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Geometric algebra is a powerful framework that unifies mathematics and
physics. Since its revival in the 1960s, it has attracted great attention and
has been exploited in fields like physics, computer science and engineering.
This work introduces a geometric algebra method for the molecular surface
generation that uses the Clifford–Fourier transform (CFT) which is a gener-
alization of the classical Fourier transform. Notably, the classical Fourier
transform and CFT differ in the derivative property in Rk for k even. This
distinction is due to the non-commutativity of geometric product of pseu-
doscalars with multivectors and has significant consequences in
applications. We use the CFT in R3 to benefit from the derivative property
in solving partial differential equations (PDEs). The CFT is used to solve
the mode decomposition process in PDE transform. Two different initial
cases are proposed to make the initial shapes in the present method. The
proposed method is applied first to small molecules and proteins. To vali-
date the method, the molecular surfaces generated are compared to
surfaces of other definitions. Applications are considered to protein electro-
static surface potentials and solvation free energy. This work opens the door
for further applications of geometric algebra and CFT in biological sciences.
1. Introduction
The structures of biomolecules, such as those of proteins, DNA, molecular motors,
subcellular organelles and viruses, are directly related to their interactions and
functions [1–3]. Therefore, studying biomolecular structures is a major topic in
molecular biology and is essential for understanding biological processes. For
example, the visualization of biomolecular surfaces and their electrostatic poten-
tials is vital in the analysis of biomolecular interactions like protein–nucleic acid
and protein–protein interactions, ligand–receptor binding, macromolecular
assembly, enzymatic mechanism and drug discovery [2]. Also, geometric comple-
mentarity, which is essential in molecular docking, can be predicted via molecular
surface shapes [1]. Hence, many theoretical methods and computational algor-
ithms were proposed to characterize molecular shapes. In 1953, Corey &
Pauling [4] presented molecular models of atoms and bonds that are still pivotal
in molecular sciences. The wide applications of surfaces raise the need for fast and
reliable surface generation algorithms. This is due to the fact that in molecular
simulations molecular surfaces are rendered millions of times repeatedly [2]. For
the case of large macromolecules that require excessive memory, a divide-and-
conquer method was proposed to improve the efficiency of surface generation [5].

It is worth noting that when we talk about molecular surfaces we may not
mean real physical surfaces. They are, indeed, a representation of molecular
shapes and there are many representations available in the literature. The most
popular representations are the van der Waals surface (VdWS), the solvent
excluded surface (SES) and the solvent accessible surface (SAS) [6]. The VdWS
is defined as a surface composed of overlapping rigid spheres with each
sphere having a radius corresponding to the van der Waals radius of the corre-
sponding atom. The SES is defined as the surface of the volume generated by
moving a sphere representing a solvent molecule around the molecule and
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depicting the positions of the exterior surface of the sphere.
Likewise, the SAS is depicting the positions of the centre of
the sphere [1]. The importance of such representations is that
they are often used asmolecule–solvent interfaces. These inter-
face models are crucial in illustrating how surfaces interact
with surroundingmolecules such as ions, counterions and sol-
vents [2]. These interactions may determine the stability and
solubility of macromolecules in an aqueous environment.
The essence of such investigations comes from the fact that
the human cell mass has a great percentage of water in the
range of 65–90% and most biological processes occur in that
aqueous part of the cell.With this being said, the above surface
models have been exploited in studies of protein folding [7],
protein–protein interactions [8], drug classification [9], sol-
vation energies [10], macromolecular docking [11], ion
channel transport [12], protein pocket detection [13] and
DNA binding [11].

The aforementioned surfaces, i.e. VdWS, SES and SAS,
admit geometric singularities which result in computational
difficulties [14–18]. To overcome this issue, the energy mini-
mization principle has been adopted for biomolecular
surface construction. PDE-based biomolecular surfaces were
proposed in 2005 [19]. Inspired by geometric flows, the mini-
mal molecular surface (MMS) was presented in 2006. In
general, minimal surfaces are widely seen in nature due to
the energy minimization principle [3]. These methods,
unlike other popular methods, start with atomic coordinates
and radii rather than some given surfaces. In addition,
Gaussian surfaces [20–22], flexibility–rigidity index surfaces
[23–25], level-set surfaces [26] and skinning surfaces [27]
were also proposed to avoid singularity issues.

In the past few decades, geometric flow algorithms were
exploited in image analysis and surface processing. Witkin, in
1983, proposed an image denoising algorithm using diffusion
equations that were presented to be formally equivalent to
Gaussian low-pass filters [28]. Perona & Malik [29] presented
an anisotropic diffusion equation for image denoise without
edges being smeared. Generalized Perona–Malik equation
with arbitrarily high-order nonlinear PDEs was proposed for
edge-preserving noisy image restoration [30]. Mode decompo-
sition evolution equations were proposed to generalize
nonlinear PDE-based high-pass filters. These equations per-
form a PDE transform, which splits the data, signals and
images into functional modes such as trend, edge, texture,
noise and so on, depending on frequencies [31]. PDE transform
was used to generate biomolecular surfaces [2]. The fast Fourier
transform was incorporated in the PDE transform to avoid the
stability constraints of solving high-order PDEs [2].

The Fourier transform is widely applied in science and
engineering. Due to its great importance and impact on exper-
iments and computational work, there have been many
versions proposed to generalize or improve Fourier transform.
In the field of geometric algebra, the Clifford–Fourier trans-
form (CFT) was presented among other proposed transforms
such as quaternion Fourier transform [32–35]. The CFT exploits
two main notions in geometric algebra: geometric product and
multivector. It is noteworthy that the notion of multivectors is
built on the geometric product that was proposed by Clifford
in 1876 [36] to unify the work of Grassmann in the outer pro-
duct, also known as wedge product, and the work of Hamilton
in quaternions [36]. However, Clifford’s work did not get
much attention until the 1960s. In 1966, Davis Hestenes ignited
the revival of geometric algebra and geometric calculus in his
book Space-Time Algebra [34]. In the beginning, the emphasis of
Hestenes was mainly on physics before geometric algebra
applications obtained wide recognition in other fields such
as computer science [37] and image processing [38,39]. Hes-
tenes suggested geometric algebra to be the unifying
language of mathematics and physics [40]. Geometric algebra
has also been applied to protein structure analysis [41–45].
Nowadays, one can say that geometric algebra offers a unified
framework for diverse applications in mathematics, physics,
computer science, engineering and biology [46]. Notably,
other fields of mathematics that have a strong relationship
with geometric algebra also have great potential in biophysical
applications. Specifically, the evolutionary de Rham–Hodge
method was proposed for molecular data representation and
analysis [47]. The wedge product and exterior calculus used
in de Rham–Hodge theory are related to geometric calculus.
Also, the k-forms of de Rham–Hodge theory play a very simi-
lar role to the k-vectors of geometric algebra. The evolutionary
de Rham–Hodge method showed success in predicting the
protein B-factors of some challenging cases and outperformed
the present methods in protein flexibility analysis [47].

The goal of this work is to develop a geometric algebra-
based biomolecular surface generation algorithm. The CFT is
used along with the PDE transform to define a new molecular
representation. This work opens a new direction in geometric
algebra-based biomolecular modelling and analysis. It may
stimulate future applications of geometric algebra in biological
sciences. This paper is organized into four sections. Section 1 is
dedicated to a brief literature review on molecular surface gen-
eration methods, PDE transform, and geometric algebra and
calculus. Then, §2 presents the theoretical background of our
method. It starts by giving a thorough introduction to geometric
algebra stating the definitions and main properties of the outer
product, geometric product, k-vectors, multivectors and Clif-
ford algebras. After that, CFT is presented where necessary
definitions ofmultivector functions, derivatives and integration
are stated in the geometric calculus context. Then, specific cases
of CFT in two-dimensional (2D) and three-dimensional (3D)
settings are discussed along with showing similarities to and
differences from the original Fourier transform. Next, we dis-
cuss the PDE transform. Afterward, §3 is devoted to our
biomolecular surface generation method. Two equations used
in the construction of initial surfaces are given. Then, test
cases are provided and investigated to explore the effects of
changing the parameters, i.e.propagation time and isovalues.
After investigating the parameters, surfaces of real proteins
are generated and compared to those from well-known
methods. Finally, §4 demonstrates some applications of the gen-
eration of the surface for the purposes of validation. First, the
electrostatic surface potentials are calculated and mapped to
surfaces generated using our CFT method and then to
surfaces generated using the MSMS method [17]. The calcu-
lations are conducted using the APBS package in VMD [48].
Second, the electrostatic solvation free energies of 21 proteins
are calculated and compared to three other molecular surface
generation methods presented in the literature. The energy
calculations are carried out using MIBPB [49].
2. Theories and methods
The Fourier transform has been used extensively in math-
ematics, science and engineering. Many versions of the
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Figure 1. Visualization of x ^ y compared to x × y. x ^ y is an oriented
parallelogram while x × y is a vector perpendicular to both x and y.
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Fourier transform have been proposed in different fields of
mathematics. In the field of geometric algebra, CFT and qua-
ternion Fourier transform were presented. Since this work
uses the CFT, a basic introduction to geometric algebra is
given to define notions and establish notations. Then, a
definition of CFT follows.

2.1. Geometric algebra
Geometric algebra presents a framework where operations
are given as scalars, vectors and multivectors irrespective of
the grade of the vectors. This unification and generalization
is due to two main concepts in geometric algebra: geometric
product and multivector [50,51]. To define the geometric
product, we need first to introduce the outer product, also
called the wedge product, operator of geometric algebra.

2.1.1. Outer product
Given x and y in Rn, their outer product is represented by
x ^ y. For any three vectors x, y and z in Rn and a scalar λ
in R, the outer product has the following properties:

x ^ y ¼ �y ^ x, ð2:1Þ
x ^ x ¼ 0, ð2:2Þ

ðlxÞ ^ y ¼ lðx ^ yÞ, ð2:3Þ
lðx ^ yÞ ¼ ðx ^ yÞl, ð2:4Þ

x ^ ðyþ zÞ ¼ ðx ^ yÞ þ ðx ^ zÞ ð2:5Þ
and x ^ ðy ^ zÞ ¼ ðx ^ yÞ ^ z: ð2:6Þ

It is worth noting that the outer product is anticommuta-
tive as given in the property (2.1). The result of the outer
product of two vectors x and y is called a bivector and can
be visualized as an oriented parallelogram with x and y as
shown in figure 1.

Furthermore, the outer product of three vectors is called a
trivector and can be visualized as an oriented parallelepiped,
which has six oriented parallelograms as its faces. In general,
the outer product of k vectors is called a k-vector and obviously,
it cannot be visualized in a 3D setting. Keep in mind that
k-vectors are feasible if the vectors are in a Euclidean space
of dimension n where k≤ n. Otherwise, the outer product is
zero if k > n. A k-vector is said to have a grade k.

2.1.2. Geometric product
After this introduction of the outer product, the geometric
product of x and y is represented as xy and defined as

xy ¼ x � yþ x ^ y, ð2:7Þ
where x · y is the inner product.

Note that the product xy is a combination of a scalar x · y
and a bivector x ^ y. This note leads us to the concept of multi-
vectors. In a Euclidean space of dimension n, a multivector is a
linear combination of different-grade k-vectors with n being
the highest grade, i.e. it is a linear combination of a scalar, vec-
tors, bivectors, trivectors,…, (n− 1)-vectors and an n-vector.
Let us deduce some properties of the geometric product. The
geometric product of a vector x with itself is the magnitude
of x squared as follows:

xx ¼ x � xþ x ^ x ¼ kxk2 þ 0 ¼ kxk2,
which leads to the fact that for any non-zero vector x, the
vector x/||x||2 is its inverse. Also, the inner product and the
outer product of any two vectors x and y can be expressed
in terms of their geometric products only as shown below.

Since

xy ¼ x � yþ x ^ y and yx ¼ x � y� x ^ y,

then

xyþ yx ¼ 2ðx � yÞ and xy� yx ¼ 2ðx ^ yÞ,
which implies

x � y ¼ xyþ yx
2

and

x ^ y ¼ xy� yx
2

:

2.1.3. Clifford algebras Rn
First, we generalize the concept of basis to the geometric algebra
setting. If fei : i ¼ 1, . . . , ng is an orthonormal basis of Rn, then

fei ^ ej : i, j ¼ 1, . . . , n and i = jg
is a basis for bivectors and

fei ^ ej ^ ek : i, j, k ¼ 1, . . . , n and i = j, j = k, i = kg
is a basis for trivectors, and so on for the rest of the k-vectors.
This means that any k-vector can be written as a linear sum of
the basis presented. This is useful when it comes to the
summation of k-vectors and helps in finding out the resulting
k-vector.

Notably, the geometric product of orthonormal basis vec-
tors has some special properties that simplify the calculations
of geometric products of multivectors. These properties are

e2i ¼ 1, i ¼ 1, 2, . . . , n ð2:8Þ
eiej ¼ �ejei, i = j ð2:9Þ

since

e2i ¼ ei � ei þ ei ^ ei ¼ ei � ei ¼ keik2 ¼ 1, i ¼ 1, 2, . . . , n
eiej ¼ ei � ej þ ei ^ ej ¼ ei ^ ej ¼ �ej ^ ei ¼ �ejei, i = j:

For the Euclidean space Rn, we get a Clifford algebra Rn

that has the dimension 2n. The basis of Clifford algebra Rn

consists of the scalar 1 and the basis of Rn and all different
geometric products of the basis vectors. The Clifford algebra
Rn contains all multivectors of grade n or less where the mul-
tivector grade is the highest grade among its constituent
k-vectors. For the sake of simplicity, we limit the discussion
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to R2 and R3 in the rest of this section. Therefore, the basis
for R2 is

f1, e1, e2, e3, e1e2g,
and the basis for R3 is

f1, e1, e2, e3, e1e2, e2e3, e1e3, e1e2e3g,
and to simplify the notations, eiej and eiejek are denoted as eij and
eijk from now on. The following are examples of multivectors in
R2 and R3, respectively:

M2 ¼ a0 þ a1e1 þ a2e2 þ a12e12

and

M3 ¼ a0 þ a1e1 þ a2e2 þ a3e3 þ a12e12 þ a23e23 þ a13e13

þ a123e123:

It is noteworthy that the basis of the Clifford algebraR2 has
only one element of grade 2 which is e12 and therefore it is
called pseudoscalar and denoted as i2. In R3, similarly e123 is
called pseudoscalar and denoted as i3. The pseudoscalars
have two important features. First, they square to −1 as fol-
lows:

i22 ¼ e1e2e1e2 ¼ �e1e1e2e2 ¼ �ð1Þð1Þ ¼ �1 ð2:10Þ
and

i23 ¼ e1e2e3e1e2e3 ¼ e1e2e1e2e3e3 ¼ �e1e1e2e2e3e3

¼ �ð1Þð1Þð1Þ ¼ �1: ð2:11Þ
Second, any multivector M2 in R2 can be written as

M2 ¼ aþ aþ i2ðbþ bÞ,
where a, b [ R and a, b [ R2, and any multivector M3 in R3

can be written as

M3 ¼ aþ aþ i3ðbþ bÞ,
where a, b [ R and a, b [ R3.

Moreover, faþ i2bja, b [ Rg , R2 is isomorphic to C

since i22 ¼ �1. So, for any scalar γ

eði2gÞ ¼ cosðgÞ þ i2 sinðgÞ:
Likewise, for R3, we have

eði3gÞ ¼ cosðgÞ þ i3 sinðgÞ:
Note that i2 is not commutative with multivectors in R2

which makes eði2gÞ not commutative as well. Indeed, i2 com-
mutes with scalars and bivectors, as shown in equations
(2.4) and (2.10), and anticommutes with vectors as follows:

e1i2 ¼ e1e1e2 ¼ �e1e2e1 ¼ �i2e1:

The same can be said about e2.
On the other hand, i3 is commutative with any multivec-

tor in R3 which means eði3gÞ is commutative with any
multivector in R3, and this can be proved in the way followed
with i2. This note makes a noticeable impact when discussing
the properties of the CFT.
2.2. Clifford–Fourier transform
A multivector function F is a function whose range is a set of
multivectors [52]. Now, let F be a multivector function that is
defined on Rn

F :Rn �! Rm,

then its directional derivative in direction r is defined as [50]

Fr ¼ lim
e!0

Fðxþ erÞ � FðxÞ
e

,

where e [ R. Also, its Riemannian integral is defined as [50]ð
Rn

FðxÞjdxj ¼ lim
n!1jDxij!0

Xn
i¼1

FðxiÞDxi:

The CFT is presented for a 2D setting and then for a 3D
setting.

2.2.1. Clifford–Fourier transform in two dimensions
The CFT of a multivector function F :Rn �! R2 is defined as

FfFgðuÞ ¼
ð
Rn

FðxÞ eð�2pi2hx,uiÞjdxj,

and the inverse CFT is defined as

F�1fFgðxÞ ¼
ð
Rn

FðuÞ eð2pi2hx,uiÞjduj,

where x, u [ Rn, provided the integrals exist. A multivector
function F defined as

FðxÞ ¼ F0ðxÞ þ F1ðxÞe1 þ F2ðxÞe2 þ F12ðxÞe12
can be written as

FðxÞ ¼ [F0ðxÞ þ F12ðxÞi2]
þ e1[F1ðxÞ þ F2ðxÞi2],

which can be seen as two complex signals and interpreted as
an element of C2. The linearity of CFT would result in the fol-
lowing:

FfFgðuÞ ¼ [FfF0 þ F12i2gðuÞ]1
þ e1[FfF1 þ F2i2gðuÞ],

which means that the CFT in 2D can be dealt with as a linear
combination of two classical Fourier transforms. One of the
most powerful properties of the Fourier transform is the
derivative property. Fortunately, the CFT has derivative prop-
erties that might agree or disagree with the ones of the
classical Fourier transform. To present the derivative prop-
erty for a multivector function F, one needs to decompose it
into

F ¼ [F0ðxÞ þ F12ðxÞe12]þ [F1ðxÞe1 þ F2ðxÞe2] ¼ f þ f,

where f is commutative with i2 and f in anticommutative.
With this being said, Ebling & Scheuermann [50] showed
the following:

FfrfgðuÞ ¼ �2pi2uFffgðuÞ

and

FfDfgðuÞ ¼ 4p2u2FffgðuÞ,

while

FfrfgðuÞ ¼ 2pi2uFffgðuÞ

and

FfDfgðuÞ ¼ 4p2u2FffgðuÞ:
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From the above, one can see that

FfDFgðuÞ ¼ 4p2u2FfFgðuÞ,
while no rule can be written for FfrFg.

2.2.2. Clifford–Fourier transform in three dimensions
The CFT of a multivector function F :Rn �! R3 is defined as

FfFgðuÞ ¼
ð
Rn

FðxÞ eð�2pi3hx,uiÞjdxj,

and the inverse CFT is defined as

F�1fFgðxÞ ¼
ð
Rn

FðuÞ eð2pi3hx,uiÞjduj,

where x, u [ Rn, provided the integrals exist. A multivector
function F defined as

FðxÞ ¼ F0ðxÞ þ F1ðxÞe1 þ F2ðxÞe2 þ F3ðxÞe3
þ F12ðxÞe12 þ F23ðxÞe23 þ F31ðxÞe31 þ F123ðxÞe123

can be written as

FðxÞ ¼ [F0ðxÞ þ F123ðxÞi3]
þ [F1ðxÞ þ F23ðxÞi3] e1
þ [F2ðxÞ þ F31ðxÞi3] e2
þ [F3ðxÞ þ F12ðxÞi3] e3,

which can be seen as four complex signals and interpreted as
an element of C4. The linearity of the CFT would result in the
following:

FfFgðuÞ ¼ [FfF0 þ F123i3gðuÞ]1
þ [FfF1 þ F23i3gðuÞ]e1
þ [FfF2 þ F31i3gðuÞ]e2
þ [FfF3 þ F12i3gðuÞ]e3,

and this makes it plausible to deal with CFT in 3D as a linear
combination of four classical Fourier transforms. The deriva-
tive property in 3D is similar to the one in the classical
Fourier transform because i3 is commutative with any
multivector in R3. Therefore [50],

FfrFgðuÞ ¼ 2pi3uFfFgðuÞ

and

FfDFgðuÞ ¼ �4p2u2FfFg:ðuÞ:

In our applications, we use the CFT in 3D, denoted as
CFT3, since it acts like the classical Fourier transform in
terms of derivative property.

2.3. Partial differential equations transform
In this section, we present a brief review of the PDE trans-
form that was proposed in our earlier work [31]. This
transform is used to generate the biomolecular surfaces by
applying it to specific initial data driven by the coordinates
of the atoms in the molecule and their van der Waals radii.
The next section offers a detailed explanation of the methods
used in getting the initial data as well as the surface construc-
tion procedure.

Motivated by many physical phenomena in biological
systems and pattern formation in nature, a family of high-
order PDEs for image processing was introduced in 1999:

@uðr, tÞ
@t

¼
X

q
r � [dqðuðr, tÞ, jruðr, tÞj, tÞrr2quðr, tÞ]

þ eðuðr, tÞ, jruðr, tÞj, tÞ, q ¼ 0, 1, 2, . . . ,
ð2:12Þ

where u(r, t) is the image function, r ¼ @uðr, tÞ
@r ,

dqðuðr, tÞ, jruðr, tÞj, tÞ is the edge sensitive diffusion coeffi-
cient and eðuðr, tÞ, jruðr, tÞj, tÞ is the enhancement operator.
Equation (2.12) is a generalization of the Perona–Malik
equation [29] that can be recovered if the enhancement oper-
ator is set to zero and q = 0. The diffusion coefficients
dqðuðr, tÞ, jruðr, tÞj, tÞ were defined as

dqðuðr, tÞ, jruðr, tÞj, tÞ ¼ dq0 exp � jruj2
2s2

q

" #
, ð2:13Þ

where the values of dq0 depend on the noise level, and σq for
q = 0, 1 were defined in terms of local statistical variance of u
and ru as

s2
qðrÞ ¼ jrqu� jrquj2 q ¼ 0, 1: ð2:14Þ

The notation YðrÞ represents the local average of Y(r) centred
at r. The importance of the statistical measure based on the
local statistical variance comes from its role in discriminating
image features from noise. This advantage gives the ability to
bypass the preprocessing done to noisy images where they
get convolved with a test function or smooth mask [31].

The well-posedness of the generalized Perona–Malik
equation proposed was analysed in terms of the existence
and uniqueness of the solution [53–55]. The properties of
equation (2.12) were shown to be different from the proper-
ties of other high-order PDEs because it is not derived from
a variational formulation [54]. The stability of equation
(2.12) comes from appropriate choice of the coefficients
dqðuðr, tÞ, jruðr, tÞj, tÞ [31].

As noted in our earlier work [31], the PDE transform can
extract mode functions from some data given, say X, which is
a very important property of the PDE transform. The solution
of equation (2.12) can be found by the following equation:

�X
kðr, tÞ ¼ LXkðrÞ, ð2:15Þ

where L is a low-pass PDE transform that satisfies

Luðr, 0Þ ¼ uðr, tÞ, ð2:16Þ
with t being an artificial time involved in L, �Xkðr, tÞ is the kth
mode function and Xk(r) is the kth residue function that is
defined by

X1 ¼ XðrÞ ð2:17Þ
and

Xk ¼ X1 �
Xk�1

j¼1
�X
j
, k ¼ 2, 3, . . . : ð2:18Þ

The original data X can be reconstructed perfectly as [2]

X ¼
Xk�1

j¼1
�X
j þ Xk: ð2:19Þ

Note that recursive applications of the PDE transform can
generate the mode functions based on the input data,
where the first mode is the trend of the data and the first resi-
due is a general edge function. By contrast, high-pass PDE
transforms, proposed in our earlier work, were constructed
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in a way such that the first mode is the edge type of infor-
mation and the trend is the final residue [31].

For the practical applications in this work, we assume the
following linearized form:

@tu ¼
Xm

j¼1
ð�1Þ jþ1djr2juþ eðXk � uÞ, t � 0, ð2:20Þ

where Xk [ Rn is the kth residue of the data, dj > 0 and ϵ∼ 0.
This linearized equation is subject to the initial data u(r, 0) =
Xk. Solving this arbitrarily high-order PDE transform is com-
putationally expensive. We use the fast CFT to make the
computations more efficient computationally. The CFT is
applied to both sides of equation (2.15) as follows:

�̂X
kðr, tÞ ¼ L̂X̂kðrÞ, ð2:21Þ

where L̂ is a frequency response function expressed as

L̂ðe, t, d1, d2, . . . , dmÞ ¼ e
�
Pm

j¼1
djðw2Þjþe

� �
t

þ ePm
j¼1 djðw2Þj þ e

1� e
�
Pm

j¼1
djðw2Þjþe

� �
t

 ! ð2:22Þ

with w2 ¼Pn
i¼1 w

2
i , and �̂X

k
and X̂ are the CFT of �X and X.

In the present work, periodic boundary condition is used
whenever needed.
3. Biomolecular surface generation
In this section, we propose a CFT-based surface generation
method. First, we give a brief explanation of the method.
Then, we show examples of surfaces generated using this
method. In the next section, surface electrostatic potentials
of some proteins are shown. The surfaces generated are com-
pared with MSMS surfaces in terms of geometric singularities
and electrostatic solvation free energy.

The first step in a surface generation is to make an initial
shape u(r, 0) driven by the coordinates and atomic radii of the
atoms in the protein of interest. Then, we apply a PDE trans-
form with specific parameters of time and order. After that,
the CFT is applied to attain the final shape. From the final
shape, we generate the molecular surface by extracting a
specific isosurface. For the initial data, we have two cases
for the initial data used in this method: piecewise initial
data and Gaussian initial data.

3.1. Initial data
The first of the two initial data cases is to use the piecewise
initial data that we used in our earlier work [2,19]. The piece-
wise initial value u(r, 0) is defined as

uðr, 0Þ ¼ 0, r [ <b¼1,...,Nb
Oðrb, rbÞ,

1, otherwise,

�
ð3:1Þ

where O(rβ, rβ) is the sphere centred at rβ and has a radius rβ,
i.e. Oðrb, rbÞ : fr [ R3, kr� rbk � rbg with rβ and rβ being the
coordinates of a specific atom in the molecule and its atomic
radius respectively and Nβ is the total number of atoms in
that molecule. In our present work, we take the van der
Waals radius to be the atomic radius. So, this equation
means that if r is in the sphere O(rβ, rβ) of any atom in the
molecule, then u(r, 0) = 0, and if it is outside of any sphere,
then u(r, 0) = 1. As noted, this initial shape represents the
VdWS which is non-smooth. Another non-smooth definition
of a piecewise case can be achieved by switching the region
with value 0 to 1 and vice versa. This latter case was used
in our earlier work extensively [2,3].

The second case of initial data is achieved using Gaussian
functions. Gaussian functions have been used to generate
molecular surfaces in the literature [1,18,56] and we exploited
them in our earlier work of surface generation using PDE
transform [2]. In this work, we adopt the Gaussian function
proposed in our earlier work [2] which is a modified version
of the one Giard & Macq [1] defined as

uðr, 0Þ ¼ max
b

(s e�ðkr�rbk2�r2bÞ=r2e ), ð3:2Þ

where s is the threshold parameter and re is set to 3 Å. In this
case of the initial value, the surface is not represented directly
by the Gaussian function but the surface is indeed embedded
within the Gaussian function. As noted, this case represents a
smooth function but this does not give it any superiority over
the non-smooth case in surface generation as discussed later.

3.2. Test cases
Now, we conduct different experiments on a test case of an
imaginary molecule that is composed of three atoms. The
coordinates of the centres of atoms are (0, 0, 1.8), (0, 0,
−1.8) and (0, 3.12, 0) and each of them has an atomic radius
of 1.8 Å. First, we explore the effect of the propagation time
on the extracted isosurfaces. The experiments are done with
the following propagation times: t = 101, t = 102, t = 103, t =
104 and t = 105 to both initial values, piecewise and Gaussian.
After that, the effect of changing the isovalue on the extracted
isosurfaces is investigated. We carry out this first to the piece-
wise case with the following isovalues: 0.4, 0.5, 0.6, 0.7, 0.8
and 0.9. This experiment is done twice to see the effect in two
different times t = 102 and t = 104. Then, this investigation is car-
ried out on the Gaussian initial shape with the following
isovalues: 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0. It is done twice to see
the effect in two different times t = 102 and t = 104.

3.2.1. The effect of propagation time
We start our experiments by investigating the effect of propa-
gation time on the extracted isosurfaces. We apply our
algorithm on a piecewise initial shape of the imaginary
three-atom molecule. All extracted isosurfaces have iso-
value = 0.9 while time propagates in powers of 10 as t = 101,
t = 102, t = 103, t = 104 and t = 105. As seen in figure 2, as
time propagates the isosurfaces become more smooth, and
geometric singularities disappear. With this being said, it is
not necessarily true that the higher the propagation time
the better the surface is. It is clear that in figure 2f the
isosurface is very smooth and not very helpful.

Then, the same experiment is done to the Gaussian initial
shape with propagation times t = 101, t = 102, t = 103, t = 104

and t = 105 and all the extracted isosurfaces have isovalue
1.0. Figure 3 shows that as time propagates the isosurfaces
get more smooth and the geometric singularities disappear.
However, this does not mean increasing propagation time is
always better. It can be seen that figure 3f shows a surface
that is over smoothed and hence not very useful.

3.2.2. The effect of the isovalue
After seeing the effect of the propagation time, we now show
the effect of changing the isovalue. As seen in figure 4, we have



(a) (b) (c)

(d) (e) ( f )

Figure 2. The isosurfaces of the three-atom molecule generated with the Clifford–Fourier transform method using the piecewise initial data defined in equation
(3.1) and extracted at isovalue = 0.9 and different propagation times. (a) The initial surface, and the isosurface with propagation time (b) t = 101, (c) t = 102, (d )
t = 103, (e) t = 104 and ( f ) t = 105.

(a) (b) (c)

(d) (e) ( f )

Figure 3. The isosurfaces of the imaginary three-atom molecule generated with the Clifford–Fourier transform method using the Gaussian initial data defined in
equation (3.2) and extracted at isovalue = 1.0 and different propagation times. (a) The initial surface, and the isosurface with propagation time (b) t = 101, (c) t =
102, (d ) t = 103, (e) t = 104 and ( f ) t = 105.
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six different isosurfaces extracted at the following isovalues:
0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 respectively at propagation time
t = 102 using the piecewise initial data defined in equation
(3.1). Due to the definition of the initial data, the surfaces get
inflated as the isovalue increases. In terms of geometric singu-
larities, there are no significant changes as the isovalue
changes. Likewise, figure 5 shows isosurfaces extracted at
propagation time t = 104 and the same isovalues 0.4, 0.5, 0.6,
0.7, 0.8 and 0.9 using the piecewise initial data. The same
observations can be said about this figure as well, where iso-
surfaces get larger as isovalue increases and no noticeable
changes happen to geometric characteristics. In both figures,
we do not have geometric singularities.

Now, we conduct the same experiment on the Gaussian
initial shape. Figure 6 shows six isosurfces extracted at the
following isovlaues: 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0, respect-
ively, at propagation time t = 102 using the Gaussian initial
data defined in equation (3.2). In contrast to the piecewise
case, the isosurfaces of the Gaussian shape get deflated as
the isovalues get larger. That is also due to the definition
of Gaussian initial equation which is monotonically decreas-
ing. Regarding the geometric characteristics, it is clear that
the isosurfaces tend to be more meaningful as the isovalues
get larger. However, very large isovalues may cause some
geometric singularities. Likewise, the same experiment has
been done for the same settings but with propagation
time t = 104 and is demonstrated in figure 7. Clearly, the
same conclusions can be made about the isosurfacs in
terms of surface size as well as geometric characteristics
and singularities.



(a) (b) (c)

(d) (e) ( f )

Figure 4. The isosurfaces of the imaginary three-atom molecule generated with the Clifford–Fourier transform method using the piecewise initial data defined in
equation (3.1) and extracted at propagation time t = 102 and different isovalues. (a) The isosurface extracted at isovalue = 0.4, (b) isovalue = 0.5, (c) isovalue = 0.6,
(d ) isovalue = 0.7, (e) isovalue = 0.8 and ( f ) isovalue = 0.9.

(a) (b) (c)

(d) (e) ( f )

Figure 5. The isosurfaces of the imaginary three-atom molecule generated with the Clifford–Fourier transform method using the piecewise initial data defined in
equation (3.1) and extracted at propagation time t = 104 and different isovalues. (a) The isosurface extracted at isovalue = 0.4, (b) isovalue = 0.5, (c) isovalue = 0.6,
(d ) isovalue = 0.7, (e) isovalue = 0.8 and ( f ) isovalue = 0.9.

(a) (b) (c)

(d) (e) ( f )

Figure 6. The isosurfaces of the imaginary three-atom molecule generated with the Clifford–Fourier transform method using the Gaussian initial data defined in
equation (3.2) and extracted at propagation time t = 102 and different isovalues. (a) The isosurface extracted at isovalue = 0.5, (b) isovalue = 0.6, (c) isovalue = 0.7,
(d ) isovalue = 0.8, (e) isovalue = 0.9 and ( f ) isovalue = 1.0.
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(a) (b) (c)

(d) (e) ( f )

Figure 7. The isosurfaces of the imaginary three-atom molecule generated with the Clifford–Fourier transform method using the Gaussian initial data defined in
equation (3.2) and extracted at propagation time t = 104 and different isovalues. (a) The isosurface extracted at isovalue = 0.5, (b) isovalue = 0.6, (c) isovalue = 0.7,
(d ) isovalue = 0.8, (e) isovalue = 0.9 and ( f ) isovalue = 1.0.

(a) (b) (c)

(d) (e) ( f )

Figure 8. The molecular surfaces of protein 1ajj generated by Clifford–Fourier transform method using piecewise initial data. (a) Isovalue = 0.7, t = 102, (b) iso-
value = 0.8, t = 102, (c) isovalue = 0.9, t = 102, (d ) isovalue = 0.7, t = 104, (e) isovalue = 0.8, t = 104 and ( f ) isovalue = 0.9, t = 104.
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3.3. Biomolecular surfaces
In this section, we show the biomolecular surfaces of real pro-
teins generated using our algorithm exploiting the CFT to
validate our proposed method. To gain acceptance within
the molecular visualization community, our method is com-
pared to the well-established method SES using MSMS
package [17] available in the software visual molecular
dynamics (VMD) [57]. All protein structures and atomic coor-
dinates used in our computations were obtained from the
Protein Data Bank (PDB) website (https://www.rcsb.org).
We then used the package PDB2PQR [58] to add the missing
hydrogen atoms and assign point charges at atomic centres
based on the CHARMM force field [59].

Now, we start with the protein 1ajj by applying our
method with both cases of initial shapes: piecewise and
Gaussian. Figure 8 shows the piecewise initial shape where
the first row has propagation time t = 102 and the second
row has propagation time t = 104. In each row, we have the
following isovalues: 0.7, 0.8 and 0.9, respectively. As expected
from the above test cases, the isosurfaces get inflated slightly
as the isovalues increase. Also as expected, the geometric
singularities do not disappear as we change the isovalues.
The second row in figure 8, which is for t = 104, goes in agree-
ment with our predictions in the above test case experiments
as well. The isosurfaces for propagation time t = 104 are very
smooth and hence not preferred for biomolecular surfaces.

Now, we carry out the same experiments on protein 1ajj
with Gaussian initial data. This is to investigate the combi-
nations of propagation times and isovalues. Likewise,
figure 9 shows isosurfaces extracted at isovalues 0.7, 0.8, 0.9,
respectively, where the first row shows the results at propa-
gation time t = 102 and the second row shows the results at
t = 104. Isosurfaces demonstrated affirm our predictions made
earlier where the geometric singularities tend to appear as
the isovalues increase. Moreover, the surfaces get deflated as
the isovalues increase due to the definition of the Gaussian

https://www.rcsb.org
https://www.rcsb.org


(a) (b) (c)

(d) (e) ( f )

Figure 9. The molecular surfaces of protein 1ajj generated by Clifford–Fourier transform method using Gaussian initial data. (a) Isovalue = 0.7, t = 102, (b) iso-
value = 0.8, t = 102, (c) isovalue = 0.9, t = 102, (d ) isovalue = 0.7, t = 104, (e) isovalue = 0.8, t = 104 and ( f ) isovalue = 0.9, t = 104.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220117

10

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

13
 A

pr
il 

20
22

 

function. Picking the appropriate isovalue has two competing
factors which are the surface volume and the presence of geo-
metric singularities. After applying our method to the protein
1ajj and experimenting with different combinations of propa-
gation times, isovalues and initial values, we demonstrate
more biomolecular surfaces. We show the biomolecular sur-
faces of the proteins 1ajj, 1bor, 1mbg and 1sh1 using our
method with two different sets of parameters and initial
values. For the piecewise initial shape, we choose isovalue
0.9, the propagation time t = 102 and order 2m = 12. For the
Gaussian initial shape, we choose isovalue 0.8, the propagation
time t = 102 and order 2m = 12. These two surfaces of each
protein are compared with SES surface generated using
MSMS package in VMD with probe radius set to 1.5 and den-
sity set to 9.5. Figure 10 illustrates the biomolecular surfaces of
the proteins mentioned above where each row corresponds to
a specific protein. The first row corresponds to 1ajj, the second
to 1bor, the third to 1mbg and the fourth to 1sh1. In each row,
the first surface is corresponding to the piecewise initial shape,
the second surface is corresponding to the Gaussian initial
shape and the third surface is corresponding to the MSMS
surface.
4. Applications
The surface generated for a specific biomolecule represents its
boundary region, which is regarded as the interface between
the biomolecule region and the solvent region. The solvent–
solute interface is essential in many models and applications
such as electrostatic calculations [48], diffusion analysis [12]
and differential geometry-based solvation models [60].

In this section, we show some applications of the biomo-
lecular surfaces generated with our CFT method. We use the
Poisson–Boltzmann model for electrostatic calculations. First,
electrostatic surface potentials of some proteins are mapped
to the surfaces generated with our CFT method and then
they are compared with the mapping on surfaces generated
by MSMS package. The electrostatic surface potentials are cal-
culated using APBS method [48] available in VMD. Then, the
electrostatic solvation free energy is calculated and compared
with three other methods of biomolecular surface generation.
We calculate the energies using the match interface and
boundary (MIB) method [49] and compared our results
with MSMS, two different methods that are developed
using flexibility and rigidity index (FRI) [23].
4.1. Electrostatic surface potentials
The electrostatic surface potential is an important property
for many applications in biology and biophysics [2]. It is
essential in studies of drug design, protein–protein inter-
actions and other applications. The electrostatic potentials
are calculated by solving the Poisson–Boltzmann equations.
The calculation is done using a package available in VMD.
After that, the potentials are mapped to the surface generated
using our CFT method and to the SES surface generated by
MSMS package in VMD. We validate our method by demon-
strating the potentials on two proteins: 1ajj and 1bor. First,
figure 11a shows the CFT surface and figure 11b the MSMS
surface, both showing a very good match in surface poten-
tials. Then, figure 12 shows another example of surface
potentials mapped to the CFT surface and mapped to
MSMS surface. This latter figure illustrates also that the two
surfaces matched very well in their surface potentials. On
top of that, the CFT surfaces shown do not have geometric
singularities as can be verified from the figures. Moreover,
CFT surfaces are more smooth in both proteins.
4.2. Electrostatic solvation free energy
Now, we calculate the electrostatic solvation free energies of 21
proteins tovalidate ourmethodof surface generation. These cal-
culations are performed by the MIB method using MIBPB
package [49]. To show the validity, the results are compared
with three other methods discussed in the work of Mu et al.
[23]. Table 1 shows the electrostatic solvation free energies of
molecular surfaces generated by MSMS package, exponential
kernel-based rigidity (FRI surface 1) with η = 1.85 Å, ν = 2 and
μ0 = 1.5, Lorentz kernel-based rigidity (FRI surface 2) with



CFT (piecewise)
isovalue = 0.9, t = 102

(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

( j ) (k) (l)

1a
jj

1b
or

1m
bg

1s
h1

CFT (Gaussian)
isovalue = 0.8, t = 102

MSMS
density = 9.5, probe = 1.5

Figure 10. Comparison of molecular surfaces generated by Clifford–Fourier transform (CFT) using piecewise initial data (first column), CFT using Gaussian initial data
(second column) and MSMS (third column). The first row is for protein 1ajj. The second row is for protein 1bor. The third row is for protein 1mbg. The fourth row is
for protein 1sh1. All CFT surfaces generated at t = 102.

(a)

2.00

1.00

0

–1.00

–2.00

2.00

1.00

0

–1.00

–2.00

(b)

Figure 11. The electrostatic surface potentials of protein 1ajj mapped on two surfaces. (a) Surface generated by Clifford–Fourier transform method and (b) the
MSMS surface.
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(a)

2.00

1.00

0

–1.00

–2.00

2.00

1.00

0

–1.00

–2.00

(b)

Figure 12. The electrostatic surface potentials of protein 1bor mapped on two surfaces. (a) Surface generated by Clifford–Fourier transform method and (b) the
MSMS surface.

Table 1. Comparison of electrostatic solvation free energies for surfaces generated by MSMS, exponential FRI method with η = 1.85 Å, ν = 2 and μ0 = 1.5,
Lorentz FRI method with η = 1.86 Å, ν = 8 and μ0 = 1.5, and Clifford–Fourier transform surface with grid size = 0.25, isovalue = 0.9, propagation time = 102.

electrostatic solvation free energies (kcal mol−1)

protein ID MSMS surface FRI surface 1 FRI surface 2 CFT surface

1ajj −1100.754 −1155.158 −1258.784 −1154.039
1vii −862.865 −761.195 −846.414 −793.326
1bor −927.310 −1021.579 −1140.463 −833.647
451c −1003.17 −971.629 −1152.786 −946.969
1svr −1582.131 −1530.159 −1700.400 −1518.964
1uxc −1097.189 −975.583 −1075.070 −982.813
1mbg −1340.086 −1329.440 −1412.048 −1226.894
1ptq −800.130 −765.680 −866.256 −726.299
1sh1 −729.626 −648.315 −785.820 −724.799
2pde −1234.229 −863.702 −990.056 −1192.055
1hpt −788.626 −768.424 −873.410 −685.036
1a7m −2173.814 −2159.535 −2492.651 −2196.988
1neq −1683.679 −1661.077 −1811.667 −1552.394
1r69 −1115.733 −983.129 −1087.688 −983.534
1a2s −1868.827 −2216.464 −2356.554 −1819.385
2erl −894.960 −1127.617 −1189.821 −856.024
1bbl −970.053 −993.386 −1052.617 −876.956
1fca −1148.672 −1427.109 −1534.746 −1166.321
1frd −2691.339 −2935.189 −3106.112 −2438.468
1bpi −1267.063 −1170.959 −1269.508 −1128.051
1a63 −2291.449 −2233.139 −2495.664 −2213.839
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η = 1.86 Å, ν = 8 and μ0 = 1.5 and CFT with grid step = 0.25,
isovalue = 0.9 and propagation time = 102.
5. Concluding remarks
Molecular surface generation is an important topic in compu-
tational biophysics and is crucial to the understanding of
biological processes. A variety of computational methods
have been developed for molecular surface generation,
including those based on geometry, differential geometry,
PDE transform, level sets, etc. Therefore, molecular surface
generation has been a research topic where biology meets
physics, mathematics and computer science.

Geometric algebra has been widely applied to physics,
computer vision, image analysis, molecular biophysics, etc.
However, it has not been used for molecular surface gener-
ation. This work introduces geometric algebra for molecular
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surface generation. More specifically, we use CFT, an impor-
tant technique in geometric algebra, to define biomolecular
surfaces.

We presented geometric algebra definitions of main cal-
culus concepts such as integration and derivative. We also
discussed in detail the 2D CFT and 3D CFT. We pointed to
the fact that pseudoscalars in R2 are not commutative with
multivectors in contrast to R3 which maintains the commuta-
tivity. This impacts the derivative property leading to the 2D
CFT not having a general rule. On the other hand, the 3D
CFT goes in parallel to the classical Fourier transform in
this regard. Hence, we preferred the 3D CFT. This choice is
due to the importance of the derivative property in solving
PDEs using CFT. The PDE transform would then be
implemented using CFT to generate molecular surfaces.

After introducing the CFT and PDE transform, we pro-
posed our geometric algebra method of surface generation.
We started by providing two cases of initial data: piecewise
and Gaussian. Then, we conducted many experiments on
an imaginary three-atom molecule and the real protein 1ajj
to see the effect of changing the propagation times and the
effect of changing the isovalues. These experiments showed
that both initial cases were valid and able to generate good
molecular surfaces. After that, molecular surfaces of real pro-
teins were generated using both initial cases and compared to
MSMS surfaces. Our surfaces showed superiority over MSMS
surfaces due to their being free of geometric singularities. To
validate our method, we calculated electrostatic surface
potentials and mapped them to our surfaces and to MSMS
surfaces to visualize the electrostatic consistency and singu-
larity free. Furthermore, we computed the electrostatic
solvation free energies of 21 proteins on our surfaces and
compared them to those from MSMS and FRI surfaces. Our
surfaces showed very good results in terms of energies as
well. One more feature of our method is that it gets the term-
inal state in a single-step approach which makes it time-
efficient.

Finally, the proposed geometric algebra surface gener-
ation method opens the door for new multiscale methods
for surface generation where different propagation times
might be applied at once, and then the resulting surfaces
can be combined to get the final surface. Also, the presented
CFT has great potential to be exploited in biophysical pro-
blems like protein–protein docking and protein–ligand
binding. It is straightforward to apply the proposed
method for industrial design, general surface smoothing,
surface evolution, image processing, denoising, etc.
Data accessibility. For the molecule atom coordinates, we got the coordi-
nate data from the PDBbind database available at http://www.
pdbbind.org.cn.
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