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A B S T R A C T

Due to its high transmissibility, Omicron BA.1 ousted the Delta variant to become a dominating variant in late
2021 and was replaced by more transmissible Omicron BA.2 in March 2022. An important question is which
new variants will dominate in the future. Topology-based deep learning models have had tremendous success
in forecasting emerging variants in the past. However, topology is insensitive to homotopic shape evolution in
virus–human protein–protein binding, which is crucial to viral evolution and transmission. This challenge is
tackled with persistent Laplacian, which is able to capture both the topological change and homotopic shape
evolution of data. Persistent Laplacian-based deep learning models are developed to systematically evaluate
variant infectivity. Our comparative analysis of Alpha, Beta, Gamma, Delta, Lambda, Mu, and Omicron BA.1,
BA.1.1, BA.2, BA.2.11, BA.2.12.1, BA.3, BA.4, and BA.5 unveils that Omicron BA.2.11, BA.2.12.1, BA.3, BA.4,
and BA.5 are more contagious than BA.2. In particular, BA.4 and BA.5 are about 36% more infectious than
BA.2 and are projected to become new dominant variants by natural selection. Moreover, the proposed models
outperform the state-of-the-art methods on three major benchmark datasets for mutation-induced protein–
protein binding free energy changes. Our key projection about BA4 and BA.5’s dominance made on May 1,
2022 (see arXiv:2205.00532) became a reality in late June 2022.
1. Introduction

The coronavirus disease, 2019 (COVID-19) caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) has lasted for more
than years. The development of effective vaccines, monoclonal antibod-
ies (mABs), and antiviral drugs have significantly improved our ability
to bring COVID-19 pandemic under control. Nonetheless, the emerging
SARS-CoV-2 variants have become a major threat to existing vaccines,
monoclonal antibodies (mABs), and antiviral drugs.

The Omicron variant has mutations on various SARS-CoV-2 pro-
teins, such as non-structure protein 3 (NSP3), NSP4, NSP5, NSP6,
NSP12, NSP14, spike (S) protein, envelope protein, membrane protein,
and nucleocapsid protein. Specifically, Omicron has three main lin-
eages, BA.1 (B.1.1.529.1), BA.2 (B.1.1.529.2), and BA.3 (B.1.1.529.3),
and many sub-lineages. Many new recombinants occurred, including
XD, XE, and XF. XD and XE are recombination of Delta and BA.1, while
XE is basically a BA.2 Omicron lineage carrying a piece of BA.1 at the
front end of its genome. The S protein of XE is still BA.2.

The research community focuses its attention on the mutations
at the S protein receptor-binding domain (RBD) due to the fact that
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the RBD facilitates the binding between the S protein and the host
angiotensin-converting enzyme 2 (ACE2), which initiates the viral entry
of a host cell and infection. It turns out that the binding strength
between the S protein RBD and the ACE2 is proportional to the viral
infectivity [1–5]. An artificial intelligence (AI) study revealed that
natural selection is the governing mechanism for SARS-CoV-2 evolu-
tion [6]. Specifically, viral evolution selects those mutations that are
able to strengthen the RBD-ACE2 binding. This mechanism led to the
occurrence of many variants, such as Alpha, Beta, Gamma, Delta, Mu,
etc. Natural selection in SARS-CoV-2 mutations was confirmed beyond
doubt in April 2021 by the genotyping of over half a million viral
genomes isolated from patients [7].

Additionally, antibodies are generated by the human immune re-
sponse to infection or vaccination. A strong RBD-antibody binding
would lock off RBD-ACE2 binding and directly neutralize the virus [8–
10]. As such, mABs targeting the S protein, particularly the RBD,
which are designed to treat viral infection. It was unveiled that viral
evolution also selects those mutations that are able to weaken RBD-
antibody binding, leading to vaccine breakthrough infections [11,12].
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Therefore, a new virus with RBD mutations that make the virus more
infectious and more capable of evading antibody protection would
become the next dominant variant, which is the underlying principle
for the successful forecasting of Omicron BA.2’s dominance [13].

In biophysics, the strength of protein–protein complex is measured
by binding free energy (BFE). Mutation-induced BFE change 𝛥𝛥𝐺 is
calculated by

𝛥𝛥𝐺 = 𝛥𝐺WT − 𝛥𝐺MT (1)

where 𝛥𝐺WT and 𝛥𝐺MT are the BFE of wild type and mutant. A positive
(negative) BFE change indicates the strengthening (weakening) of the
protein–protein binding. Protein–protein BFE changes can be carried
out in a variety of ways as shown in software packages FOLDX [14],
SAAMBE [15], mCSM-AB [16], mCSM-PPI2 [17], BindProfX [18], etc.
AI approaches take the advantage of existing data and often outper-
form other methods when experimental data become available. Due to
the structural complexity and high dimensionality of protein–protein
interactions (PPIs), methods that are able to effectively reduce the
PPI structural complexity and dimensionality have demonstrated great
advantages in predicting PPI BFE changes [19]. Advanced mathematics,
particularly, persistent homology [20–25], offers tremendous abstrac-
tion of PPIs. Persistent homology is the main workhorse in popular
topological data analysis (TDA) [26–29]. Element-specific persistent
homology (EPH) has had tremendous success in computational bi-
ology [30,31] and worldwide competitions in computer-aided drug
design [32].

Based on FPH, a topology-based network tree (TopNetTree) model
was constructed from conventional neural network and decision trees
for predicting PPI BFE changes [19]. In the past two years, this ap-
proach has been extended with SARS-CoV-2 related deep mutational
data to predict the BFE changes RBD-ACE2 and RBD-antibody com-
plexes up on RBD mutations [33,34]. Initially, in early 2020, Top-
NetTree model was applied to successfully predict that RBD residues
452 and 501 ‘‘have high chances to mutate into significantly more
infectious COVID-19 strains’’ [6]. These RBD mutations later appeared
in all major variants, Alpha, Beta, Delta, Gamma, Delta, Epsilon, Theta,
Kappa, Lambada, Mu, and Omicron L452R/Q and N501Y mutations. In
April 2021, the TopNetTree model predicted a list of 31 RBD antibody-
escape mutations, including W353R, I401N, Y449D, Y449S, P491R,
P491L, Q493P, etc. [7]. Notably, experimental results confirmed that
mutations at RBD residues Y449, E484, Q493, S494, and Y505 enable
the virus to escape antibodies [35]. It was revealed that variants
found in the United Kingdom and South Africa in late 2020 would
strengthen virus infectivity, which is consistent with the experimental
results [36]. In summer 2021, a topology-based deep neural network
trained with mAbs (TopNetmAb) was developed to forecast a list of
most likely vaccine-escape RBD mutations, such as S494P, Q493L,
K417N, F490S, F486L, R403K, E484K, L452R, K417T, F490L, E484Q,
and A475S [34], and mutations S494P, K417N, E484K/Q, and L452R
were designated as the variants of concern or variants of interest
denounced by the Worldwide Health Organization (WHO). The cor-
relation between the experimental deep mutational data [37] and
AI-predicted RBD-mutation-induced BFE changes for all possible 3686
RBD mutations on the RBD-ACE2 complex is 0.7 [34]. In comparison,
experimental deep mutational results for the same set of RBD muta-
tions from 2 different labs only have a correlation of 0.67 [37,38].
TopNetmAb predictions of Omicron [39] and Omicron BA.2 [13] infec-
tivity, vaccine breakthrough, and antibody resistance were nearly per-
fectly confirmed by experiments and pandemic evolution in the world.
These mechanistic discovery and successful predictions may not be
achievable via purely experimental means, indicate the indispensable
role of AI for scientific discovery.

However, persistent homology and TDA provide only topological
invariants, which may not be sufficient for representing PPI data.
In particular, the shape of data arising from a family of homotopy
2

geometries cannot be captured by persistent homology. For example,
the geometry of each drum in an acoustic drum set is designed to offer
a specific sound or frequency, but persistent homology is insensitive
to the change in the sizes (or shapes) in the drum set. This challenge
in TDA was addressed by the introduction of persistent Laplacian, or
persistent spectral graph [40]. Persistent Laplacian manifests the full
set of topological invariants and the homotopic shape evolution of
data in its harmonic and non-harmonic spectra, respectively. Additional
mathematical analysis [41] and a software package, i.e., HERMES [42],
for persistent Laplacian have been reported in the literature. This
method has been successfully applied to biological studies, includ-
ing protein thermal stability [40], protein–ligand binding [43], and
protein–protein binding problems [44].

In the present work, we introduce element-specific and site-specific
persistent Laplacians to forecast emerging SARS-CoV-2 variants. We hy-
pothesize that persistent Laplacians generate intrinsically
low-dimensional representations of PPIs and dramatically reduce the di-
mensionality of PPI data, leading to a reliable high-throughput screen-
ing of emerging SARS-CoV-2 variants. To quantitatively validate this
hypothesis, we integrate the harmonic and non-harmonic spectra of
persistent Laplacians with efficient machine learning algorithms, i.e.,
gradient boosting tree (GBT) and deep neural network (Net), to predict
PPI 𝛥𝛥𝐺 following mutations. The resulting topological and spectral-
based machine learning models are validated on three major bench-
mark datasets, the AB-Bind database [45], SKEMPI dataset [46] and
SKEMPI v2.0 dataset [47], giving rise to the state-of-the-art perfor-
mance. Meanwhile, with additional training on SARS-CoV-2 related
datasets, our models forecast emerging SARS-CoV-2 variants and rec-
ommend four Omicron subvariants, i.e., BA.2.11, BA.2.12.1, BA.4, and
BA.5 for active surveillance. Our key projection of BA.4 and BA.5’s
incoming dominance made in May 1, 2022 [48] had become reality
in late June 2022.

2. Results

In this section, we first carry out the infectivity predictions on
emerging SARS-CoV-2 variants. Next, three benchmark PPI datasets,
i.e., the AB-Bind [45], SKEMPI [46], and SKEMPI 2.0 datasets [47]
are employed to demonstrate the proposed persistent Laplacian-based
AI models with ten-fold cross validations. Two evaluation metrics,
Pearson correlation 𝑅𝑝 and the root-mean-square error (RMSE), are
used to assess the quality of the present models. Lastly, we present the
validation of our models on SARS-CoV-2-related datasets.

2.1. Emerging SARS-CoV-2 variants: Infectivity

Fig. 1 shows the RBD mutations of Omicron subvariants and their
BFE changes of SARS-CoV-2 variants. A comparison is also given to
other main SARS-CoV-2 variants Alpha, Beta, Gamma, Delta, Theta,
Kappa, Lambda, and Mu variants. The Delta variant had the highest
BFE change among the earlier variants and was the most infectious
variant before the occurrence of the Omicron variant, which explains its
dominance in 2021. Omicron BA.1, BA.2, and BA.3 have the common
RBD mutations G339D, S373P, S375F, K417N, N440K, S477N, T478K,
E484A, Q493R, Q498R, N501Y, and Y505H. Omicron BA.1 has three
distinct RBD mutations S371L, G446S, and G496S. Four distinct muta-
tions, S371F, T376A, D405N, and R408S, were found for Omicron BA.2.
Omicron BA.3 shares three mutations either with BA.1 or BA.2: S371F,
D405N, and G446S. The AI-predicted BFE changes of BA.1, BA.2, and
BA.3 are 2.60, 2.98, and 2.88 kcal/mol, respectively [13]. These values
are significantly higher than those of other major SARS-CoV-2 variants
as shown in Fig. 1. Note that Omicron BA.2 is the most infectious
variant. It is about 20 and 4.2 times as infectious as the original SARS-
CoV-2 and the Delta variant, respectively. The machine learning model
also predicts that BA.2 is about 1.5 times as contagious as BA.1, which
is highly consistent with experimental studies [50,51]. BA.2 has been
the dominating variant since late March 2022 [13].
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Fig. 1. Illustration of major SARS-CoV-2 (sub)variants, the RBD mutations of Omicron subvariants at the RBD-ACE2 interface, and their mutation-induced BFE changes. a Prevailing
SARS-CoV-2 variants and Omicron subvariants. b RBD mutations of Omicron subvariants at the RBD-ACE2 interface (PDB: 7T9L [49]). The shared 12 mutations are shown in
cyan. BA.1 mutations are plotted with magenta. BA.2 mutations are marked in yellow. BA.4 and BA.5 mutations are labeled in orange. The rest colors can be matched from the
right chart. c A comparison of predicted mutation-induced BFE changes for various SARS-CoV-2 variants and subvariants.
We have also examined other Omicron subvariants, namely, BA.1.1,
BA.2.11, BA.2.12.1, BA.4, and BA.5. Compared with BA.1, BA.1.1
has one additional RBD mutation, i.e., R346K. BA.2.11 has one more
RBD mutation, L452R, than BA.2 does. BA.2.12.1 has an extra RBD
mutation, L452Q, compared with BA.2. BA.4 and BA.5 share the same
set of RBD mutations but differ in ORF7b, nucleocapsid (N), and
membrane (M) proteins. They have three additional RBD mutations,
L452R, F486V, and R493Q compared with BA.2. Note that R493Q is
a reversion to the wide type, Q493. It is interesting that L452R is one
of Delta’s two RBD mutations. Additionally, mutations simultaneously
occurred on two RBD residues, L452 and N501, which were singled out
by our AI model in early 2020 [6].

Our AI-predicted BFE changes for BA.1.1, BA.2.11, BA.2.12.1, BA.4,
and BA.5 are 2.70, 3.13, 3.03, 3.27, and 3.27 kcal/mol, respectively.
It is noticed that BA.4 and BA.5 are predicted to be 1.36 times as
infectious as BA.2 and have high potential to become new dominating
SARS-CoV-2 variants.

2.2. The performance on the AB-Bind dataset

The AB-Bind dataset, including 1101 mutational data entries for
experimentally determined BFE changes [45] is considered in the val-
idation of the proposed models. Its 645 single mutations involving
29 antibody–antigen complexes are denoted as the AB-Bind S645 set.
In the AB-Bind S645 set, about one-fifth of mutations strengthen the
binding, while the rest are destabilizing mutations. In particular, 27
non-binders, which are mutants determined not to bind within the
experimental sensitivity of the assay, are in the dataset. The mutation-
induced binding free energy changes for these non-binders were set to
−8 kcal/mol. For machine learning models, non-binders are outliers
and can cause a very negative impact on model accuracy.

As shown in Table 1, our TopLapNetGBT and TopGBT models
achieved the 𝑅𝑝 of 0.61 and 0.56 for the AB-Bind S645 set. In com-
parison, TopNet outperforms LapNet because TopNet includes auxiliary
features, while LapNet has only Laplacian features. Note that our worst
model (LapNet) still outperforms the other best model in the literature,
while our best model is about 15% better than the other best model
in the literature, indicating the predictive power of our topology and
Laplacian-based machine learning models. Both GBTs and Nets models
are quite sensitive to system errors as the model training is based on
optimizing the mean-square error of the loss function. The BFE changes
of 27 non-binders were defined to be −8 kcal/mol in the original
dataset and did not follow the distribution of the whole dataset as the
values is defined by For the TopLapGBT model, the RMSE of AB-Bind
S645set is 1.13 kcal/mol and reduces to 0.82 kcal/mol when 27 non-
binder samples are excluded. In this case, the 𝑅𝑝 of the TopLapNetGBT
model is increased from 0.61 to 0.76 by excluding non-binder samples.
3

Table 1
Comparison of the Pearson correlation coefficients (𝑅𝑝) of various methods for the
AB-bind S645 set.
Source: The results of methods except for present TopLapGBT and TopLapNet are
adopted from Ref. [16].

Method 𝑅𝑝 Method 𝑅𝑝

TopLapNetGBT 0.61/0.76a mCSM-AB 0.53/0.56a

LapGBT 0.60/0.71a Discovery Studio 0.45
TopNetGBT 0.59/0.76a mCSM-PPI 0.31
LapNetGBT 0.59/0.70a FoldX 0.34
TopLapNet 0.58/0.77a STATIUM 0.32
TopLapGBT 0.58/0.74a DFIRE 0.31
LapNet 0.58/0.70a bASA 0.22
TopNet 0.57/0.76a dDFIRE 0.19
TopGBT 0.56/0.73a Rosetta 0.16

aResults exclude 27 non-binders (their 𝛥𝛥Gs were set to −8 kcal/mol [45]).

The consensus results of GBT and Net have correlations of 0.58–0.59,
which are lower than that of GBT but higher than that of Net. GBT
models outperform Net models in the validation, showing that GBT
performs better than Net on a small dataset.

2.3. The performance on the SKEMPI dataset

The SKEMPI dataset [46] has 3047 entries of BFE changes in-
duced by mutations. This dataset is collected from the literature for
protein–protein heterodimeric complexes with experimentally deter-
mined structures. It consists of single- and multi-mutations. Among
them, 2317 single mutations out of 3047 entries are called the S2317
dataset. Recently, a subset of 1131 non-redundant interface single-
mutations is selected and denoted as the S1131 set [18]. Table 2
shows the Pearson correlation coefficients on tenfold cross-validations
of various models, including topology- and Laplacian-based models.
The proposed topology- and Laplacian-based models are found to be
more accurate than other existing methods. One may notice that for
a larger training set, the consensus predictions of GBT and Net outper-
form GBT methods. Additionally, topology-based models contain topol-
ogy features and auxiliary features, which include more biomolecular
information than Laplacian-based models.

2.4. The performance on the SKEMPI 2.0 dataset

The SKEMPI 2.0 [47] database is an updated version of the original
SKEMPI database with new mutations from three other databases: AB-
bind [45], PROXiMATE [52], and dbMPIKT [53]. This dataset has 7085
entries, including single-mutations and multi-mutations. To validate
mCSM-PPI2, David et al. filtered only single-point mutations, selected
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Table 2
Comparison of the Pearson correlation coefficients (𝑅𝑝) of various methods for the
S1131 set in the SKEMPI dataset.
Source: The results of other methods are adopted from Ref. [18].

Method 𝑅𝑝 Method 𝑅𝑝

TopLapNetGBT 0.87 BindProfX 0.738
TopNetGBT 0.87 Profile-score+FoldX 0.738
TopLapNet 0.86 Profile-score 0.675
TopNet 0.86 SAAMBE 0.624
TopLapGBT 0.86 FoldX 0.457
TopGBT 0.86 BeAtMuSic 0.272
LapNetGBT 0.81 Dcomplex 0.056
LapNet 0.81
LapGBT 0.78

Table 3
Comparison of the Pearson correlation coefficients (𝑅𝑝) of various methods for S4169
et and S8338 set in SKEMPI 2.0.
ource: Results of mCSM-PPI2 are from Ref. [17].
S4169 S8338

Method 𝑅𝑝 Method 𝑅𝑝

TopLapNetGBT 0.82 TopLapNetGBT 0.87
TopNetGBT 0.82 TopLapNet 0.87
TopLapNet 0.81 TopNetGBT 0.87
TopLapGBT 0.81 TopNet 0.86
TopNet 0.81 TopLapGBT 0.85
TopGBT 0.80 TopGBT 0.85
LapNetGBT 0.77 LapNetGBT 0.83
mCSM-PPI2 0.76 mCSM-PPI2 0.82
LapNet 0.76 LapNet 0.81
LapGBT 0.76 LapGBT 0.80

4169 variants in 319 different complexes, and denoted them as the
S4169 set [17]. Additionally, set S8338 was derived from set S4169
by setting the BFE changes of the reverse mutations as the negative
values of the original BFE changes induced by mutations. We present
our tenfold cross-validation results on sets S4169 and S8338 in Table 3.
For S4169, TopLapNetGBT has the most accurate result with 𝑅𝑝 of
.82 and RMSE of 1.06 kcal/mol. Topology-based models, aided by
uxiliary features, have correlations greater than 0.80 and RMSE from
.04 kcal/mol to 1.10 kcal/mol. Purely Laplacian-based models also
erformed quite well, with the Pearson correlation of 0.76, which is
he same as that of the mCSM-PPI2.

For the S8338 set, TopLapNetGBT has the highest Pearson correla-
ion 𝑅𝑝 of 0.8702 and RMSE of 1.01 kcal/mol as shown in Table 3.
opLapNet has the most accurate results with 𝑅𝑝 of 0.8688 and RMSE
f 0.984 kcal/mol. Topology models, aided by auxiliary features, have
he 𝑅𝑝 in the range of (0.848, 0.870) and RMSE in the range of (1.070
cal/mol, 0.984 kcal/mol). LapNet and LapGBT models have their 𝑅𝑝

values slightly lower than that of mCSM-PPI2, but the 𝑅𝑝 of their
consensus (LapNetGBT) is higher than that of the mCSM-PPI2.

2.5. The performance on SARS-CoV-2 datasets

Training datasets have the utmost importance in implementing our
machine learning model for SARS-CoV-2 applications. First, all the
datasets mentioned above, including AB-bind,[45] PROXiMATE [52],
dbMPIKT [53], SKEMPI [46], and SKEMPI 2.0 [47], are used in our
model training. Additionally, SARS-CoV-2-related datasets are also em-
ployed to improve the prediction accuracy after a label transformation.
These are deep mutational enrichment ratio data, including mutational
scNeting data of ACE2 binding to the receptor-binding domain (RBD)
of the S protein [54], mutational scNeting data of RBD binding to
ACE2 [37,38], and mutational scNeting data of RBD binding to CTC-
445.2 and of CTC-445.2 binding to the RBD [37]. Note that in our
validation, our training datasets exclude the test dataset, which is a
mutational scNeting data of RBD binding to ACE2. Here, these datasets
4

provide more information on SARS-CoV-2 and can be used to calibrate
the models to predict the real experimental results.

Here, we present a validation of our model BFE change prediction
for mutations on S protein RBD compared to the experimental deep
mutational enrichment data [37]. We compare between experimental
deep mutational enrichment data and BFE change predictions on SARS-
CoV-2 RBD binding to ACE2 in Fig. 2. Both BFE changes (Fig. 2 top)
and enrichment ratios (Fig. 2 bottom) describe the binding affinity
changes of the S protein RBD-ACE2 complex induced by mutations. It
can be found that the predicted BFE changes are highly correlated to
the enrichment ratio data. Pearson correlation is 0.69.

3. Theories and methods

This section presents brief reviews of spectral graph theory, simpli-
cial complex, and persistent Laplacian are presented. Machine learning
and deep learning models are discussed in test datasets and validation
settings.

3.1. Persistent Laplacians

3.1.1. Spectral graphs
Spectral graph theory studies the spectra of graph Laplacian matri-

ces. It gives rise to the topological and spectral properties of underlying
graphs or networks. Mathematically, a graph is an ordered pair 𝐺(𝑉 ,𝐸),
where 𝑉 = {𝑣𝑖; 𝑖 = 1, 2,… , 𝑁} is the vertex set with size 𝑁 and
𝐸 = {𝑒𝑖𝑗 = (𝑣𝑖, 𝑣𝑗 ); 𝑖 ≤ 𝑖 < 𝑗 ≤ 𝑁} is the edge set. Denote deg(𝑣) the
degree of each vertex 𝑣𝑖 ∈ 𝑉 , i.e., the number of edges that connects
to 𝑣. A specific Laplacian matrix 𝐿𝐺 can be given by

𝐿𝐺 =

⎧

⎪

⎨

⎪

⎩

deg(𝑣), if 𝑣𝑖 = 𝑣𝑗 ,
−1, if 𝑣𝑖 and 𝑣𝑗 are adjacent,
0, otherwise,

(2)

where ‘‘adjacent’’ is subject to a specific definition or connection rule.
Let order the eigenvalues of the graph Laplacian matrix as

𝜆min = 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑁 = 𝜆max. (3)

The kernel dimension of 𝐿𝐺 is the multiplicity of 0 eigenvalues, in-
dicating the number of connected components of 𝐺(𝑉 ,𝐸), which is
the topological property of the graph. The non-zero eigenvalues of 𝐿𝐺

contain the graph properties. In particular, 𝜆2 is called the algebraic
connectivity.

3.1.2. Simplicial complex
To construct a topological description of a graph, simplicial complex

is used. For a set of 𝑞+1 points, {𝑣0, 𝑣1,… , 𝑣𝑞}, a 𝑞-plane is well defined
if the 𝑞 + 1 points are affinely independent, i.e., 𝑣1 − 𝑣0, 𝑣2 − 𝑣0, ...,
𝑣𝑞 − 𝑣0 are linearly independent. Thus, one can have at most 𝑛 linearly
independent vectors with at most 𝑛 + 1 affinely independent points
in R𝑛. An affine hull is the set of affine combinations, 𝑣 =

∑𝑞
𝑖=0 𝑐𝑖𝑣𝑖,

𝑐𝑖 ∈ R, and ∑𝑞
𝑖=0 𝑐𝑖 = 1. Such an affine combination is a convex

combination if all 𝑐𝑖 are non-negative. The convex hull is the set of
convex combinations. A 𝑞-simplex denoted as 𝜎𝑞 is the convex hull of
𝑞+1 affinely independent points. For example, 0-, 1-, 2-, and 3-simplex
are vertexes, edges, triangles, and tetrahedrons. A simplicial complex
𝐾 is a collection of simplices in R𝑛 satisfying the following conditions
such as the Cech complexes, Vietoris–Rips complexes, and alpha shapes.
For example, the Vietoris–Rips complex of 𝐾 with radius 𝑟 consists of
all subsets of radius R(𝜎) at most 𝑟 as

VR(𝑟) = {𝜎 ⊆ 𝐾|R(𝜎) ≤ 𝑟}. (4)

For 𝜎𝑞 ∈ 𝐾, its face 𝜎𝑞−1 is also in 𝐾. The non-empty intersection of any
two simplices 𝜎𝑞 , 𝜎𝑝 ∈ 𝐾 is a face of them. The dimension of simplicial
complex is defined as the maximum dimension of its simplex.
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Fig. 2. A comparison between experimental RBD deep mutation enrichment data and predicted BFE changes for SARS-CoV-2 RBD binding to ACE2 (6M0J) [37]. Top: machine
learning predicted BFE changes for single-site mutants of the S protein RBD. Bottom: deep mutational scanning heatmap showing the average effect on the enrichment for single-site
mutants of RBD when assayed by yeast display for binding to the S protein RBD [37].
A 𝑞-chain is a finite sum of simplices as 𝛴𝑖𝑐𝑖𝜎𝑘𝑖 with Z2 field of the
coefficients 𝑐𝑖 for the sum, and the set of all chains in a group 𝐶𝑞(𝐾).
The boundary operator 𝜕𝑘 maps 𝐶𝑞(𝐾) → 𝐶𝑞−1(𝐾) defined as

𝜕𝑞𝜎𝑞 =
𝑞
∑

𝑖=0
(−1)𝑖[𝑣0,… , �̂�𝑖,… , 𝑣𝑘] =

𝑞
∑

𝑖=0
(−1)𝑖𝜎𝑖𝑞−1, (5)

where 𝜎𝑞 = [𝑣0, 𝑣1,… , 𝑣𝑘] and �̂�𝑖 stands for 𝑣𝑖 being omitted. A 𝑞-chain
is called 𝑞-cycle if its boundary is zero. A chain complex is the sequence
of chain groups connected by boundary operators

⋯
𝜕𝑞+2
⟶ 𝐶𝑞+1(𝐾)

𝜕𝑞+1
⟶ 𝐶𝑞(𝐾)

𝜕𝑞
⟶ 𝐶𝑞−1(𝐾)

𝜕𝑞−1
⟶ ⋯ (6)

and the 𝑘th homology group 𝐻𝑘 is defined by 𝐻𝑘 = 𝑍𝑘∕𝐵𝑘 where
𝑍𝑘 = ker 𝜕𝑘 = {𝑐 ∈ 𝐶𝑘 ∣ 𝜕𝑘𝑐 = 0} and 𝐵𝑘 = im 𝜕𝑘+1 = {𝜕𝑘+1𝑐 ∣ 𝑐 ∈ 𝐶𝑘+1}.
The Betti numbers are defined by the ranks of 𝑘th homology group 𝐻𝑘.
This, in practice, is counting holes in 𝑘-dimension, such as 𝛽0 reflects
the number of connected components, 𝛽1 gives the number of loops, and
𝛽2 is the number of cavities. In a nutshell, the Betti number sequence
{𝛽0, 𝛽1, 𝛽2,…} reveals the intrinsic topological property of the system.

Recall that in graph theory, the degree of a vertex (0-simplex) 𝑣
is the number of edges that are adjacent to the vertex, denoted as
deg(𝑣). However, once we generalize this notion to 𝑞-simplex, problem
aroused since 𝑞-simplex can have (𝑞 −1)-simplices and (𝑞 +1)-simplices
adjacent to it at the same time. Therefore, the upper adjacency and
lower adjacency are required to define the degree of a 𝑞-simplex for
𝑞 > 0 [55,56].

Definition 3.1. Given two 𝑞-simplices 𝜎𝑖𝑞 and 𝜎𝑗𝑞 of a simplicial complex 𝐾.
We say they are lower adjacent if they share a common (𝑞−1)-face, denoted
as 𝜎𝑖𝑞

𝐿∼ 𝜎𝑗𝑞 . The lower degree of 𝑞-simplex is the number of nonempty (𝑞−1)-
simplices in 𝐾 that are faces of 𝜎𝑞 , which is denoted as deg𝐿(𝜎𝑞) and is
always 𝑞 + 1.

Definition 3.2. Given two 𝑞-simplices 𝜎𝑖𝑞 and 𝜎𝑗𝑞 of a simplicial complex 𝐾.
We say they are upper adjacent if they share a common (𝑞+1)-face, denoted
5

as 𝜎𝑖𝑞
𝑈∼ 𝜎𝑗𝑞 . The upper degree of 𝑞-simplex is the number of (𝑞+1)-simplices

in 𝐾 of which 𝜎𝑞 is a face, which is denoted deg𝑈 (𝜎𝑞).

Then, the degree of a 𝑞-simplex (𝑞 > 0) is defined as:

deg(𝜎𝑞) = deg𝐿(𝜎𝑞) + deg𝑈 (𝜎𝑞) = deg𝑈 (𝜎𝑞) + 𝑞 + 1. (7)

3.1.3. Graph Laplacian
The graph Laplacian was introduced to enrich topological and ge-

ometric information of simplicial complexes via a filtration process.
The preliminary concepts are about the oriented simplicial complex
and 𝑞-combinatorial Laplacian. More detail information can be found
elsewhere [56–59]. The properties of the 𝑞-combinatorial Laplacian
matrix with its spectra are discussed in the following.

A 𝑞-combinatorial Laplacian is defined based on oriented simplicial
complexes, and its lower- and higher-dimensional simplexes can be em-
ployed to study a specifically oriented simplicial complex. An oriented
simplicial complex 𝐾 is defined if all of its simplices are oriented. If 𝜎𝑖𝑞
and 𝜎𝑗𝑞 are upper adjacent with a common upper (𝑞 + 1)-simplex 𝜏𝑞+1,
they are similarly oriented if both have the same sign in 𝜕𝑞+1(𝜏𝑞+1) and
dissimilarly oriented if the signs are opposite. Additionally, if 𝜎𝑖𝑞 and 𝜎𝑗𝑞
are lower adjacent with a common lower (𝑞 − 1)-simplex 𝜂𝑞−1, they are
similarly oriented if 𝜂𝑞−1 has the same sign in 𝜕𝑞(𝜎𝑖𝑞) and 𝜕𝑞(𝜎

𝑗
𝑞 ), and

dissimilarly oriented if the signs are opposite. Similarly, 𝑞-chains can
be defined on the oriented simplicial complex 𝐾, as well as 𝑞-boundary
operator.

The 𝑞-combinatorial Laplacian is a linear operator 𝛥𝑞 ∶ 𝐶𝑞(𝐾) ⟶
𝐶𝑞(𝐾) for integer 𝑞 ≥ 0

𝛥𝑞 ∶= 𝜕𝑞+1𝜕
∗
𝑞+1 + 𝜕∗𝑞 𝜕𝑞 (8)

where 𝜕∗𝑞 is the coboundary operator mapping 𝜕∗𝑞 ∶ 𝐶𝑞−1(𝐾) ⟶

𝐶𝑞(𝐾). One property 𝜕𝑞𝜕𝑞+1 = 0 is preserved, which implies Im(𝜕𝑞+1) ⊂
ker(𝜕𝑞). The 𝑞-combinatorial Laplacian matrix, denoted 𝑞 , is the matrix
representation.

 =  𝑇 + 𝑇 (9)
𝑞 𝑞+1 𝑞+1 𝑞 𝑞
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of operator 𝛥𝑞 , where 𝑞 and 𝑇
𝑞 be the matrix representation of

a 𝑞-boundary operator and 𝑞-coboundary operator, respectively, with
espect to the standard basis for 𝐶𝑞(𝐾) and 𝐶𝑞−1(𝐾) with some assigned

orderings. Then, the number of rows in 𝑞 corresponds to the number
of (𝑞 − 1)-simplices and the number of columns shows the number
of 𝑞-simplices in 𝐾, respectively. In addition, the upper and lower 𝑞-
combinatorial Laplacian matrices are denoted by 𝑈

𝑞 = 𝑞+1𝑇
𝑞+1 and

𝐿
𝑞 = 𝑇

𝑞 𝑞 , respectively. Note that 𝜕0 is the zero map which leads to
0 being a zero matrix. Therefore, 0(𝐾) = 1𝑇

1 + 𝑇
0 0, with 𝐾 the

oriented) simplicial complex of dimension 1, which is actually a simple
raph. Especially, 0-combinatorial Laplacian matrix 0(𝐾) is actually
he Laplacian matrix defined in the spectral graph theory.

Given an oriented simplicial complex 𝐾 with 0 ≤ 𝑞 ≤ dim(𝐾), the
ntries of 𝑞-combinatorial Laplacian matrices are given by [58]

> 0, (𝑞)𝑖𝑗 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

deg(𝜎𝑖𝑞), if 𝑖 = 𝑗.

1, if 𝑖 ≠ 𝑗, 𝜎𝑖𝑞
𝑈
≁ 𝜎𝑗𝑞 and 𝜎𝑖𝑞

𝐿∼ 𝜎𝑗𝑞 with
similar orientation.

−1, if 𝑖 ≠ 𝑗, 𝜎𝑖𝑞
𝑈
≁ 𝜎𝑗𝑞 and 𝜎𝑖𝑞

𝐿∼ 𝜎𝑗𝑞 with
dissimilarorientation.

0, if 𝑖 ≠ 𝑗 and either , 𝜎𝑖𝑞
𝑈∼ 𝜎𝑗𝑞 or 𝜎𝑖𝑞

𝐿
≁ 𝜎𝑗𝑞 .

(10)

= 0, (𝑞)𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

deg(𝜎𝑖0), if 𝑖 = 𝑗.
−1, if 𝜎𝑖0

𝑈∼ 𝜎𝑗0.
0, otherwise.

(11)

.1.4. Persistent spectral graphs

Persistent spectral graphs were introduced by integrating graph
aplacian and multiscale filtration [40]. Both topological and geometric
nformation (i.e. connectivity and robustness of simple graphs) can be
erived from analyzing the spectra of 𝑞-combinatorial Laplacian matrix.
owever, this method is genuinely free of metrics or coordinates, which

nduced too little topological and geometric information that can be
sed to describe a single configuration. Therefore, persistent spectral
raphs (PSG) is proposed to create a sequence of simplicial complexes
nduced by varying a filtration parameter, which is inspired by the idea
f persistent homology and our earlier work in multiscale graphs. This
ection mainly introduce the construction of persistent spectral graphs.

First, a 𝑞-combinatorial Laplacian matrix is symmetric and positive
emi-definite. Therefore, its eigenvalues are all real and non-negative.
he multiplicity of zero spectra (also called harmonic spectra) reveals
he topological information, and the geometric information will be pre-
erved in the non-harmonic spectra. More specifically, the multiplicity
f zero spectra of 𝑞(𝐾) is denoted by 𝛽𝑞 which is actually the 𝑞th Betti
umber defined in the homology:

𝑞 = dim(𝑞(𝐾)) − rank(𝑞(𝐾)) = nullity(𝑞(𝐾))

= # of zero eigenvalues of 𝑞(𝐾). (12)

Naturally, persistent spectral theory creates a sequence of simplicial
omplexes induced by varying a filtration parameter [40]. A filtration
f an oriented simplicial complex 𝐾 is a sequence of sub-complexes
𝐾𝑡)𝑚𝑡=0 of 𝐾
6

= 𝐾0 ⊆ 𝐾1 ⊆ 𝐾2 ⊆ ⋯ ⊆ 𝐾𝑚 = 𝐾. (13)
t induces a sequence of chain complexes Eq. (14) is given in Eq. (14).

⋯
𝜕1𝑞+1
←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←
𝜕1∗𝑞+1

𝐶1
𝑞

𝜕1𝑞
←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←
𝜕1∗𝑞

⋯
𝜕12
←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←
𝜕1∗2

𝐶1
1

𝜕11
←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←
𝜕1∗1

𝐶1
0

𝜕10
←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←
𝜕1∗0

𝐶1
−1

⊆ ⊆ ⊆

⋯
𝜕2𝑞+1
←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←
𝜕2∗𝑞+1

𝐶2
𝑞

𝜕2𝑞
←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←
𝜕2∗𝑞

⋯
𝜕22
←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←
𝜕2∗2

𝐶2
1

𝜕21
←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←
𝜕2∗1

𝐶2
0

𝜕20
←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←
𝜕2∗0

𝐶1
−1

⊆ ⊆ ⊆

⋯ ⋯ ⋯

⊆ ⊆ ⊆

⋯
𝜕𝑚𝑞+1
←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←
𝜕𝑚∗𝑞+1

𝐶𝑚
𝑞

𝜕𝑚𝑞
←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←
𝜕𝑚∗𝑞

⋯
𝜕𝑚2
←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←
𝜕𝑚∗2

𝐶𝑚
1

𝜕𝑚1
←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←
𝜕𝑚∗1

𝐶𝑚
0

𝜕𝑚0
←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←
𝜕𝑚∗0

𝐶1
−1

(14)

For each sub-complexes 𝐾𝑡, we define its corresponding chain group
o be 𝐶𝑞(𝐾𝑡), and the 𝑞-boundary operator will be denoted by 𝜕𝑡𝑞 ∶
𝑞(𝐾𝑡) → 𝐶𝑞−1(𝐾𝑡). We say that if 𝑞 < 0. then 𝐶𝑞(𝐾𝑡) is an empty set
nd 𝜕𝑡𝑞 is a zero map. If 0 < 𝑞 ≤ dim(𝐾𝑡), then

𝑡
𝑞(𝜎𝑞) =

𝑞
∑

𝑖
(−1)𝑖𝜎𝑖𝑞−1, 𝜎𝑞 ∈ 𝐾𝑡, (15)

ith 𝜎𝑞 = [𝑣0,… , 𝑣𝑞] being the 𝑞-simplex, and 𝜎𝑖𝑞−1 = [𝑣0,… , 𝑣𝑖,… , 𝑣𝑞]
eing the (𝑞−1)-simplex for which its vertex 𝑣𝑖 is removed. Additionally,
he adjoint operator is 𝜕𝑡∗𝑞 ∶ 𝐶𝑞−1(𝐾𝑡) → 𝐶𝑞(𝐾𝑡). The topological and
pectral information of 𝐾𝑡 can be analyzed from 𝑞(𝐾𝑡) along with
he filtration parameter by diagonalizing the 𝑞-combinatorial Laplacian
atrix. We call the multiplicity of zero spectra of 𝑡

𝑞 as its persistent
etti number 𝛽𝑡𝑞 , which counts the number of 𝑞-dimensional holes in
𝑡:

𝑡
𝑞 = dim(𝑡

𝑞) − rank(𝑡
𝑞) = nullity(𝑡

𝑞) = #of harmonic spectra of 𝑡
𝑞 .

(16)

pecifically, 𝛽𝑡0 represents the number of connected components in 𝐾𝑡,
𝑡
1 reveals the number of one-dimensional loops or circles in 𝐾𝑡, and 𝛽𝑡2
hows the number of two-dimensional voids or cavities in 𝐾𝑡. Moreover,
he set of spectra of 𝑡

𝑞 is given by:

pectra(𝑡
𝑞) = {(𝜆1)𝑡𝑞 , (𝜆2)

𝑡
𝑞 ,… , (𝜆𝑁 )𝑡𝑞}, (17)

here 𝑡
𝑞 has dimension 𝑁 ×𝑁 and spectra are arranged in ascending

rder. The smallest non-zero eigenvalue of 𝑡
𝑞 is defined as (�̃�2)𝑡𝑞 . The

-persistent 𝑞-combinatorial Laplacian operator is defined by extending
he boundary operator. Detailed descriptions can be found in Ref. [40].

.2. Predictive models for mutation-induced protein–protein binding free
nergy changes

Since the harmonic spectra produced by the kernel of a persistent
aplacian contain exact topological information as that of persistent ho-
ology, we utilize a persistent homology software, GUDHI, to generate
urely topological representations of PPIs in dimensions 0, 1, and 2.
dditionally, persistent Laplacian spectra, including both harmonic and
on-harmonic parts, are coded in Python. Machine learning and deep
earning algorithms are implemented in Pytorch [60].

.2.1. Persistent Laplacian representation of PPIs
To facilitate topological and shape analysis of PPIs via persistent

aplacians, we first composite the atoms in a protein–protein complex
nto various subsets.

1. m: atoms of the mutation sites.
2. mn(𝑟): atoms in the neighborhood of the mutation site within a
cut-off distance 𝑟.
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3. A(𝑟): protein A atoms within 𝑟 of the binding site.
4. B(𝑟): protein B atoms within 𝑟 of the binding site.
5. ele(E): atoms in the system that has atoms of element type E.

The distance matrix is specially designed such that it excludes
the interactions between the atoms form the same set. For in-
teractions between atoms 𝑎𝑖 and 𝑎𝑗 in set  and/or set , the
modified distance is defined as

𝐷mod(𝑎𝑖, 𝑎𝑗 ) =

{

∞, if 𝑎𝑖, 𝑎𝑗 ∈ , or 𝑎𝑖, 𝑎𝑗 ∈ ,
𝐷𝑒(𝑎𝑖, 𝑎𝑗 ), if 𝑎𝑖 ∈  and 𝑎𝑗 ∈ ,

(18)

where 𝐷𝑒(𝑎𝑖, 𝑎𝑗 ) is the Euclidian distance between 𝑎𝑖 and 𝑎𝑗 .

Molecular atoms of different can be constructed as points presented
by 𝑣0, 𝑣1, 𝑣2, ..., 𝑣𝑘 as 𝑘 + 1 affinely independent points in simplicial
complex. Persistent spectral graph is devised to track the multiscale
topological and geometrical information over different scales along a
filtration [40], resulting in significant important feature vectors for
the machine learning method. Features generated by binned barcode
vectorization can reflect the strength of atom bonds, van der Waals
interactions, and can be easily incorporated into a machine learning
model, which captures and discriminates local patterns. Using the
atom subsets, for example A(𝑟) and B(𝑟), simplicial complexes are
constructed by only considering the edges from A(𝑟) to B(𝑟) for
Vietoris–Rips complexes. Then from the Vietoris–Rips complex filtra-
tion, barcodes generated from persistent homology are enumerated by
bar lengths in certain intervals with number 0 or 1. Meanwhile, for
each complexes in the filtration, eigenvalues are calculated according
to the graph Laplacian analysis. The statistics of eigenvalues such as
sum, maximum, minimum, mean, and standard deviation are collected
to have a normalized features for machine learning methods. Another
method of vectorization is to get the statistics of bar lengths, birth
values, and death values, such as sum, maximum, minimum, mean,
and standard deviation. This method is applied to vectorize Betti-1
(𝐻1) and Betti-2 (𝐻2) barcodes obtained from alpha complex filtration
based on the facts that higher-dimensional barcodes are sparser than
𝐻0 barcodes.

3.2.2. Machine learning and deep learning algorithms
The features generated from the persistent spectral graph are tested

by the gradient boosting tree (GBT) method and the deep neural net-
work (Net) method. The validations are performed on the datasets dis-
cussed in the results section. The accurate prediction of the mutation-
induced binding affinity changes of protein–protein complexes is very
challenging. After effective feature-generations, a machine learning or
deep learning model is also required for validations and real applica-
tions. The gradient boosting tree is a popular ensemble method for
regression and classification problems. It builds a sequence of weak
learners to correct training errors. By the assumption that the individual
learners are likely to make different mistakes, the method combines
weak learners to eliminate the overall error. Furthermore, a decision
tree is added to the ensemble depending on the present prediction
error on the training dataset. Therefore, this method is relatively ro-
bust against hyperparameter tuning and overfitting, especially for a
moderate number of features. The GBT is shown for its robustness
against overfitting, good performance for moderately small data sizes,
and model interpretability. The present work uses the package provided
by scikit-learn (v 0.23.0) [61]. The number of estimators and the
learning rate are optimized for ensemble methods as 20 000 and 0.01,
respectively. For each set, ten runs (with different random seeds) were
done, and the average result is reported in this work. Considering a
large number of features, the maximum number of features to consider
is set to the square root of the given descriptor length for GBT methods
to accelerate the training process. The parameter setting shows that the
performance of the average of sufficient runs is decent.

A deep neural network is a network of neurons that maps an
input feature layer to an output layer. The neural network mimics
7

the human brain to solve problems with numerous neuron units with
backpropagation to update weights on each layer. To reveal the facts of
input features at different levels and abstract more properties, one can
construct more layers and more neurons in each layer, known as a deep
neural network. Optimization methods for feedforward neural networks
and dropout methods are applied to prevent overfitting. The network
layers and the number of neurons in each layer are determined by gird
searches based on 10-fold cross-validations. Then, the hyperparameters
of stochastic gradient descent (SGD) with momentum are set up based
on the network structure. The network has 7 layers with 10 000 neurons
in each layer. For SGD with momentum, the hyperparameters are
momentum = 0.9 and weight_decay=0. The learning rate is 0.002
and the epoch is 400. The Net is implemented on Pytorch [60].

3.2.3. Predictive models
In our previous work, topology-based deep neural network trained

with mAbs (TopNetmAb) was introduced to predict mAb binding free
energy changes [34]. Persistent homology is the main workhorse for
TopNetmAb, but auxiliary features inherited from our earlier TopNet-
Tree [19] are utilized.

In this work, we construct a TopNet model from TopNetmAb by
excluding mAb training data. A topology-based GBT model (TopBGT)
is also developed in the present work by replacing Net in the TopNet
model with GBT. Both TopNet and TopGBT include a set of auxil-
iary features inherited from our earlier TopNetTree [19] and Top-
NetmAb [34] to enhance their performance.

Additionally, to evaluate the performance of persistent Laplacian
(Lap) for PPIs, we construct persistent Laplacian-based GBT (LapGBT)
and persistent Laplacian-based deep neural network (LapNet). Note
that, unlike TopNet and TopGBT, LapGBT and LapNet employ only per-
sistent Laplacian features extracted from protein structures. Therefore,
their performance depends purely on persistent Laplacian.

Moreover, TopLapGBT and TopLapNet are constructed by adding
persistent Laplacian features to TopGBT and TopNet, respectively. Fur-
thermore, the consensus of GBT and Net predictions are also used
for validations, denoted as TopNetGBT and LapNetGBT, respectively.
Finally, the consensus of TopLapNet and TopLapGBT is called TopLap-
NetGBT.

4. Conclusion

Due to natural selection, emerging SARS-CoV-2 variants are spread-
ing worldwide with their increased transmissibility as a result of higher
infectivity and/or stronger antibody resistance. The increase in an-
tibody resistance also leads to vaccine breakthrough infections and
jeopardizes the existing monoclonal antibody drugs. The spike protein
plays the most important role in viral transmission because its receptor
binding domain (RBD) binds to human ACE2 to facilitate the viral entry
of host cells. Topological data analysis (TDA) of RBD-ACE2 binding
free energy changes induced by RBD mutations enables the accurate
forecasting of emerging SARS-CoV-2 variants [6,13,39,62].

However, the earlier TDA method is not sensitive to homotopic
shape evolution during filtration, which is important for protein–
protein interactions (PPIs). To overcome this obstacle, persistent Lapla-
cian, which characterizes the topology and shape of data, is introduced
in this work for analyzing PPIs. Paired with advanced machine learn-
ing and deep learning algorithms, the proposed persistent Laplacian
method outperforms the state-of-art approaches in validation with
mutation-induced binding free energy changes of PPIs using major
benchmark datasets. An important forecasting from the present work
is that Omicron subvariants BA.2.11, BA.212.1, BA.4, and BA.5 have a
high potential to become new dominating variants in the world.
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SKEMPI 2.0: an updated benchmark of changes in protein–protein binding
energy, kinetics and thermodynamics upon mutation, Bioinformatics 35 (3)
(2019) 462–469.

[48] J. Chen, Y. Qiu, R. Wang, G.-W. Wei, Persistent laplacian projected omicron
ba. 4 and ba. 5 to become new dominating variants, 2022, arXiv preprint
arXiv:2205.00532.

[49] D. Mannar, J.W. Saville, X. Zhu, S.S. Srivastava, A.M. Berezuk, K. Tuttle, C.
Marquez, I. Sekirov, S. Subramaniam, Sars-cov-2 omicron variant: Ace2 binding,
cryo-em structure of spike protein-ace2 complex and antibody evasion, BioRxiv
(2021).

[50] BA2 reinfection, 0000. https://www.timesofisrael.com/several-cases-of-omicron-
reinfection-said-detected-in-israel-with-new-ba2-strain/.

[51] F.P. Lyngse, C.T. Kirkeby, M. Denwood, L.E. Christiansen, K. Mølbak, C.H. Møller,
R.L. Skov, T.G. Krause, M. Rasmussen, R.N. Sieber, et al., Transmission of sars-
cov-2 omicron voc subvariants ba. 1 and ba. 2: Evidence from danish households,
MedRxiv (2022).

http://refhub.elsevier.com/S0010-4825(22)00970-2/sb1
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb1
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb1
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb1
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb1
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb2
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb2
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb2
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb2
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb2
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb2
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb2
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb2
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb2
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb3
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb3
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb3
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb3
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb3
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb3
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb3
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb4
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb4
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb4
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb4
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb4
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb4
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb4
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb5
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb5
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb5
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb5
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb5
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb6
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb6
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb6
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb7
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb7
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb7
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb7
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb7
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb8
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb8
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb8
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb8
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb8
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb9
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb9
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb9
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb9
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb9
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb9
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb9
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb10
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb10
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb10
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb10
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb10
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb11
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb11
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb11
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb11
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb11
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb12
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb12
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb12
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb13
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb13
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb13
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb14
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb14
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb14
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb14
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb14
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb15
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb15
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb15
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb16
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb16
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb16
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb16
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb16
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb17
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb17
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb17
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb17
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb17
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb18
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb18
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb18
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb18
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb18
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb19
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb19
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb19
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb19
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb19
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb20
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb20
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb20
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb20
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb20
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb21
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb21
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb21
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb21
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb21
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb22
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb22
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb22
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb23
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb24
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb24
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb24
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb25
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb25
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb25
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb26
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb26
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb26
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb27
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb27
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb27
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb27
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb27
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb28
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb28
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb28
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb29
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb29
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb29
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb29
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb29
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb30
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb30
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb30
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb30
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb30
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb31
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb31
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb31
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb31
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb31
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb32
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb32
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb32
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb32
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb32
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb33
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb33
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb33
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb33
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb33
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb34
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb34
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb34
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb35
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb35
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb35
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb35
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb35
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb35
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb35
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb36
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb36
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb36
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb36
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb36
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb36
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb36
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb37
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb37
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb37
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb37
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb37
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb37
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb37
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb38
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb38
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb38
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb38
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb38
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb38
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb38
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb39
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb39
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb39
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb39
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb39
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb40
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb40
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb40
http://arxiv.org/abs/2012.02808
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb42
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb42
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb42
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb42
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb42
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb43
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb43
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb43
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb44
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb44
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb44
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb45
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb45
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb45
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb45
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb45
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb46
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb46
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb46
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb46
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb46
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb47
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb47
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb47
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb47
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb47
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb47
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb47
http://arxiv.org/abs/2205.00532
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb49
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb49
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb49
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb49
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb49
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb49
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb49
https://www.timesofisrael.com/several-cases-of-omicron-reinfection-said-detected-in-israel-with-new-ba2-strain/
https://www.timesofisrael.com/several-cases-of-omicron-reinfection-said-detected-in-israel-with-new-ba2-strain/
https://www.timesofisrael.com/several-cases-of-omicron-reinfection-said-detected-in-israel-with-new-ba2-strain/
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb51
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb51
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb51
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb51
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb51
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb51
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb51


Computers in Biology and Medicine 151 (2022) 106262J. Chen et al.
[52] S. Jemimah, K. Yugandhar, M. Michael Gromiha, Proximate: a database of
mutant protein–protein complex thermodynamics and kinetics, Bioinformatics 33
(17) (2017) 2787–2788.

[53] Q. Liu, P. Chen, B. Wang, J. Zhang, J. Li, Dbmpikt: a database of kinetic and
thermodynamic mutant protein interactions, BMC Bioinformatics 19 (1) (2018)
1–7.

[54] E. Procko, The sequence of human ace2 is suboptimal for binding the s spike
protein of sars coronavirus 2, BioRxiv (2020).

[55] D.H. Serrano, D.S. Gómez, Centrality measures in simplicial complexes:
applications of tda to network science, 2019, arXiv preprint arXiv:1908.02967.

[56] S. Maletić, M. Rajković, Consensus formation on a simplicial complex of opinions,
Phys. A 397 (March) (2014) 111–120.

[57] D. Hernández Serrano, D. Sánchez Gómez, Higher order degree in simplicial
complexes, multi combinatorial laplacian and applications of tda to complex
networks, 2021, arXiv preprint arXiv:1908.02583.
9

[58] T.E. Goldberg, Combinatorial Laplacians of Simplicial Complexes Senior Thesis,
Bard College, 2002.

[59] D. Horak, J. Jost, Spectra of combinatorial laplace operators on simplicial
complexes, Adv. Math. 244 (2013) 303–336.

[60] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high-performance
deep learning library, Adv. Neural Inf. Process. Syst. 32 (2019).

[61] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine
learning in python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[62] R. Wang, J. Chen, Y. Hozumi, C. Yin, G.-W. Wei, Emerging vaccine-breakthrough
SARS-CoV-2 variants, ACS Infect. Dis. 8 (3) (2021) 546–556.

http://refhub.elsevier.com/S0010-4825(22)00970-2/sb52
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb52
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb52
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb52
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb52
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb53
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb53
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb53
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb53
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb53
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb54
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb54
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb54
http://arxiv.org/abs/1908.02967
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb56
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb56
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb56
http://arxiv.org/abs/1908.02583
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb58
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb58
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb58
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb59
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb59
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb59
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb60
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb60
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb60
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb60
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb60
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb61
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb61
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb61
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb61
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb61
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb62
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb62
http://refhub.elsevier.com/S0010-4825(22)00970-2/sb62

	Persistent Laplacian projected Omicron BA.4 and BA.5 to become new dominating variants
	Introduction
	Results
	Emerging SARS-CoV-2 variants: Infectivity
	The performance on the AB-Bind dataset
	The performance on the SKEMPI dataset
	The performance on the SKEMPI 2.0 dataset
	The performance on SARS-CoV-2 datasets

	Theories and methods
	Persistent Laplacians
	Spectral graphs
	Simplicial complex
	Graph Laplacian
	Persistent spectral graphs

	Predictive models for mutation-induced protein–protein binding free energy changes
	Persistent Laplacian representation of PPIs
	Machine learning and deep learning algorithms
	Predictive models


	Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References


