepts play a crucial role in understanding
the topological and spectral properties of protein–protein interactions.
Additionally, machine learning and deep learning models are discussed
in the context of test datasets and validation settings, highlighting their
applications in the analysis and interpretation of these features. This
overview aims to equip readers with the essential knowledge required
for further exploration and implementation of these techniques.

4.1. Spectral graph theory

Spectral graph theory focuses on the study of graph Laplacian’s
spectra, connecting the algebraic connectivity and spectral properties of
underlying graphs or networks. Mathematically, a graph is an ordered
pair 𝐺(𝑉 ,𝐸), where 𝑉 = 𝑣𝑖; 𝑖 = 1, 2,… , 𝑁 is the vertex set with size 𝑁 ,
and 𝐸 = 𝑒𝑖𝑗 = (𝑣𝑖, 𝑣𝑗 ); 𝑖 ≤ 𝑖 < 𝑗 ≤ 𝑁 is the edge set. Let deg(𝑣) denote the
degree of each vertex 𝑣𝑖 ∈ 𝑉 , i.e., the number of edges connected to 𝑣.
A specific Laplacian matrix 𝐿𝐺 can be given by

𝐿𝐺 =

⎧

⎪

⎨

⎪

⎩

deg(𝑣), if 𝑣𝑖 = 𝑣𝑗 ,
−1, if 𝑣𝑖 and 𝑣𝑗 are adjacent,
0, otherwise,

(1)

where ‘‘adjacent’’ refers to a specific definition or connection rule.
We can order the eigenvalues of the graph Laplacian matrix as

𝜆min = 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑁 = 𝜆max. (2)

The kernel dimension of 𝐿𝐺 is the multiplicity of 0 eigenvalues, in-
dicating the number of connected components of 𝐺(𝑉 ,𝐸), which is
a topological property of the graph. The non-zero eigenvalues of 𝐿𝐺

contain information about the graph properties. In particular, 𝜆2 is
called the algebraic connectivity.

4.2. Simplicial complexes

Graph Laplacian allows only pairwise interactions (edges) and ex-
cludes high-order many-body interactions. In contrast, simplicial com-
plexes offer a high-order generalization. Simplicial complexes serve
as an elegant and robust mathematical framework for capturing the
high-order interactions in graphs and networks. At the heart of this
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Fig. 8. A comparison of correlations of experimental and predicted DMS values following mutations associated with different amino acid types for all five datasets. Each square
shows the numbers of mutations considered. Color indicates the correlation. ‘X’ indicates no mutation. Note that the SARS-CoV-2 RBD has no amino acid MET (M).
Fig. 9. A comparison of average experimental and predicted DMS values following mutations associated with different amino acid types for all the training sets. The 𝑥-axis labels
the residue type of the original RBD amino acids, whereas the 𝑦-axis labels the residue type of the mutant. Note that there is no amino acid MET (M) on the RBD. Top: Average
binding affinity changes following mutation. Bottom: Variance of binding affinity changes following mutation. Left: Experimental values. Right: Predicted values.
framework lies the concept of a 𝑞-simplex, which is formed from a set
of 𝑞 + 1 affinely independent points. Examples of simplices encompass
7

various geometric elements such as vertices, edges, triangles, and tetra-
hedrons. A simplicial complex is an assemblage of simplices that adhere
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to specific conditions, and its dimension is established by the maximum
dimension of its constituting simplices.

In graph theory, the degree of a vertex encapsulates the number of
edges adjacent to it. However, when extending this idea to 𝑞-simplices,
one must take into account both lower and upper adjacency, as 𝑞-
simplices can simultaneously have (𝑞−1)-simplices and (𝑞+1)-simplices
adjacent to them. Lower adjacency pertains to the sharing of a common
(𝑞 − 1)-face, while upper adjacency entails the sharing of a common
(𝑞 + 1)-face.

To delve deeper into the topological properties of simplicial com-
plexes, it is useful to examine the boundary operator and chain com-
plexes. The boundary operator, denoted as 𝜕𝑞 , maps 𝐶𝑞(𝐾) to 𝐶𝑞−1(𝐾):

𝑞𝜎𝑞 =
𝑞
∑

𝑖=0
(−1)𝑖[𝑣0,… , �̂�𝑖,… , 𝑣𝑘] =

𝑞
∑

𝑖=0
(−1)𝑖𝜎𝑖𝑞−1, (3)

here �̂�𝑖 is the vertex to be excluded.
Chain complexes consist of sequences of chain groups intercon-

ected by boundary operators:
𝜕𝑞+2
⟶ 𝐶𝑞+1(𝐾)

𝜕𝑞+1
⟶ 𝐶𝑞(𝐾)

𝜕𝑞
⟶ 𝐶𝑞−1(𝐾)

𝜕𝑞−1
⟶ ⋯ (4)

In essence, simplicial complexes offer an effective tool for probing
he topological properties of graphs and networks. By analyzing the
egrees of various simplices, their adjacencies, and the intricacies
f boundary operator and chain complexes, we can gain a deeper
nderstanding of the structure and connectivity inherent in complex
ystems.

.3. Combinatorial Laplacian

In 1944, Eckmann introduced simplicial complexes into graph
aplacians, which gives rise to combinatorial Laplacian or topological
aplacian [73]. Combinatorial Laplacian was ingeniously devised to
nrich the topological and geometric information inherent in simpli-
ial complexes. Foundational concepts revolve around the oriented
implicial complex and the 𝑞-combinatorial Laplacian. Comprehensive
nformation on these topics can be explored in the cited literature
74–77]. The subsequent discussion delves into the properties of the
-combinatorial Laplacian matrix and its associated spectra.

The 𝑞-combinatorial Laplacian is predicated on oriented simplicial
omplexes, which harness both lower- and higher-dimensional sim-
lices to investigate a specifically oriented simplicial complex. An
riented simplicial complex, 𝐾, is characterized by the orientation of all
ts constituent simplices. When 𝜎𝑖𝑞 and 𝜎𝑗𝑞 are upper adjacent, sharing a
ommon upper (𝑞+1)-simplex 𝜏𝑞+1, they are deemed similarly oriented
f both exhibit the same sign in 𝜕𝑞+1(𝜏𝑞+1), and dissimilarly oriented
f the signs are contrary. Moreover, if 𝜎𝑖𝑞 and 𝜎𝑗𝑞 are lower adjacent,
haring a common lower (𝑞−1)-simplex 𝜂𝑞−1, they are similarly oriented
f 𝜂𝑞−1 bears the same sign in both 𝜕𝑞(𝜎𝑖𝑞) and 𝜕𝑞(𝜎

𝑗
𝑞 ), and dissimilarly

oriented if the signs are in opposition. In a similar vein, 𝑞-chains
can be defined on the oriented simplicial complex 𝐾, along with the
𝑞-boundary operator.

The 𝑞-combinatorial Laplacian is a linear operator 𝛥𝑞 ∶ 𝐶𝑞(𝐾) ⟶
𝐶𝑞(𝐾) for integers 𝑞 ≥ 0

𝑞 ∶= 𝜕𝑞+1𝜕
∗
𝑞+1 + 𝜕∗𝑞 𝜕𝑞 (5)

here 𝜕∗𝑞 denotes the coboundary operator, mapping 𝜕∗𝑞 ∶ 𝐶𝑞−1(𝐾) ⟶

𝑞(𝐾). The property 𝜕𝑞𝜕𝑞+1 = 0 is preserved, implying that Im(𝜕𝑞+1) ⊂
er(𝜕𝑞). The matrix representation of the 𝑞-combinatorial Laplacian
perator, denoted by 𝑞, is given by

𝑞 = 𝑞+1𝑇
𝑞+1 + 𝑇

𝑞 𝑞 (6)

here 𝑞 and 𝑞𝑇 represent the matrix representations of the 𝑞-
oundary operator and 𝑞-coboundary operator, respectively, in relation
8

o the standard basis for 𝐶𝑞(𝐾) and 𝐶𝑞−1(𝐾) with specific orderings.
onsequently, the number of rows in 𝑞 corresponds to the quantity
f (𝑞 − 1)-simplices, while the number of columns reflects the quantity
f 𝑞-simplices in 𝐾. Furthermore, the upper and lower 𝑞-combinatorial
aplacian matrices are denoted by 𝑈

𝑞 = 𝑞+1𝑇
𝑞+1 and 𝐿

𝑞 = 𝑇
𝑞 𝑞 ,

espectively. It is important to note that 𝜕0 is the zero map, resulting
n 0 being a zero matrix. Hence, 0(𝐾) = 1𝑇

1 + 𝑇
0 0, with 𝐾

epresenting the (oriented) simplicial complex of dimension 1, which is
ssentially a simple graph. In particular, the 0-combinatorial Laplacian
atrix 0(𝐾) is actually the Laplacian matrix as defined in the spectral

raph theory.

.4. Persistent Laplacians

Persistent Laplacian, also known as persistent spectral graphs or
ersistent combinatorial Laplacian [62], has emerged as a popular tool
n topological data analysis. It was proposed to overcome the limitation
f persistent homology for incapable of capturing the homotopic shape
volution of the data. It is based on a filtration process that converts a
ata set into a sequence of nested simplicial complexes with increasing
evels of complexity. In each level, the Betti numbers are calculated,
nd the changes in the Betti numbers are tracked as the resolution
f the data set increases. These changes in the Betti numbers, called
opological persistence, provide a measure of the robustness of the
opological features of the data set (see Fig. 10).

In order to study the persistence of the spectral properties of graphs
r simplicial complexes, one can use the notion of persistent Laplacians,
hich are a family of Laplacian matrices that encode the topological
nd geometric information of the simplicial complexes at different
esolutions. The main idea is to construct a sequence of nested simpli-
ial complexes by successively adding simplices to the complex, and
ssociate a Laplacian matrix with each complex. By comparing the
pectra of the Laplacian matrices at different resolutions, one can study
he persistent spectral properties of simplicial complexes.

There are different ways to construct persistent Laplacians, depend-
ng on the filtration process and the type of Laplacian used [62]. One
ommon approach is to use the combinatorial Laplacian matrix 𝑞
f the simplicial complexes defined in the previous section. Given a
equence of nested simplicial complexes 𝐾0 ⊂ 𝐾1 ⊂ ⋯ ⊂ 𝐾𝑛 with
ncreasing dimension, one can also define a sequence of combinatorial
aplacian matrices 𝑞,0,𝑞,1,… ,𝑞,𝑛 by setting 𝑞,𝑖 = 𝑞(𝐾𝑖). Then, one
an study the persistent spectral properties of the sequence of Laplacian
atrices, such as the persistent eigenvalues and eigenvectors.

The harmonic spectra of persistent Laplacians at various scales are
he same as the persistent Betti numbers, while the non-harmonic
pectra can capture both topological changes and homotopic shape
volution of the data, see Fig. 11. Note that, in the figure, each of
he five charts on the top panel is represented by a segment of the
on-harmonic spectra, i.e., the first non-zero eigenvalues in red. In
ontrast, persistent homology (blue bars) does not capture homotopic
hape evolution (i.e., the states in the third chart and the fifth chart). As
result, persistent Laplacians offer an enriched representation of data.

.5. Protein–protein interactions

PPIs are analyzed by topological and shape analysis. We initially
artition the atoms in a protein–protein complex into several subsets:

1. m: atoms at the mutation sites.
2. mn(𝑟): atoms in the vicinity of the mutation site, within a

cut-off distance 𝑟.
3. A(𝑟): protein A atoms within 𝑟 of the binding site.
4.  (𝑟): protein B atoms within 𝑟 of the binding site.
B
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t

Fig. 10. Comparison of persistent homology (PH) [55,56] and persistent Laplacians (PLs) [62] for eight points. The filtration characterized by the horizontal axis 𝑟 of eight points
is shown in the top panel. The corresponding topological features of dimension 0 and dimension 1 are shown the second and third panels, respectively. PH barcodes (𝛽0(𝑟) and
𝛽1(𝑟)) are given in blue. The first non-zero eigenvalues of dimension 0 (𝜆0(𝑟)) and dimension 1 (𝜆1(𝑟)) of PLs are depicted in red. The harmonic spectra of PLs return all the
opological invariants of PH, whereas the non-harmonic spectra of PLs capture the additional homotopic shape evolution of PLs during the filtration that are neglected by PH.
5. ele(E): atoms of element type E within the system. We design
the distance matrix to exclude interactions between atoms from
the same set. For interactions between atoms 𝑎𝑖 and 𝑎𝑗 in sets 
and/or , we define the modified distance as follows:

𝐷mod(𝑎𝑖, 𝑎𝑗 ) =

{

∞, if 𝑎𝑖, 𝑎𝑗 ∈ , or 𝑎𝑖, 𝑎𝑗 ∈ ,
𝐷𝑒(𝑎𝑖, 𝑎𝑗 ), if 𝑎𝑖 ∈  and 𝑎𝑗 ∈ ,

(7)

where 𝐷𝑒(𝑎𝑖, 𝑎𝑗 ) represents the Euclidean distance between 𝑎𝑖 and 𝑎𝑗 .
Molecular atoms are constructed as points, denoted by 𝑣0, 𝑣1, 𝑣2, ..., 𝑣𝑘,
with 𝑘!+!1 affinely independent points in a simplicial complex. Persis-
tent spectral graphs are designed to capture multiscale topological and
geometrical information across different scales along a filtration [62],
yielding essential feature vectors for machine learning methods. Binned
barcode vectorization-generated features can represent the strength of
atomic bonds and van der Waals interactions, and are readily incorpo-
rated into machine learning models that discern and characterize local
patterns.

Using atom subsets, such as A(𝑟) and B(𝑟), we create simplicial
complexes by considering only the edges from A(𝑟) to B(𝑟) for
Vietoris–Rips complexes. Barcodes generated from persistent homology
are then enumerated by bar lengths within specific intervals, with
numbers 0 or 1, as part of the Vietoris–Rips complex filtration. Con-
currently, for each complex in the filtration, we compute eigenvalues
using graph Laplacian analysis. We gather statistics of eigenvalues, such
as sum, maximum, minimum, mean, and standard deviation, to obtain
normalized features for machine learning methods. An alternative vec-
torization approach involves extracting statistics of bar lengths, birth
values, and death values, including sum, maximum, minimum, mean,
and standard deviation. This technique is applied to vectorize Betti-1
(𝐻1) and Betti-2 (𝐻2) barcodes obtained from alpha complex filtration,
based on the observation that higher-dimensional barcodes are sparser
than 𝐻0 barcodes.

In summary, this methodology integrates topological representa-
tions and persistent Laplacian spectra to analyze protein–protein in-
teractions. By categorizing atoms in a protein–protein complex into
subsets, we can construct simplicial complexes and generate feature
vectors for machine learning algorithms. This approach effectively cap-
tures the essential topological and geometrical information of the un-
derlying molecular structures, facilitating the study of protein–protein
interactions and their biological implications.
9

4.6. Machine learning

The features generated from the persistent spectral graph are tested
using the deep neural network (Net) method. Validations are performed
on the datasets discussed in the results section. Accurately predict-
ing mutation-induced binding affinity changes in protein–protein com-
plexes is a significant challenge. After generating effective features,
machine learning or deep learning models are required for validation
and real-world applications. A deep neural network is a network of
neurons that maps an input feature layer to an output layer. The neural
network mimics the human brain to solve problems with numerous
neuron units and employs backpropagation to update weights on each
layer. To capture input features at different levels and abstract more
properties, one can construct more layers and more neurons in each
layer, creating a deep neural network. Optimization methods for feed-
forward neural networks and dropout methods are applied to prevent
overfitting. The network layers and the number of neurons in each layer
are determined by grid searches based on 10-fold cross-validations.
Then, the hyperparameters of stochastic gradient descent (SGD) with
momentum are set up based on the network structure. The network has
7 layers with 10,000 neurons in each layer. For SGD with momentum,
the hyperparameters are momentum = 0.9 and weight_decay = 0.
The learning rate is 0.002 and the epoch is 400. The Net is implemented
using Pytorch [78].

Fig. 11 provides the workflow of the proposed TDL-DMS method-
ology. The input is a protein–protein complex, and the output is the
predicted DMS (the heatmap on the left). The protein–protein complex
is partitioned into subsets, and simplicial complexes are constructed
using the Vietoris–Rips complex and filtration. Barcodes are generated
from persistent homology, and eigenvalues are computed from per-
sistent graph Laplacians. The barcodes and eigenvalues are used to
generate feature vectors. The feature vectors are then used as the inputs
for the deep learning network to predict the binding affinity changes
of mutations in protein–protein complexes. The model is trained with
the experimental DMS data as the ground truth (the heatmap on the
right).
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Fig. 11. Illustration of the proposed TDL-DMS methodology. The input is a protein–protein complex, and the output is the predicted DMS (the heatmap on the left). The
protein–protein complex is partitioned into subsets, and simplicial complexes are constructed using the Vietoris–Rips complex and filtration. Barcodes are generated from persistent
homology and eigenvalues are computed persistent Laplacians. The barcodes and eigenvalues are used to generate feature vectors for deep learning. The heatmap on the right is
the training data.
5. Conclusion

Deep mutational scanning (DMS) is a high-throughput experimental
technique that enables the systematic analysis of the impact of muta-
tions on protein function, providing insights into the structure-function
relationships and evolutionary trends and constraints of proteins. DMS
has been successfully applied to a wide range of biological systems, in-
cluding enzymes, receptors, transcription factors, and viruses. It can be
used to design proteins with improved properties, identify drug targets
and inhibitors, and understand the mechanisms of protein evolution
and adaptation. However, the mutational space of a typical protein is
astronomically large and intractable for experimental means.

Computational approaches to DMS offer viable alternatives, al-
though in silico DMS has hardly been reported. One challenge is the
lack of accurate and reliable biophysical models for dealing with com-
plex protein functions and protein–protein interactions (PPIs). Another
challenge is the lack of high-quality DMS data for data-driven machine
learning predictions.

Currently, it is well-understood that the SARS-CoV-2 spike protein
plays the most important role in viral transmission, and its receptor-
binding domain (RBD) binds to human ACE2 to facilitate viral entry
into host cells. Emerging SARS-CoV-2 variants are spreading worldwide
with increased transmissibility due to the natural selection of RBD mu-
tations with higher infectivity [4] and/or stronger antibody resistance
[41]. As a result, researchers have conducted various DMS studies on
the original spike RBD and variant RBD in recent years [47,48,66]. This
development enables the artificial intelligence (AI)-based prediction of
DMS of future SARS-CoV-2 variants.

Topological deep learning (TDL) has led to the discovery of two
SARS-CoV-2 evolutionary mechanisms [4,41] and accurate forecasting
of future dominant SARS-CoV-2 variants Omicron [79], Omicron BA.2
[80], and Omicron BA.5 [61]. Recently, a new generation of topological
data analysis (TDA) techniques was proposed [62] and implemented
for SARS-CoV-2 variant prediction [61]. Built on these experimental,
mathematical, and computational advances, we develop our TDL-DMS
model for SARS-CoV-2 RBDs.

We performed leave-one-dataset-out validation on the proposed
TDL-DMS on five datasets involving various SARS-CoV-2 spike RBDs
associated with ACE2 and antibodies. We found that our TDL-DMS
model works well in general and offers excellent DMS predictions for
RBD binding interface mutations, which are particularly important in
forecasting future dominant SARS-CoV-2 variants.

We expect the proposed TDL-DMS framework to have potential
applications in protein engineering, drug discovery, and directed evo-
10

lution.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported in part by NIH, United States grants
R01GM126189, R01AI164266, and R01AI146210, NSF grants DMS-
2052983, DMS-1761320, and IIS-1900473, NASA, United States grant
80NSSC21M0023, MSU Foundation, Bristol-Myers Squibb, United States
65109, and Pfizer, United States. JC thanks Dr. Daniel-Adriano Silva
for the assistance in converting the experimental enrichment ratios and
BFE changes.

Code availability

The source codes are available at https://github.com/WeilabMSU/
TopNetDMS.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.compbiomed.2023.107258.

References

[1] Markus Hoffmann, Hannah Kleine-Weber, Simon Schroeder, Nadine Krüger,
Tanja Herrler, Sandra Erichsen, Tobias S Schiergens, Georg Herrler, Nai-Huei Wu,
Andreas Nitsche, et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2
and is blocked by a clinically proven protease inhibitor, Cell 181 (2) (2020)
271–280.

[2] Ruiqiong Guo, Kristen Gaffney, Zhongyu Yang, Miyeon Kim, Suttipun Sungsuwan,
Xuefei Huang, Wayne L Hubbell, Heedeok Hong, Steric trapping reveals a
cooperativity network in the intramembrane protease GlpG, Nat. chem. biol. 12
(5) (2016) 353–360.

[3] Raphael Guerois, Jens Erik Nielsen, Luis Serrano, Predicting changes in the
stability of proteins and protein complexes: a study of more than 1000 mutations,
J. Mol. Biol. 320 (2) (2002) 369–387.

[4] Jiahui Chen, Rui Wang, Menglun Wang, Guo-Wei Wei, Mutations strengthened
SARS-CoV-2 infectivity, J. Mol. Biol. 432 (19) (2020) 5212–5226.

[5] Jiahui Chen, Kaifu Gao, Rui Wang, Guo-Wei Wei, Prediction and mitigation of
mutation threats to COVID-19 vaccines and antibody therapies, Chem. Sci. 12
(20) (2021) 6929–6948.

[6] Emidio Capriotti, Piero Fariselli, Rita Casadio, I-Mutant2. 0: predicting stability
changes upon mutation from the protein sequence or structure, Nucleic acids

res. 33 (suppl_2) (2005) W306–W310.

https://github.com/WeilabMSU/TopNetDMS
https://github.com/WeilabMSU/TopNetDMS
https://github.com/WeilabMSU/TopNetDMS
https://doi.org/10.1016/j.compbiomed.2023.107258
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb1
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb1
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb1
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb1
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb1
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb1
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb1
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb1
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb1
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb2
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb2
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb2
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb2
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb2
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb2
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb2
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb3
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb3
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb3
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb3
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb3
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb4
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb4
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb4
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb5
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb5
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb5
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb5
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb5
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb6
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb6
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb6
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb6
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb6


Computers in Biology and Medicine 164 (2023) 107258J. Chen et al.
[7] Catherine L. Worth, Robert Preissner, Tom L. Blundell, SDM—a server for
predicting effects of mutations on protein stability and malfunction, Nucleic acids
res. 39 (suppl_2) (2011) W215–W222.

[8] Douglas E.V. Pires, David B. Ascher, Tom L. Blundell, DUET: a server for predict-
ing effects of mutations on protein stability using an integrated computational
approach, Nucleic acids res. 42 (W1) (2014) W314–W319.

[9] Yves Dehouck, Aline Grosfils, Benjamin Folch, Dimitri Gilis, Philippe Bogaerts,
Marianne Rooman, Fast and accurate predictions of protein stability changes
upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0,
Bioinformatics 25 (19) (2009) 2537–2543.

[10] Elizabeth H. Kellogg, Andrew Leaver-Fay, David Baker, Role of conformational
sampling in computing mutation-induced changes in protein structure and
stability, Proteins: Struct. Funct. Bioinform. 79 (3) (2011) 830–838.

[11] Ivan Getov, Marharyta Petukh, Emil Alexov, SAAFEC: predicting the effect of
single point mutations on protein folding free energy using a knowledge-modified
MM/PBSA approach, Int. j. mol. sci. 17 (4) (2016) 512.

[12] Yang Yang, Biao Chen, Ge Tan, Mauno Vihinen, Bairong Shen, Structure-based
prediction of the effects of a missense variant on protein stability, Amino Acids
44 (3) (2013) 847–855.

[13] Yongwook Choi, Gregory E Sims, Sean Murphy, Jason R Miller, Agnes P Chan,
Predicting the functional effect of amino acid substitutions and indels, Public
Library of Science San Francisco, USA, 2012.

[14] Niklas Berliner, Joan Teyra, Recep Colak, Sebastian Garcia Lopez, Philip M Kim,
Combining structural modeling with ensemble machine learning to accurately
predict protein fold stability and binding affinity effects upon mutation, PLoS
One 9 (9) (2014) e107353.

[15] Lijun Quan, Qiang Lv, Yang Zhang, STRUM: structure-based prediction of protein
stability changes upon single-point mutation, Bioinformatics 32 (19) (2016)
2936–2946.

[16] Lukas Folkman, Bela Stantic, Abdul Sattar, Yaoqi Zhou, EASE-MM: sequence-
based prediction of mutation-induced stability changes with feature-based
multiple models, J. Mol. Biol. 428 (6) (2016) 1394–1405.

[17] Alexey Strokach, Carles Corbi-Verge, Philip M. Kim, Predicting changes in protein
stability caused by mutation using sequence-and structure-based methods in a
CAGI5 blind challenge, Hum. mutat. 40 (9) (2019) 1414–1423.

[18] C.H.I. Zhang, Song Liu, Yaoqi Zhou, Accurate and efficient loop selections by
the DFIRE-based all-atom statistical potential, Prot. sci. 13 (2) (2004) 391–399.

[19] Dassault Systèmes Biovia, et al., Discovery studio modeling environment, 2017.
[20] Navin Pokala, Tracy M. Handel, Energy functions for protein design: adjustment

with protein–protein complex affinities, models for the unfolded state, and
negative design of solubility and specificity, J. Mol. Biol. 347 (1) (2005)
203–227.

[21] Alexander Benedix, Caroline M Becker, Bert L de Groot, Amedeo Caflisch,
Rainer A Böckmann, Predicting free energy changes using structural ensembles,
Nat. methods 6 (1) (2009) 3–4.

[22] Kyle A Barlow, Shane O Conchuir, Samuel Thompson, Pooja Suresh, James E
Lucas, Markus Heinonen, Tanja Kortemme, Flex ddg: Rosetta ensemble-based
estimation of changes in protein–protein binding affinity upon mutation, J. Phys.
Chem. B 122 (21) (2018) 5389–5399.

[23] Yves Dehouck, Jean Marc Kwasigroch, Marianne Rooman, Dimitri Gilis, BeAt-
MuSiC: prediction of changes in protein–protein binding affinity on mutations,
Nucleic acids res. 41 (W1) (2013) W333–W339.

[24] Douglas E.V. Pires, David B. Ascher, mCSM-AB: a web server for predicting
antibody–antigen affinity changes upon mutation with graph-based signatures,
Nucleic acids res. 44 (W1) (2016) W469–W473.

[25] Carlos HM Rodrigues, Yoochan Myung, Douglas EV Pires, David B Ascher, mCSM-
PPI2: predicting the effects of mutations on protein–protein interactions, Nucleic
acids res. 47 (W1) (2019) W338–W344.

[26] Vladimir Potapov, Mati Cohen, Gideon Schreiber, Assessing computational meth-
ods for predicting protein stability upon mutation: good on average but not in
the details, Protein eng. des. sel. 22 (9) (2009) 553–560.

[27] Sarah Sirin, James R Apgar, Eric M Bennett, Amy E Keating, AB-Bind: antibody
binding mutational database for computational affinity predictions, Prot. Sci. 25
(2) (2016) 393–409.

[28] Thomas Steinbrecher, Andreas Labahn, Towards accurate free energy calculations
in ligand protein-binding studies, Curr. med. chem. 17 (8) (2010) 767–785.

[29] Gregory King, Arieh Warshel, Investigation of the free energy functions for
electron transfer reactions, J. Chem. Phys. 93 (12) (1990) 8682–8692.

[30] Ehecatl Antonio Del Rio-Chanona, Nur Rashid Ahmed, Jonathan Wagner,
Yinghua Lu, Dongda Zhang, Keju Jing, Comparison of physics-based and data-
driven modelling techniques for dynamic optimisation of fed-batch bioprocesses,
Biotechnol. bioeng. 116 (11) (2019) 2971–2982.

[31] Yuchi Qiu, Guo-Wei Wei, Persistent spectral theory-guided protein engineering,
Nat. Comput. Sci. 3 (2) (2023) 149–163.

[32] Bo-Wei Zhao, Lei Wang, Peng-Wei Hu, Leon Wong, Xiao-Rui Su, Bao-Quan Wang,
Zhu-Hong You, Lun Hu, Fusing higher and lower-order biological information for
drug repositioning via graph representation learning, IEEE Trans. Emerg. Top.
Comput. (2023).

[33] Xiaorui Su, Pengwei Hu, Haicheng Yi, Zhuhong You, Lun Hu, Predicting drug-
target interactions over heterogeneous information network, IEEE J. Biomed.
Health Inf. 27 (1) (2022) 562–572.
11
[34] Hao Wu, Zhongli Chen, Yingfu Wu, Hongming Zhang, Quanzhong Liu, Integrating
protein–protein interaction networks and somatic mutation data to detect driver
modules in pan-cancer, Interdiscip. Sci.: Comput. Life Sci. (2021) 1–17.

[35] Jinxiang Chen, Miao Wang, Defeng Zhao, Fuyi Li, Hao Wu, Quanzhong Liu,
Shuqin Li, MSINGB: A novel computational method based on ngboost for
identifying microsatellite instability status from tumor mutation annotation data,
Interdiscip. Sci.: Comput. Life Sci. 15 (1) (2023) 100–110.

[36] Douglas M. Fowler, Stanley Fields, Deep mutational scanning: a new style of
protein science, Nat. methods 11 (8) (2014) 801–807.

[37] Carlos L. Araya, Douglas M. Fowler, Deep mutational scanning: assessing protein
function on a massive scale, Trends Biotechnol. 29 (9) (2011) 435–442.

[38] Molly Gasperini, Lea Starita, Jay Shendure, The power of multiplexed functional
analysis of genetic variants, Nat. Protoc. 11 (10) (2016) 1782–1787.

[39] Vanessa E Gray, Ronald J Hause, Jens Luebeck, Jay Shendure, Douglas M Fowler,
Quantitative missense variant effect prediction using large-scale mutagenesis
data, Cell systems 6 (1) (2018) 116–124.

[40] Hagit Sarfati, Si Naftaly, Niv Papo, Chen Keasar, Predicting mutant outcome
by combining deep mutational scanning and machine learning, Proteins: Struct.
Funct. Bioinform. 90 (1) (2022) 45–57.

[41] Rui Wang, Jiahui Chen, Guo-Wei Wei, Mechanisms of SARS-CoV-2 evolution
revealing vaccine-resistant mutations in Europe and America, J. Phys. Chem.
Lett. 12 (2021) 11850–11857.

[42] Kaiming Tao, Philip L Tzou, Janin Nouhin, Ravindra K Gupta, Tulio de Oliveira,
Sergei L Kosakovsky Pond, Daniela Fera, Robert W Shafer, The biological and
clinical significance of emerging SARS-CoV-2 variants, Nature Rev. Genet. 22
(12) (2021) 757–773.

[43] Wendong Li, Zhengli Shi, Meng Yu, Wuze Ren, Craig Smith, Jonathan H
Epstein, Hanzhong Wang, Gary Crameri, Zhihong Hu, Huajun Zhang, et al., Bats
are natural reservoirs of SARS-like coronaviruses, Science 310 (5748) (2005)
676–679.

[44] Xiu-Xia Qu, Pei Hao, Xi-Jun Song, Si-Ming Jiang, Yan-Xia Liu, Pei-Gang Wang,
Xi Rao, Huai-Dong Song, Sheng-Yue Wang, Yu Zuo, et al., Identification of two
critical amino acid residues of the severe acute respiratory syndrome coronavirus
spike protein for its variation in zoonotic tropism transition via a double
substitution strategy, J. Biol. Chem. 280 (33) (2005) 29588–29595.

[45] Huai-Dong Song, Chang-Chun Tu, Guo-Wei Zhang, Sheng-Yue Wang, Kui Zheng,
Lian-Cheng Lei, Qiu-Xia Chen, Yu-Wei Gao, Hui-Qiong Zhou, Hua Xiang, et al.,
Cross-host evolution of severe acute respiratory syndrome coronavirus in palm
civet and human, Proc. Natl. Acad. Sci. 102 (7) (2005) 2430–2435.

[46] Alexandra C Walls, Young-Jun Park, M Alejandra Tortorici, Abigail Wall,
Andrew T McGuire, David Veesler, Structure, function, and antigenicity of the
SARS-CoV-2 spike glycoprotein, Cell (2020).

[47] Tyler N Starr, Allison J Greaney, Sarah K Hilton, Daniel Ellis, Katharine HD
Crawford, Adam S Dingens, Mary Jane Navarro, John E Bowen, M Alejandra
Tortorici, Alexandra C Walls, et al., Deep mutational scanning of SARS-CoV-2
receptor binding domain reveals constraints on folding and ACE2 binding, Cell
182 (5) (2020) 1295–1310.

[48] Thomas W Linsky, Renan Vergara, Nuria Codina, Jorgen W Nelson, Matthew J
Walker, Wen Su, Christopher O Barnes, Tien-Ying Hsiang, Katharina Esser-Nobis,
Kevin Yu, et al., De novo design of potent and resilient hACE2 decoys to
neutralize SARS-CoV-2, Science 370 (6521) (2020) 1208–1214.

[49] Erik Procko, The sequence of human ACE2 is suboptimal for binding the S spike
protein of SARS coronavirus 2, BioRxiv (2020).

[50] Tyler N Starr, Allison J Greaney, William W Hannon, Andrea N Loes, Kevin
Hauser, Josh R Dillen, Elena Ferri, Ariana Ghez Farrell, Bernadeta Dadonaite,
Matthew McCallum, et al., Shifting mutational constraints in the SARS-CoV-2
receptor-binding domain during viral evolution, BioRxiv (2022).

[51] Longxing Cao, Inna Goreshnik, Brian Coventry, James Brett Case, Lauren Miller,
Lisa Kozodoy, Rita E Chen, Lauren Carter, Alexandra C Walls, Young-Jun Park,
et al., De novo design of picomolar SARS-CoV-2 miniprotein inhibitors, Science
370 (6515) (2020) 426–431.

[52] Allison J Greaney, Tyler N Starr, Pavlo Gilchuk, Seth J Zost, Elad Binshtein,
Andrea N Loes, Sarah K Hilton, John Huddleston, Rachel Eguia, Katharine HD
Crawford, et al., Complete mapping of mutations to the SARS-CoV-2 spike
receptor-binding domain that escape antibody recognition, Cell host microbe 29
(1) (2021) 44–57.

[53] Alison C Leonard, Jonathan J Weinstein, Paul J Steiner, Annette H Erbse, Sarel J
Fleishman, Timothy A Whitehead, Stabilization of the SARS-CoV-2 receptor
binding domain by protein core redesign and deep mutational scanning, Protein
Eng. Des. Select. 35 (2022).

[54] Zixuan Cang, Guo-Wei Wei, Topologynet: Topology based deep convolutional and
multi-task neural networks for biomolecular property predictions, PLoS Comput.
Biol. 13 (7) (2017) e1005690.

[55] Herbert Edelsbrunner, John Harer, et al., Persistent homology-a survey, Contemp.
math. 453 (26) (2008) 257–282.

[56] Afra Zomorodian, Gunnar Carlsson, Computing persistent homology, in: Proceed-
ings of the Twentieth Annual Symposium On Computational Geometry, 2004, pp.
347–356.

http://refhub.elsevier.com/S0010-4825(23)00723-0/sb7
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb7
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb7
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb7
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb7
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb8
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb8
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb8
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb8
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb8
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb9
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb9
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb9
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb9
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb9
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb9
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb9
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb10
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb10
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb10
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb10
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb10
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb11
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb11
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb11
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb11
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb11
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb12
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb12
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb12
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb12
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb12
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb13
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb13
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb13
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb13
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb13
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb14
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb14
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb14
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb14
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb14
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb14
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb14
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb15
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb15
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb15
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb15
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb15
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb16
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb16
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb16
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb16
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb16
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb17
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb17
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb17
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb17
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb17
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb18
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb18
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb18
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb19
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb20
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb20
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb20
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb20
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb20
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb20
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb20
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb21
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb21
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb21
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb21
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb21
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb22
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb22
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb22
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb22
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb22
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb22
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb22
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb23
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb23
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb23
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb23
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb23
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb24
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb24
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb24
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb24
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb24
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb25
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb25
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb25
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb25
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb25
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb26
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb26
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb26
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb26
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb26
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb27
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb27
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb27
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb27
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb27
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb28
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb28
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb28
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb29
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb29
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb29
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb30
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb30
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb30
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb30
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb30
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb30
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb30
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb31
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb31
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb31
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb32
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb32
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb32
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb32
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb32
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb32
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb32
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb33
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb33
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb33
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb33
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb33
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb34
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb34
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb34
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb34
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb34
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb35
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb35
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb35
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb35
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb35
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb35
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb35
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb36
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb36
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb36
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb37
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb37
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb37
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb38
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb38
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb38
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb39
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb39
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb39
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb39
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb39
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb40
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb40
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb40
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb40
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb40
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb41
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb41
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb41
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb41
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb41
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb42
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb42
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb42
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb42
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb42
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb42
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb42
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb43
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb43
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb43
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb43
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb43
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb43
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb43
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb44
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb44
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb44
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb44
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb44
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb44
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb44
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb44
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb44
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb45
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb45
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb45
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb45
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb45
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb45
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb45
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb46
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb46
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb46
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb46
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb46
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb47
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb47
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb47
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb47
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb47
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb47
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb47
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb47
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb47
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb48
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb48
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb48
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb48
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb48
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb48
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb48
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb49
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb49
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb49
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb50
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb50
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb50
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb50
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb50
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb50
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb50
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb51
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb51
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb51
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb51
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb51
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb51
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb51
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb52
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb52
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb52
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb52
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb52
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb52
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb52
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb52
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb52
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb53
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb53
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb53
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb53
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb53
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb53
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb53
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb54
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb54
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb54
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb54
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb54
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb55
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb55
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb55
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb56
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb56
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb56
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb56
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb56


Computers in Biology and Medicine 164 (2023) 107258J. Chen et al.
[57] Jacob Townsend, Cassie Putman Micucci, John H Hymel, Vasileios Maroulas,
Konstantinos D Vogiatzis, Representation of molecular structures with persistent
homology for machine learning applications in chemistry, Nat. commun. 11 (1)
(2020) 3230.

[58] Zhenyu Meng, Kelin Xia, Persistent spectral–based machine learning (PerSpect
ML) for protein-ligand binding affinity prediction, Sci. adv. 7 (19) (2021)
eabc5329.

[59] Marcio Gameiro, Yasuaki Hiraoka, Shunsuke Izumi, Miroslav Kramar, Konstantin
Mischaikow, Vidit Nanda, A topological measurement of protein compressibility,
Japan J. Ind. Appl. Math. 32 (2015) 1–17.

[60] Menglun Wang, Zixuan Cang, Guo-Wei Wei, A topology-based network tree for
the prediction of protein–protein binding affinity changes following mutation,
Nat. Mach. Intell. 2 (2) (2020) 116–123.

[61] Jiahui Chen, Yuchi Qiu, Rui Wang, Guo-Wei Wei, Persistent laplacian projected
omicron BA. 4 and BA. 5 to become new dominating variants, Comput. Biol.
Med. 151 (2022) 106262.

[62] Rui Wang, Duc Duy Nguyen, Guo-Wei Wei, Persistent spectral graph, Int. j.
numer. methods biomed. eng. 36 (9) (2020) e3376.

[63] Rui Wang, Guo-Wei Wei, Persistent path laplacian, Found. Data Sci. 5 (2023)
26–55.

[64] Xiaoqi Wei, Guo-Wei Wei, Persistent sheaf laplacians, 2021, arXiv preprint
arXiv:2112.10906.

[65] Dong Chen, Jian Liu, Jie Wu, Guo-Wei Wei, Persistent hyperdigraph homology
and persistent hyperdigraph laplacians, 2023, arXiv preprint arXiv:2304.00345.

[66] Tyler N Starr, Allison J Greaney, Cameron M Stewart, Alexandra C Walls,
William W Hannon, David Veesler, Jesse D Bloom, Deep mutational scans
for ACE2 binding, RBD expression, and antibody escape in the SARS-CoV-2
omicron BA. 1 and BA. 2 receptor-binding domains, PLoS pathog. 18 (11) (2022)
e1010951.

[67] Emmanuel D. Levy, A simple definition of structural regions in proteins and its
use in analyzing interface evolution, J. Mol. Biol. 403 (4) (2010) 660–670.

[68] Jun Lan, Jiwan Ge, Jinfang Yu, Sisi Shan, Huan Zhou, Shilong Fan, Qi Zhang,
Xuanling Shi, Qisheng Wang, Linqi Zhang, et al., Structure of the SARS-CoV-2
spike receptor-binding domain bound to the ACE2 receptor, Nature 581 (7807)
(2020) 215–220.
12
[69] Dhiraj Mannar, James W Saville, Xing Zhu, Shanti S Srivastava, Alison M
Berezuk, Katharine S Tuttle, Ana Citlali Marquez, Inna Sekirov, Sriram Subra-
maniam, SARS-CoV-2 omicron variant: Antibody evasion and cryo-EM structure
of spike protein–ACE2 complex, Science 375 (6582) (2022) 760–764.

[70] Linjie Li, Hanyi Liao, Yumin Meng, Weiwei Li, Pengcheng Han, Kefang Liu,
Qing Wang, Dedong Li, Yanfang Zhang, Liang Wang, et al., Structural basis of
human ACE2 higher binding affinity to currently circulating omicron SARS-CoV-2
sub-variants BA. 2 and BA. 1.1, Cell 185 (16) (2022) 2952–2960.

[71] David S. Goodsell, Ludovic Autin, Arthur J. Olson, Illustrate: software for
biomolecular illustration, Structure 27 (11) (2019) 1716–1720.

[72] Andrew A. Bogan, Kurt S. Thorn, Anatomy of hot spots in protein interfaces, J.
Mol. Biol. 280 (1) (1998) 1–9.

[73] Beno Eckmann, Harmonische funktionen und randwertaufgaben in einem
komplex, Comment. Math. Helv. 17 (1) (1944) 240–255.

[74] Daniel Hernández Serrano, Darío Sánchez Gómez, Higher order degree in
simplicial complexes, multi combinatorial laplacian and applications of tda to
complex networks, 2019, arXiv preprint arXiv:1908.02583.

[75] Slobodan Maletić, Milan Rajković, Consensus formation on a simplicial complex
of opinions, Physica A 397 (March) (2014) 111–120.

[76] Timothy E. Goldberg, Combinatorial Laplacians of Simplicial Complexes, Senior
Thesis, Bard College, 2002.

[77] Danijela Horak, Jürgen Jost, Spectra of combinatorial laplace operators on
simplicial complexes, Adv. Math. 244 (2013) 303–336.

[78] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.,
Pytorch: An imperative style, high-performance deep learning library, Adv.
neural inf. process. syst. 32 (2019).

[79] Jiahui Chen, Rui Wang, Nancy Benovich Gilby, Guo-Wei Wei, Omicron variant
(b. 1.1. 529): Infectivity, vaccine breakthrough, and antibody resistance, J. Chem.
Inf. Model. 62 (2) (2022) 412–422.

[80] Jiahui Chen, Guo-Wei Wei, Omicron BA. 2 (b. 1.1. 529.2): High potential for
becoming the next dominant variant, J. Phys. Chem. Lett. 13 (2022) 3840–3849.

http://refhub.elsevier.com/S0010-4825(23)00723-0/sb57
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb57
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb57
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb57
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb57
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb57
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb57
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb58
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb58
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb58
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb58
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb58
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb59
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb59
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb59
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb59
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb59
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb60
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb60
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb60
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb60
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb60
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb61
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb61
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb61
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb61
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb61
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb62
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb62
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb62
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb63
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb63
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb63
http://arxiv.org/abs/2112.10906
http://arxiv.org/abs/2304.00345
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb66
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb66
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb66
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb66
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb66
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb66
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb66
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb66
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb66
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb67
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb67
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb67
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb68
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb68
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb68
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb68
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb68
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb68
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb68
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb69
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb69
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb69
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb69
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb69
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb69
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb69
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb70
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb70
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb70
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb70
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb70
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb70
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb70
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb71
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb71
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb71
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb72
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb72
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb72
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb73
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb73
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb73
http://arxiv.org/abs/1908.02583
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb75
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb75
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb75
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb76
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb76
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb76
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb77
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb77
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb77
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb78
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb78
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb78
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb78
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb78
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb78
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb78
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb79
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb79
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb79
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb79
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb79
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb80
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb80
http://refhub.elsevier.com/S0010-4825(23)00723-0/sb80

	Topological deep learning based deep mutational scanning
	Introduction
	Results
	DMS of the RBD in the original RBD-ACE2 complex
	DMS of the RBD in a variant RBD-CTC-455.2 complex
	DMS of the RBD in variant RBD-ACE2 complexes

	Discussion
	Methods
	Spectral graph theory
	Simplicial complexes
	Combinatorial Laplacian
	Persistent Laplacians
	Protein–protein interactions
	Machine learning

	Conclusion
	Declaration of competing interest
	Acknowledgments
	Code Availability
	Appendix A. Supplementary data
	References


