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ABSTRACT: The structures of molecules and materials determine their functions.
Understanding the structure and function relationship is the holy grail of molecular and
materials sciences. However, the rational design of molecules and materials with desirable
functions remains a grand challenge despite decades of efforts. A major obstacle is the lack of
an intrinsic mathematical characteristic that attributes to a specific function. This work
introduces persistent path topology (PPT) to effectively characterize directed networks
extracted from functional units, such as constitutional isomers, cis−trans isomers, chiral
molecules, Jahn−Teller isomerism, and high-entropy alloy catalysts. Path homology (PH)
theory is utilized to decipher the role of mirror-symmetric sublattices that hinder the
formation of periodic unit cells in amorphous solids. Topological perturbation analysis
(TPA) is proposed to reveal the critical target in the blood coagulation system. The proposed
topological tools can be directly applied to systems biology, omics sciences, topological
materials, and machine learning study of molecular and materials sciences.

The world is composed of molecules, including inorganic,
organic, and biological ones. The understanding of

molecular properties is part of human history. The structure-
based rational design of functional molecules and materials is a
grand challenge in scientific research, ranging from drug
discovery and renewable energy to space shuttle coating.
Although molecular energies can be predicted from molecular
structures by quantum mechanism, there is still a big gap
between molecular functions and their energies. Additionally,
quantum calculations become intractable for large molecules.
Recently, machine learning has emerged as a new paradigm for
molecular and material design and discovery.1 However, how
to embed the intrinsic structural characteristic of molecules
and materials for machine learning remains a major obstacle.

Topology is well-known for its fundamental role in
understanding topological insulators in terms of intrinsic
symmetry-protected topological order.2 Due to its ability to
capture intrinsic topological characteristic, persistent topology
or persistent homology,3−5 has had tremendous success in
simplifying the structural complexity and reducing the
dimensionality of biological data.6,7 Paired with artificial
intelligence (AI), persistent homology accurately forecasted
emerging dominant coronavirus variants about two months
ahead.8

Inspired by the success of persistent homology, many
advanced mathematical-based methods have been proposed for
data analysis.6 For example, persistent cohomology was
introduced for protein stability analysis.9 Algebraic graph
theory is introduced to capture the geometrical information on
molecules and protein−ligand complexes.10,11 The evolu-
tionary de Rham-Hodge theory and persistent spectral graph
have been developed to capture both the topological invariants

and homotopic shape evolution of data during filtration.12−14

In addition, methods such as neighborhood complex,15 Morse
theory,16 and hypergraph17 have been applied to characterize
complex molecular structures.

However, the aforementioned methods are insensitive to
asymmetric or directional relations. In molecular and materials
sciences, atoms have diverse properties, and their chemical
bonds are typically heteronuclear. Metabolic pathways involve
directed graphs (digraph) or networks.18 Therefore, it is
desirable to have mathematical tools to describe directed
relationships in molecular and materials sciences, such as the
directionality and polarity of bonds and reaction paths. Indeed,
path homology (PH) proposed by Grigor’yan et al.19−21 is
designed for directed graphs and directed networks.22 Instead
of relying on homogeneous point clouds (or simplicial
complexes in mathematical terminology), path homology is
built on directed paths, which are essential to polarized
chemical interactions and directed networks. Persistent path
topology (PPT), also known as persistent path homology, was
introduced to further empower path homology by multiscale
filtration.23 A one-dimensional persistent path homology was
developed for applications.24 Persistent path Laplacian (PPL)
has also been proposed to reveal homotopic shape evolution of
data.25 However, these potentially powerful mathematical tools
have hardly been applied to molecular and materials sciences.
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This work fills this gap by introducing PH and PPT to
molecular and materials sciences. To embed intrinsic geo-
metric characteristics into topological invariants, we propose
angle-based persistent path topology (APPT) to overcome the
drawback of the existing distance-based persistent path
topology (DPPT). APPT and DPPT complement each other
in applications. We demonstrate the utility of these two forms
of PPT methods for the identification and differentiation of
three types of isomers in molecular systems, including D-
fructose and D-glucose isomers, cis-trans isomers, and chiral
molecules. We further apply PPT to characterize the Jahn−
Teller effect and distinguish the isomers of high entropy alloy
catalysts, showcasing PPT’s advantage in unveiling atomic
ordering induced physical and chemical properties. Using the
PH method, we deciphered that the coexistence of mirror-
symmetric tetrahedral or octahedral lattice pairs rules out the
possibility for these two lattices to become unit cells with long-
range order in the amorphous solid. Finally, we propose
topological perturbation analysis (TPA) to identify the critical
node in the blood coagulation network, revealing a potential
drug target of this process in systems biology.

Overview of Persistent Path Topology. We use PPT to extract
intrinsic topological characteristic of complex molecules and
materials. Figure 1 shows the procedure of constructing PPT
for the point cloud input data of a molecule (see Figure S1.).

In this case, we start with atomic coordinates, where element
types are labeled by colors as shown in Figure 1a. Unlike
persistent homology, which regards all atoms in a molecule
equally, PPT deals with paths, which can be extracted from the
bond polarity determined by electronegativities of the bonded
atoms. Four simplest paths, i.e., 0-path, 1-path, 2-path, and 3-
path, are illustrated in Figure 1b. These are the basic building
blocks for a topological space called p-path complex, which is a
collection of all paths in the system and is characterized by the
longest path length p in the system.

Although the path complex allows the construction of path
homology, the process requires a standard mathematical
operation called boundary operator, which exhausts all possible
ways of removing one path in the system to end up with the p
− 1-path. The sequential applications of the boundary operator
to the original p-path complex lead to a chain complex, which
eventually vanishes after the use of the boundary operator p −
1 times. The homology groups (Hp, Hp−1, ···, H0) defined on
the chain complex capture the topology of the original system.
Specifically, the rank of the homology group Hn at each
topological dimension (n = p, p − 1, ..., 0) is a topological
invariant, called Betti-n (βn) number. Roughly speaking, Betti-0
(β0) is the number of independent components in the system;
Betti-1 (β1) represents the number of looped objects
composed of 1-paths in the system, and Betti-2 (β2) is all

Figure 1. Illustration of persistent path topology. (a) The weight function-based matrix is constructed from a molecular structure. (b) Illustration of
the basic component that makes up the path complex, p-path, where p = 0, 1, 2, and 3. (c) Illustration of the distance-based filtration. As the
filtration parameter increases, the path complex based on the weight matrix expands accordingly. In the left figure, the x-axis and the y-axis represent
the atomic index in the structure, respectively. The yellow entries represent the formation of directed edges between the corresponding pairs of
atoms. The right figure represents the corresponding path complexes. (d) The persistent Betti numbers of the distance-based persistent path
topology. H0, H1, and H2 show the 0-, 1-, and 2-dimensional path homology, respectively. The vertical axis represents the values of persistent Betti
numbers, and the horizontal axis represents the filtration parameter in Å. (e) Illustration of the angle-based filtration. All possible directed edges are
mapped to unit sphere. The path complex in the right figure expands with the increase of the directed edges covered by the growth of the spherical
surface, where the increase of the spherical surface area is given by the angle-based rule, which is defined by eq 8 with k = 36, m = 72. (f) The
persistent Betti numbers of the angle-based persistent path topology. The vertical axis represents the values of persistent Betti numbers and the
horizontal axis represents the angle-based filtration parameter.
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voids under the meaning of paths composed of 2-paths in the
system.

An individual homology group cannot discriminate all
molecules as reflected in the joke that topologists cannot tell
the difference between a coffee mug and a donut. This
difficulty is resolved by filtration in PPT as shown in Figure 1c.
Essentially, a family of paths is systemically and gradually
established based on a distance thresholding. In the beginning,
no path among nodes is allowed because the initial distance
threshold, or the filtration parameter, is zero. Then, as the
threshold is gradually increased, more and more paths are
established when their distances between nodes are equal to or
greater than the threshold as shown in the right charts of
subgraphs in Figure 1c. The rectangular grid to the left of each
subgraph records the connection of nodes in the system, where
each pair of yellow entries indicates a path.

The topological invariants for H2, H1, and H0 for the system
over the filtration are depicted in Figure 1d. For H0, the highest
value of β0 is 22, corresponding to 22 nodes. The β0 decreases
rapidly after the filtration parameter reaches 1.5. For H1, there
were not too many events, and β1 had three short-living bars
from 1.5 and 1.8, respectively. For H2, there were one short-
living void and one long-living void. We call persistent Betti
numbers the DPPT fingerprints of the original colored point
cloud data. Such fingerprints are readily used in the machine
learning predictions.

The DPPT fingerprints may not be unique. To avoid DPPT
isotopology from two molecules, we propose APPT. The
essential idea, as shown in Figure 1e, is to translate all possible
paths into a unit sphere such that the most highly aligned paths
are located close to the south pole. Angle is increased to
establish more paths during filtration. Path homology groups,
H2, H1, and H0, are constructed and their corresponding
persistent Betti numbers are computed as shown in Figure 1f.

The topological invariants of DPPT and APPT methods
extracted from a given system are distinguished from each
other as shown in Figure 1d and Figure 1f. These two
approaches complement each other and thus provide a more
reliable framework for molecular characterization. Moreover,
due to some empirical chemical-physical constraints, the final
object used for PPT analysis can be either a fully connected
digraph (Figure S1d) or a predefined digraph (Figure S1c)
under specific conditions. DPPT and APPT are also presented
in Figure S3 and Figure S4 when the fully connected digraph is
used as the final path complex. The more mathematical details
of the PH and PPT can also be found in the Methods section
and the Supporting Information Note 3.

Four-Vertex System. To further illustrate the basic properties
of PH, we consider a four-vertex system with different directed
edge configurations. As shown in Figure 2a−d, for a 4-vertex
digraph without heavy edges, there are only four cases. For this
4-vertex system, one observation is that there will be no high-
dimensional holes if the traditional homology does not support
such holes when all paths are replaced with edges. Indeed, β1 =
1 in all systems Figure 2a−c. However, traditional homology
admitting a high dimensional hole is not sufficient for PH to
have a high dimensional hole. As shown in Figure 2d, there is
no high dimensional hole in this case (β1 = 0). There is no
simple interpretation for the topological variants in PH, though
the issue was discussed in the literature.26

Analysis for directed cubes and octahedrons. Cubes and
octahedrons are the basic building blocks of solid materials.
To understand their properties, we carry out the systematical
PH analysis of all possible scenarios in directed cubes and
directed octahedrons as shown in Figure 2e and Figure 2f,
respectively. Geometrically, in the nondirected case, the cube
has the octahedral symmetry Oh of 48 symmetries, including
24 rotations. However, directed edges give rise to very different
properties. For each of the 12 edges in the cube, there are two

Figure 2. Path homology and persistent path topology analysis of simple structures. (a−c) Three 4-vertex digraphs that have a nontrivial path
homology (β1 = 1) in the first dimension. (d) A 4-vertex digraph with β1 = 1. (e) Path homology analysis of directed cubes. Colors represent
different combinations of topological invariants from dimensions 0, 1 and 2, denoted as β0,1,2. Where there are six types of combinations for
directed cubes. The lines inside the ring connect structures that are isomorphic to each other. (f) Path homology analysis of directed octahedrons.
Similar to (e), colors denote seven types of directed octahedrons coordinating to their β0,1,2 = (β0, β1, β2) characterization. (g) Persistent path
topology analysis of two isomorphic directed cubes. Two isomorphic structures are mirror-symmetric to each other. Their DPPT and APPT
persistent Betti numbers are shown on the right, where APPT can distinguish them. (h) Persistent path topology analysis of two isomorphic
directed octahedrons, which are mirror-symmetric to each other. They have identical DPPT but different APPT.
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possible directions, which results in 212 configurations.
However, after 24 rotational symmetry operations, only 186
unique structures were obtained. Figure 2e shows the PH
classification of the unique directed cubes in terms of Betti-0,
1, and 2 (i.e., β0, β1, and β2). Illustrated in different colors, only
six types of path homologies were obtained from 186 unique
structures. The lines in the figure link the isomorphic
structures. It is easy to notice that each directed cube has at
most one isomorphic structure, and each pair of isomorphic
structures always has the same set of topological invariants
(i.e., β0, β1, and β2). There are 74 pairs of isomers in total. We
also found that all isomorphic structures are mirror-symmetric
to each other, as shown in Figure 2g (left). PH offers dramatic
simplification and interesting new characterization of directed
cubes. However, PPT can distinguish isomorphic structures as
shown in Figure 2g (right).

Octahedron is dual to cube and also has Oh symmetry. For
directed octahedrons, there are also 212 configurations. After
the 24 rotation symmetry operations, 186 unique directed
octahedrons were found. Similarly, 74 pairs of these structures
are isomorphic to each other, related by mirror symmetry. As
shown in Figure 2f, for directed octahedrons, there are seven
different combinations of topological invariants in dimensions
0, 1, and 2, which are different from the results for directed
cubes. Notably, two of these structures have PH β0 = 1, β1 = 0,
and β2 = 2, and they are mirror-symmetric to each other. The
persistent Betti numbers of these cases are displayed in Figure
2h. Therefore, PH analysis can distinguish directed cubes and
directed octahedrons.

As a generalization of undirected structures, directed
structures can bring richer structural information. Path
homology, as defined over directed structures, is a powerful
tool to analyze directed structures or directed networks.
However, the PH alone cannot distinguish some stereo-
isomerism, such as the mirror-symmetric isomers shown in
Figure 2g and Figure 2h. We introduced DPPT and APPT for
the analysis of three types of isomers in stereochemistry.

It is natural to use a directed edge (path) to describe the
unbalanced relationship in the real world. For a pair of atoms,
differences between them often lead to asymmetric relation-
ships, which in turn give rise to polarities at the molecular level.
The differences between atoms can be deduced from atomic
weights, atomic radii, electronegativities, and local charge
densities, etc. In the present work, all directed edges between
atoms are assigned from the atom with smaller electro-
negativity to the one with larger electronegativity. For atoms of
the same element type, we use a pair of edges with opposite
directions to connect two atoms, representing the relationship
between them (alternatively, one can track the electro-
negativity of their neighbor atoms.).

D-Fructose and D-glucose. The molecular formulas of D-
fructose and D-glucose are identical, which is C6H12O6, but
their spatial configurations are different as shown in Figure 3a
and Figure 3b. This difference in spatial structures causes a
difference in optical activity. The naturally existing compounds
are mostly D-glucose, while the artificially synthesized ones are
achromatic, i.e., a mixture of D-fructose and D-glucose.
Enzymes in an organism can recognize substances with
different spin properties. D-fructose is not physiologically
active, so the human body can only utilize D-glucose, rather
than D-fructose. Their different geometric structures lead to
different directed graphs, as shown in Figure 3a (right) and
Figure 3b (right). To identify these two structures, we added
orientation information to the structure and analyze the
structures by using both DPPT and APPT.

Figure 3c shows the DPPT analysis of D-glucose (dark blue)
and D-fructose (light blue). The horizontal axis denotes the
distance-based filtration parameters, unit in Å, and the vertical
axis denotes persistent Betti numbers. In this work, we only
consider H0, H1, and H2. The dark blue area indicates the
DPPT for the D-glucose, the light blue area indicates the DPPT
for the D-fructose, and the area covered by the grid indicates
their overlap. The H0 records the β0 values for each filtration
parameter. The decrease of β0 indicates that the newly formed
paths connect some independent components, which has the

Figure 3. Illustration of the DPPT and APPT analysis of spatial isomers. (a) The molecular structures of D-glucose (left) and associated digraphs
(right). (b) The molecular structures of D-fructose (left) and associated digraphs (right). (c) The DPPT analysis of D-glucose and D-fructose.
Shared parts are plotted in mesh. (d) The APPT analysis of D-glucose and D-fructose. Shared parts are displayed in mesh. (e) The structure of trans-
1,2-dichlorocyclohexane. (f) The structure of cis-1,2-dichlorocyclohexane. (g) Shared digraph representation for trans and cis structures. (h) The
DPPT analysis of trans-1,2-dichlorocyclohexane and cis-1,2-dichlorocyclohexane. Shared parts are plotted in mesh. (i) The APPT analysis of trans-
1,2-dichlorocyclohexane and cis-1,2-dichlorocyclohexane. Shared parts are depicted in mesh. (j) The structure of R-alanine. (k) The structure of S-
alanine. (l) Shared digraph representation of R-alanine and S-alanine. (m) The DPPT analysis of R-alanine and S-alanine. Shared parts are plotted
in mesh. (n) The APPT analysis of R-alanine and S-alanine. Shared parts are presented in mesh.
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same meaning as the Betti numbers of simplicial complexes in
dimension 0. The H1 and H2 record the closed loops and the
cavities along distance-based filtration in the sense of path
complex. Although the H0 of the two molecules overlaps
exactly, we can still find differences between them in the H1
and H2, as shown in Figure 3c.

Figure 3d shows the APPT analysis for the aforementioned
molecules. To apply APPT, we can find the difference between
the two molecular structures in the first and second topological
dimensions. This shows that the different spatial configurations
lead to a large change in the directed edges, and APPT is so
sensitive to the change in angle, leading to obvious angular
changes. More than 20 directed loops were found in H1, the
difference between D-glucose and D-fructose can be captured as
the angle-based filtration parameter changes, and the structure
of D-glucose can form more directed loops. It is interesting to
note that for H2, the structure of D-glucose can form the two
short living cavities in the sense of path complex but the
structure of D-fructose has only one.

Cis−trans isomerism. Cis−trans isomerism, also known as
geometric isomerism, is a common form of stereoisomerism.
Cis−trans isomerism refers to the diastereoisomerization of a
compound molecule due to the different spatial arrangements

of individual groups as a result of a freely rotating limiting
factor. This restriction is generally caused by the presence of
functional groups in the structure of organic compounds such
as C�C double bond, C�N double bond, C�S double
bond, N�N double bond, or an alicyclic ring that cannot
rotate freely. The cis−trans isomers generally differ in physical,
chemical, and biological properties.

To demonstrate the ability of PPT in distinguishing between
cis−trans isomers, we use trans-1,2-dichlorocyclohexane
(Trans) and cis-1,2-dichlorocyclohexane (Cis) shown in Figure
3e and Figure 3f. As shown in Figure 3g, the Cis and Trans
structures share the same digraph, the direction of the edge
depends on the electronegativity values.

Since the differences between cis and trans isomers usually
arise only from the differences in the positions of individual
functional groups, such as the Cl in this example, it is difficult
to distinguish them by DPPT as shown in Figure 3h. DPPT
persistent Betti numbers only exhibit very small differences at
H2. The path complex cavity of Cis can live longer. On the
contrary, the characteristic curves based on the APPT method
shown in Figure 3g display a very clear difference between the
cis and trans isomers. For H0, Trans shows that β0 begins at 18.
It means the independent atoms in the structure. As shown in

Figure 4. PH and PPT analysis of Jahn−Teller effect, HEA catalysts, and amorphous solid. (a) Illustration of the Jahn−Teller effect associated with
Li2Mn2O4 and Li2Mn2O4. (b) DPPT analysis of the Jahn−Teller effect in MnO6 associated with Li2Mn2O4 and Li2Mn2O4. Shared persistent Betti
numbers two MnO6 structures are covered with mesh. (c) APPT analysis of the Jahn−Teller effect in MnO6. Shared persistent Betti numbers two
MnO6 structures are covered with mesh. (d,e) The structures of HEA (Ru13Rh13Ir13Pd12Pt13) and OH* complex with different atomic
arrangements. (f) The DPPT analysis of HEA and OH* complex. The left and right frames in rectangles are respectively the digraph
representations of (d) (pink) and (e) green at the distance filtration parameter 2.7 Å (left) and 3.4 Å (right). (g) APPT analysis of HEA and OH*
complex. The left and right frames in rectangles are respectively the digraph representations of (d) (pink) and (e) green at the angle filtration stage
9 (left) and 23 (right). The k = 36, m = 18 is used to define the order set S2 in this example. (h) An undirected tetrahedron as a basic building block
for amorphous solid. (i) The schematic display of high entropy mixing in a tetrahedral lattice. At most 4 types of element will occupy the lattice
sites randomly to form a high-entropy substructure in high entropy alloy nanoparticles. All 9 unique directed tetrahedral lattices. The two lattices
that are mirror-symmetric to each other are framed by parallelogram boxes. (j) The 0-dimensional APPT analysis of two mirror lattices selected in
(i). (k) An undirected octahedron as a basic building block for amorphous solid. At most 6 types of element will occupy the octahedral lattice sites
randomly to form a high-entropy substructure in high entropy alloy nanoparticles. (l) The statistic analysis of all possible directed octahedral
lattices with at most 6 types elements. Different colors illustrate the four different combinations of Betti numbers β0,1,2 = β0, β1, β2. The size of the
circles indicates the number of unique atomic mixing scheme (2226 in total). The colored lines are connected to isomers.
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Figure 3f, the functional groups (Cl, orange) of Cis have
almost opposite orientations, while the functional groups in
Trans have similar orientations. This difference can be
obtained in H1, where the structure of Trans can produce
more path rings compared to the structure of Cis. The
maximum β1 is 17 for Trans, and for Cis, the maximum β1 is
only 4.

Mirror symmetric isomers. A chiral molecule is a molecule
that has a nonsuperposable mirror image.27 All chiral
molecules are optically active, and almost all optically active
compounds are chiral. Chirality is important in the creation
and evolution of life. For example, the pharmacological effects
of drugs acting in living organisms are often matched in the
chirality. In some cases, one chiral compound is therapeutically
effective, while the other may have deleterious properties.
Therefore, it is important to effectively distinguish chiral
molecules in computational modeling and machine learning
representation. In this study, the R-alanine and S-alanine
shown in Figure 3j and Figure 3k are used to demonstrate
PPT’s capability of dealing chiral molecules. Due to the
uncertainty of experimental measurements, their structures
only have approximate mirror symmetry. Their digraph
representation is depicted in Figure 3l.

For molecular structures with mutual chiral symmetry, the
distances between the atoms inside the molecules are almost
the same. For all given distance-based filtration parameters, the
corresponding path complexes are all the same, which results
in the same path homology. The DPPT cannot distinguish the
chiral molecules. As shown in Figure 3m, DPPT persistent
Betti numbers in dimensions 0, 1, and 2 are identical.

For APPT analysis, the filtration process is based on a
sequence of angles in a prescribed order, e.g., (S2, ≤). The
details of the ordered set (S2, ≤) can be obtained in the
Methods section. For chiral molecules, as shown in Figure 3n,
APPT demonstrates a very clear difference between R-alanine
and S-alanine, especially in the H1. R-Alanine has maximal β1 =
3, while S-alanine is unable to form a nontrivial path homology
throughout the filtration process. It means that, for R-alanine,
there are as many as three loops in the path sense forming
during the angle-based filtration, while for its chiral molecule,
S-alanine, no such loops are forming. For designed mirror-
symmetric structures, as shown in Figure 2g and Figure 2h, the
difference between the isomorphic cube and the mirror-
symmetric isomorphic octahedron can be captured by APPT,
while DPPT cannot distinguish these isomorphic structures.

In this section, we analyzed the three spatial isomers in
molecular science using DPPT and APPT, respectively. APPT
persistence Betti numbers can differentiate all the above-
mentioned isomers, while DPPT fails to discriminate chiral
molecules and mirror-symmetric isomeric structures.

Jahn−Teller ef fect. The Jahn−Teller effect, also called the
Jahn−Teller distortion, describes the geometric distortion of
molecules and ions caused by spatially degenerate electronic
ground configurations. The elimination of the degeneracy
through structural distortion reduces the overall energy of the
compound.

Figure 4a shows how the Jahn−Teller effect occurs in the
Li2Mn2O4/LiMn2O4 system.28 Li2Mn2O4 is used as a cathode
material for the Li-battery. During the charging and
discharging processes, the chemical valence state of Mn
gradually becomes +3 with the injection of lithium ions, which
leads to the distortion of the octahedron in the MnO6 structure
with Mn in the center and oxygen ion elongation along the z-

axis, as shown in the middle of Figure 4a. Figure 4b shows the
DPPT analysis of the structural distortion caused by the Jahn−
Teller effect, including one octahedron. The x-axis represents
the filtration parameters ranging from 0 to 5 Å. The structural
differences before and after the distortion can be captured by
the information in H0 and H1 starting from 0.2 Å. For the
APPT analysis, as shown in Figure 4c, the persistent Betti
numbers in H0 are 5, which is smaller than the number of the
atoms at the beginning. It is because some directed edges are
covered by the spherical surface in the first angle-based
filtration step, as demonstrated in the angle-based filtration
Figure 1f. Since the distortion changes the position of oxygen
atoms, the directed edges between oxygen atoms, and between
oxygen and manganese atoms are all changed. This leads to a
different H0 for these structures at the beginning of the
filtration step; the structure of Li2Mn2O4 forms fewer edges (1-
path) at the beginning. After the distortion, the sublattice has
more directed loops (H1) and more directed cavities (H2)
along with the angle-based filtration.

High-entropy alloy catalysts. High entropy alloys (HEA) are
alloys that typically contain multiple major elements. Due to
their large number of different types of active surface sites, they
have recently emerged as promising catalysts capable of fine-
tuning the catalytic performance of many important energy
conversion reactions. However, the huge number of active sites
makes both theoretical modeling and experimental studies very
difficult. In addition, even with the same material composition,
the configurational variations can lead to changes in adsorption
energy of up to 1 eV.29,30Figure 4 panels d and e show the slab
model of RuRhIrPdPt HEA and OH* complexes. They are
geometrically the same but chemically have very different
arrangements of atoms. This leads to a difference of 5.2 eV in
the formation energy of HEA for OH* adsorbates, (formation
energy of −456.9 eV on the left and −451.7 eV on the right).31

Since the HEA contains different types of atoms, it allows us
to define structures with directionality depending on the
electronegativity of the atoms. As a demonstration, we just use
the complex formed by the first two layers of HEA and OH*
for the analysis. The results of the analysis by the DPPT
method are shown in Figure 4f. For these two structures, their
H0 persistent Betti numbers are almost the same throughout
filtration, which indicates similar geometric information on
these two structures. However, their H1 and H2 persistent Betti
numbers are sharply different, which means that the DPPT can
capture the difference in the arrangement of the atoms within
HEA. The dotted line points to the corresponding path
complexes when the filtration parameter is equal to 2.7 and 3.4
Å. As for the APPT analysis (Figure 4g), the difference can be
discovered from all H0, H1, and H2. The dotted line points to
the corresponding path complexes in the 81th and 207th
angle-based filtration steps. The above results show that PPT
can effectively capture the characteristics of HEAs, especially
important features with chemical significance, such as atom
arrangements, to achieve the identification and classification of
different HEAs in machine learning predictions.

Primitives of amorphous solid. Amorphous solids, such as glass
and plastics, are ubiquitous and have a wide range of
applications in our daily lives. However, due to the lack of
long-range periodic ordering, it is difficult to directly determine
the three-dimensional (3D) atomic structure of amorphous
solids. The medium-range ordering has also been found in
amorphous solids.32 In this work, we analyzed the two most
common geometries within amorphous solid, such as the
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tetrahedral lattice in Figure 4f and the octahedral lattice in
Figure 4k. Specifically, we consider a high entropy alloy mixed
in a tetrahedral vertex and an octahedral vertex.

For a tetrahedral lattice, up to four metallic elements can be
present at the same time, as shown in Figure 4f. We use four
colors to indicate the four types of atoms that may be present
in the lattice. To naturally induce a directed lattice, the arrows
between the different colors can be determined by the
electronegativity (or other properties) of the elements. Figure
4i shows the nine unique directed tetrahedral lattices after the
rotation operation. Among these structures, we found two
structures that are mirror-symmetric to each other, which have
been plotted in a frame in Figure 4i. The results of the APPT
analysis are shown in Figure 4j. We can distinguish them
directly by H0 information.

Similarly, we use multiple atoms from at most six element
types to induce the octahedral-based directed structure, as
shown in Figure 4k. After removing duplicated atomic mixing
schemes, we can obtain 2226 unique directed octahedrons with
different atomic mixing schemes. The PH analysis of all
possible unique directed octahedrons is shown in Figure 4l.
Topologically, only 4 sets of PH systems characterized by four
different combinations of β0, β1, and β2 were found and shown
in four colors. As many as 145 geometric digraphs exhibit the
uniqueness under rotation operations, which is represented by
circles on the horizontal axis. The size of each circle indicates
the number of repeated atomic mixing schemes. The
connecting lines in the figure indicate structures that are
isomorphic to each other. It can be found that isomers always
have the same path homology.

Also, as shown in Figure 2e,f, all isomers are mirror-
symmetric to each other. There are usually 5 or more elements
in high entropy alloy nanoparticles, then it is highly likely that
there are various configurations of tetrahedral lattice and
octahedral lattice. Although in the above examples we did not
consider the structural distortion caused by different elements.
We can find that tetrahedral lattice and octahedral lattice are
hard to be the unit cell lattice to form the long-range order in
the HEA, because the mirror-symmetric configurations with

tetrahedral lattice or octahedral lattice cannot be arranged
periodically by translation and rotation.

Here, we applied PPT to three systems in materials science
and found that the physicochemical information in material
structures can be well encoded by digraphs (path complexes).
PH and PPT can also be well extracted from the digraph for
material structural analysis. In addition, we also analyzed a
nanocage structure in Supporting Information using DPPT and
APPT, as shown in Figure S5. It is found that PPT can
generate rich structural information for materials sciences.

Topological perturbation analysis of directed networks. Systems
pharmacology is designed for the quantitative analysis of the
dynamic interactions between drugs and biological systems. It
bridges pharmacometrics and systems biology. In the past
decade, many computational models have been developed for
systems pharmacology.33−35 However, understanding complex
pharmacokinetic and pharmacodynamic issues in drug
development remains a challenge. To provide a new
perspective, we apply path homology analysis to reveal the
topological significance of complex systems biology processes.

To demonstrate the potential capability of the PH in
systems pharmacology and systems biology, we consider the
human coagulation process (see Figure 5a). In this case, our
goal is to discover the most important drug target in the
reactive chemical system Figure 5a. To this end, we extract a
directed network from the system as shown in Figure 5b. PH
analysis shows β0 = 1 and β1 = 7 for Figure 5b. Here, β0 = 1 is
due to the connected physiological system, and β1 = 7 indicates
7 closed loops in the sense of path complex. We introduce a
topological perturbation analysis (TPA) to explore the
importance of each node (protein) in this directed network.
Specifically, we systematically remove one node in the network
at a time (see, for example, Figure 5c) and then compute PH
on the remaining directed network to obtain topological
invariants. We track the changes in Betti numbers Δβn induced
by the perturbation and denote the node causing the maximum
change n

max as the critical node. The critical node could be a
bottleneck in metabolic pathways or an ideal target for drug
discovery in a protein network.

Figure 5. Path homology-based topological perturbation analysis of blood coagulation pathways. (a) The classical blood coagulation pathways. The
intrinsic pathway, extrinsic pathway, common pathway, and inhibition processes are colored in green, yellow, blue, and red, respectively. (b) The
directed network representation of the blood coagulation pathway, whose path topological invariants in 0 and 1 dimensions are 1 and 7,
respectively. (c) The condensation process after removing the key node (thrombin), and related edges are represented by a directed network,
where the gray node and edges are removed objects. The resulting topological invariants are β0 = 2 and β1 = 1. (d) Topological perturbation
analysis (TPA). The change in β0 and β1 caused by systematically removing one node and associated edges in the directed network. The topological
changes in removing node thrombin are Δβ1 = −6 and Δβ0 = 1.
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The changes in Betti numbers Δβn for the human
coagulation process are plotted in Figure 5d. In this study,
we reveal that removing node thrombin (IIa) causes the most
drastic disruption in the topological invariance of the network.
Namely, β0 changed from the original 1 to 2 (Δβ0 = 1), which
means the original connected system is split into two parts.
Additionally, β1 changed from the original 7 to 1 (Δβ1 = −6),
as shown in Figure 5d, which means that after removing the
paths associated with thrombin, the number of directed rings
in the path sense is drastically reduced. In comparison, the next
important node has Δβ1 = −3. Our TPA indicates that
thrombin is the most important drug target for treating
thrombus. Physiologically, thrombin is the most important
component of coagulation and is rapidly released in terms of
feedback activation to ensure timely clotting of blood,
protecting the wound, and preventing further blood loss.
The proposed TPA is an effective new approach for the study
of directed networks in systems biology.

TPA is the first ever PPT technique proposed for biological
network analysis. It can single out critical nodes in a complex
network and has a great potential for applications to biological
networks such as gene regulatory networks, protein−protein
interaction networks, signaling networks, metabolic networks,
neuronal networks, DNA−DNA−chromatin networks tran-
scriptomic networks, etc. The present work adds a new
dimension to computational biology. PPT opens a new door to
the future development in biological networks which is
promising for drug target identification, discovery of gene
motifs, directed evolution, protein engineering, and omics in
general.

The successful application of PPT to three classes of
materials is inspirational. Although it remains to verify the
specific correlation between PPT-based persistent Betti
numbers and topological materials for specific examples, it is
safe to expect that the proposed PPT analysis will play an
important role in the design of topological materials because
the same topological principle is applied. Therefore, the
proposed PPT will aid the design and development of
electronic/photonic topological insulators,2 materials for Li-
battery and catalysts, one-dimensional, two-dimensional, and/
or three-dimensional topological materials, exotic electrical and
optical semimetals, superconductors, and other forms of
matter. This potential application of PPT may impact a wide
range of fields such as ultralow-energy transistors, cancer-
removal lasers, and broadband communication beyond 5G.

Although we have not demonstrated the use of PPT for the
machine learning prediction of molecular and material
properties in this work, it is straightforward to do so based
on our early success with persistent homology.36,9,6,8 The
proposed PPT will give rise to robust and efficient
representations of molecules and materials for machine
learning prediction. These representations can be easily
integrated into a wide variety of machine learning, including
deep learning, algorithms. They can also be concatenated with
other descriptors. PPT-based AI will enable a new generation
of advanced algorithms in molecular and materials predictions.

While persistent homology treats all atoms indiscriminately,
PPT characterization of molecules allows the embedding of
element types into the topological analysis. This additional
function enables PPT to deal with chemistry/biochemistry
without resorting to the element-specific techniques36 and/or
persistent cohomology.9

The proposed APPT complements the traditional distance-
based topological methods. It can be generalized with a variety
of vector alignment/ordering methods so that the advantages
of the PPT method can be fully utilized when facing different
complex problems in molecular and materials sciences. In
addition, the present PPT can be easily generalized to a
persistent hyperdigraph. This approach will allow the
incorporation of subnetworks in path homology analysis.

Unlike persistent homology, whose high-dimensional cycles
can be easily comprehended, PPT renders high-dimensional
cycles that cannot easily be interpreted with traditional
geometry. Further efforts are needed to make PPT
interpretable. Compared with traditional persistent homology,
PPT may rapidly increase its high-dimensional paths and
cycles, leading to computational challenges.25 Therefore,
computational complexity can be a problem for the PPT
analysis of large networks. The development of efficient
algorithms for computing PPT, particularly high-dimensional
path complexes, is an important task.

■ METHODS
The path homology theory, introduced by Grigor’yan et
al.,20,21 is a new mathematical tool. Persistent path topology
theory was proposed in 2018.23 In this work, we further
introduced the PPT based on weight functions, angle-based
filtration of PPT, and topological perturbation analysis.

Path complexes and their homology. Let V be a nonzero finite
set. For any integer p ≥ 0, an elementary p-path on V is a
sequence i0i1···ip of elements in V. Let be a field and let Λp =
Λp(V) be a -linear space generated by all the elementary p-
paths. More precisely, we denote ei i ip0 1 ··· the generator
corresponding to the elementary p-path i0i1···ip and the family
e i i i V, , , ...,i i i p0 1p0 1

{ }··· is a basis of Λp over . We always
make the convention that Λ−1 = 0 is the null space. An element
in Λp is called a p-path. Thus, each p-path v can be uniquely
written as

v a e a,
i i i V

i i i
i i i

i i i

, ,..., p

p
p

p

0 1

0 1
0 1

0 1= ···
···

···

(1)

For any integer p ≥ 0, we have a -linear map ∂: Λp → Λp−1
d e fi n e d b y e 0i0

= f o r ei 00
a n d

e e( 1)i i i k
p k

i i i0p k p0 1 0
=··· = ··· ··· for p ≥ 1, where ik means

omission of the index ik. It can be directly verified that ∂ is a
boundary operator on ( )p p, that is, ∂2 = 0.

A path complex on a nonempty finite set V is a nonempty
collection of elementary paths on V such that i i ip0 1 ···
implies i i ip0 1 1··· and i i ip1 2 ··· . Let V( , ), W( , )
be two path complexes. A morphism of path complexes is a map

: induced by the map of finite sets V → W. A
simplicial complex is a path complex. Let G be a digraph. The
set of paths on G is a path complex, denoted by G( ). The
paths in are called allowed paths. We denote

a e i i i a

( )
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p p
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i i i p

i i i

, ,...,
0 1
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We make the convention that 01 = is the null space. The
space of ∂-invariant p-paths is given by

x x

p

0, ( ) ,

0

p p p p1 1= = = { | }

(3)

Then ( )p p is a subchain complex of V( ( ))p p. This leads to
the definition of path homology

H H p( ; ) ( ( ))
ker

im
, 0p p p

p

p 1

=
|

|
+ (4)

The path homology of a digraph G is the path homology of
G( ). The p-th Betti number of digraph G is the rank of the

homology H G( ; )p , denoted as βp(G). In particular, if G is a
(weakly) connected digraph, that is, there is an undirected path
between any pair of vertices, then β0(G) = 1.

Persistent path topology. Persistent path topology was
introduced by Chowdhury and Meḿoli,23 following persistent
homology.5 In this work, we propose angle-based persistent
path topology to complement distance-based persistent path
topology.

Consider the order set (S, ≤ ), which can be regarded as a
category with elements in S as objects and all the binary orders
as morphisms. A f iltration of path complexes is a covariant
functor S Path: ( , ) from the category (S, ≤ ) to the
category of path complexes. More precisely, a is a path
complex for each a ∈ S, and for a ≤ b ≤ c, we have f b,c ◦ fa,b =
fa,c, where f :a b a b, is the morphism induced by a → b.
The morphism fa,b induces a morphism of path homology
f H H: ( ; ) ( ; )a b p a p b, . The (a, b)-persistent path
topology of is defined by

H H H p( ; ) im( ( ; ) ( ; )), 0p
a b

p a p b
, =

(5)

Moreover, the (a, b)-persistent Betti number is defined to be
the rank of H ( ; )p

a b, . The persistent Betti numbers can be
generated from persistent diagrams and persistent barcodes.37

The path complexes considered in the application are often
defined on digraphs. Let Digraph be the category of digraphs.
A f i l t rat ion of d igraphs i s a covar iant functor

S Digragh: ( , ) from the category (S, ≤ ) to the
category of digraphs. A filtration of digraphs can induce a
filtration of path complexes, which leads to the persistent
homology of digraphs.

Distance-based f iltration. Let G = (V, E) be a digraph such
that V is a set of data points in a metric space (X, ∥·∥). There is
a weight function d E: on the edge set E given by

d x x x x x x E X X( , ) , ( , )1 2 1 2 1 2= × (6)

Note that the function d here can be any weight function,
such as the Lorentz function, the exponential function, etc. In
this work, for demonstration purposes, the metric space (X,
∥·∥) is assumed to be the Euclidean space with L2-norm. Let Et
= {(x, y) ∈ E|d(x, y) ≤ t} and V E( , )t t= . It can be verified
that Digragh: ( , ) , t t is a filtration of digraphs,
which gives a persistent diagram ( ) of G.

Consider the isometric transformation T on the space X,
that is, a composition of rotation and translation trans-

formations on X. Then T is also a filtration of digraphs.
Moreover, we have T( ) ( )= . It means that the
persistent diagram is an invariant under isometric trans-
formation on Euclidean space. Figure 1c and Figure 1d show
the distance-based filtration on C8H27B10BrNiP2

38 (Figure
S1a). The hydrogen atoms are not included for simplicity.

Angle-based f iltration. Consider a digraph G = (V, E) with V
in Euclidean space 3. We give a filtration of digraphs
described as follows. First, we need to fix a coordinate system
by a predefined rule. The predefined rules here can be
nonunique, but the resulting coordinate system should be
unique for a given rule. Second, each point on S2 is given by a
pair (α, γ), α ∈ [0, 2π], γ ∈ [0, π]. Let S2 = {(α, γ)|α ∈ [0,
2π], γ ∈ [0, π]} be an order set with its order given by

( , ) ( , ) if ( ) or ( , )< = (7)

Namely, the priority of an element in the set is based on its
parameter α. Parameter γ is considered only if α values for two
elements are the same. For the discrete case, let m, k be
positive integers. We can choose an order set S2 by

t
k

s
m

t k s m2
, , 0, ..., 1, 0, ..., 1i

k
jjj y

{
zzz = =

(8)

In this way, we give a filtration based on the angle shown as
spiral progress in a polar coordinate system. In this work, we
use m = 6, k = 12, and the detailed descriptions of angle-based
filtration can be found in the Supporting Information. Figure
1e and Figure 1f illustrate the angle-based filtration on
C8H27B10BrNiP2.

38

The progress of angle changing gives an ordered set (S2, ≤)
on a unit 2-sphere. By a straightforward verification, we have a
fi l t r a t i o n o f d i g r a p h s b a s e d o n a n g l e s

S Digraph: ( , ) ,2 Here , V E( , )= i s

given by V x V Sx
x

2{ }= and Eθ = E ∩ (Vθ ×
Vθ) = {(x, y) ∈ E|x, y ∈ Vθ}. For distance-based filtration, it
can be shown that

g g O( ) ( ), (3)= (9)

where O(3) is the orthogonal group O(3). However, for g ∈
O(3), it does not have to be g( ) ( )= , since a
symmetric transformation may change the persistent diagram.
Fortunately, we always have

g g SO( ) ( ), (3)= (10)

where SO(3) is the rotation group. This means that the angle-
based filtration can help us distinguish structures with mirror
symmetry. It is worth noting that we can obtain a
multidimensional filtration by combining the distance-based
filtration and the angle-based filtration. We also provide a
detailed description of the construction multidimensional
filtration in the Supporting Information.

Topological perturbation analysis. The topological perturba-
tion analysis (TPA) is designed for general network analysis. It
can be implemented with persistent homology and/or
topological Laplacians.25 In the present work, we implement
TPA with path homology for the study of digraph properties
by computing the path homology of the sub digraphs of the
original digraph. Mathematically, TPA is related to relative
homology.39 Let G = (V, E) be a digraph. We consider the sub
digraph of G by deleting a vertex v ∈ V and the edges
connecting the vertex, which is called a perturbation of G at v,
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denoted by Gv. Let iv: Gv → G be an inclusion of digraphs. It
induces a morphism of path homology groups

i H G H G p: ( ) ( ), 0v p v p*

In general, the morphism iv* can be neither injective nor
surjective.

In application, we are interested in the changes of
topological invariants,

v H G H G

v V p

( ) rank( ( )) rank( ( )),

, 0

p p v p=

The importance of each node can be judged from Δβp(v). In
particular, the maximal change, vmax ( )p v p

max = | |, is
important for the graph. The proposed TPA is valuable for
practical applications and can be used to measure the impact of
different nodes on the network.
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