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ABSTRACT: The latest severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) variant Omicron (B.1.1.529) has ushered panic responses around the world due to its
contagious and vaccine escape mutations. The essential infectivity and antibody
resistance of the SARS-CoV-2 variant are determined by its mutations on the spike (S)
protein receptor-binding domain (RBD). However, a complete experimental evaluation
of Omicron might take weeks or even months. Here, we present a comprehensive
quantitative analysis of Omicron’s infectivity, vaccine breakthrough, and antibody
resistance. An artificial intelligence (AI) model, which has been trained with tens of
thousands of experimental data and extensively validated by experimental results on SARS-CoV-2, reveals that Omicron may be over
10 times more contagious than the original virus or about 2.8 times as infectious as the Delta variant. On the basis of 185 three-
dimensional (3D) structures of antibody−RBD complexes, we unveil that Omicron may have an 88% likelihood to escape current
vaccines. The U.S. Food and Drug Administration (FDA)-approved monoclonal antibodies (mAbs) from Eli Lilly may be seriously
compromised. Omicron may also diminish the efficacy of mAbs from AstraZeneca, Regeneron mAb cocktail, Celltrion, and
Rockefeller University. However, its impacts on GlaxoSmithKline’s sotrovimab appear to be mild. Our work calls for new strategies
to develop the next generation mutation-proof SARS-CoV-2 vaccines and antibodies.

1. INTRODUCTION
On November 26, 2021, the World Health Organization
(WHO) announced a new severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) variant Omicron (B.1.1.529), as
a variant of concern (VOC). This variant carries an unusually
high number of mutations, 32, on the spike (S) protein, the
main antigenic target of antibodies generated by either
infections or vaccination. In comparison, the devastating
Delta variant has only five S protein mutations, which posed
a high potential global risk and has spread internationally.
Therefore, the “panic button” has been pushed in several cases
worldwide, and many countries have enacted travel restrictions
to prevent the rapid spread of the Omicron variant.
The mutations on the Omicron variant are widely

distributed on multiple proteins of SARS-CoV-2 such as
NSP3, NSP4, NSP5, NSP6, NSP12, NSP14, S protein,
envelope protein, membrane protein, and nucleocapsid
protein. The focus is the mutations on the S protein
receptor-binding domain (RBD) for the potential impact on
infectivity and antibody resistance caused by this new variant.
This is due to the fact that the RBD located on the S protein
facilitates the binding between the S protein and the host
angiotensin-converting enzyme 2 (ACE2). Such S-ACE2
binding helps SARS-CoV-2 enter the host cell and initiates
the viral infection process. Several studies have shown that the
binding free energy (BFE) between the S RBD and the ACE2
is proportional to the viral infectivity.1−5 As such, an antibody
that binds strongly to the RBD would directly neutralize the
virus.6−8 Indeed, many RBD binding antibodies are generated

by the human immune response to infection or vaccination.
Monoclonal antibodies (mABs) targeting the S protein,
particularly the RBD, are designed to treat viral infection. As
a result, any mutation on the S protein RBD would cause
immediate concerns about the efficacy of existing vaccines,
mAbs, and the potential of reinfection.
The global panic brought by the emergence of the Omicron

variant drives the scientific community to immediately
investigate how much this new variant could undermine the
existing vaccines and mAbs. However, relatively reliable
experimental results from experimental laboratories will take
a few weeks to come out. Therefore, an efficient and reliable in
silico analysis is imperative and valuable for such an urgent
situation. Here, we present a comprehensive topology-based
artificial intelligence (AI) model called TopNetmAb9,10 to
predict the BFE changes of S and ACE2/antibody complexes
induced by mutations on the S RBD of the Omicron variant.
The positive BFE change induced by a specific RBD mutation
indicates its potential ability to strengthen the binding of an S
protein−ACE2/antibody complex, while a negative BFE
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change suggests a likely capacity to reduce the binding strength
of an S protein−ACE2/antibody complex.
The TopNetmAb model that we proposed has been

extensively validated over the past 1.9 years.10,11 Initially, in
early 2020, we applied our TopNetmAb model to successfully
predict that residues 452 and 501 “have high chances to
mutate into significantly more infectious COVID-19 strains”.9

Such findings have been confirmed due to the emergency of
multiple variants such as Alpha, Beta, Gamma, Delta, Theta,
Lambda, Mu, and Omicron that carry L452R/Q and N501Y
mutations. In April 2021, we provided a list of 31 RBD
mutations that may weaken most of the binding to antibodies,
such as W353R, I401N, Y449D, Y449S, P491R, P491L, and
Q493P.10 Notably, experimental results have also shown that
mutations at residues Y449, E484, Q493, S494, and Y505
might enable the virus to escape antibodies.12 Meanwhile, in
the same work, we also revealed that variants found in the
United Kingdom and South Africa in late 2020 may strengthen
the binding of the RBD−ACE2 complex, which is consistent
with the experimental results.13 Later on, we provided a list of
the most likely vaccine escape RBD mutations predicted by
TopNetmAb, such as S494P, Q493L, K417N, F490S, F486L,
R403K, E484K, L452R, K417T, F490L, E484Q, and A475S,14

and mutations such as S494P, K417N, E484K/Q, and L452R
are all detected in the variants of concern and variants of
interest denounced by the WHO. Last but not least, the
correlation between the experimental deep mutational data15

and our AI-predicted RBD-mutation-induced BFE changes for
all possible 3686 RBD mutations on the RBD−ACE2 complex
is 0.7, which indicates the reliability of our TopNetmAb model
predictions.11 As a baseline, one may keep in mind that
experimental deep mutational results for SARS-COV-2 PPIs
from two different laboratories only have a correlation of
0.67.15,16

This work aims to analyze how the RBD mutations on the
Omicron variant will affect the viral infectivity and efficacy of
existing vaccines and antibody drugs. Fifteen Omicron RBD
mutations, including S371L, S373P, S375F, K417N, N440K,
G446S, S477N, T478K, E484A, Q493R, G496S, N501Y, and
Y505H, are studied in this work. Additionally, three-dimen-
sional (3D) structures of the RBD−ACE2 complex and 185
antibody−RBD complexes, including many mAbs, are
examined to understand the impacts of Omicron RBD
mutations. We reveal that Omicron may be over 10 times

more contagious than the original SARS-CoV-2, more
infectious than any other named variants, and over twice as
infectious as the Delta variant, mainly due to its RBD
mutations N440K, T478K, and N501Y. Additionally, Omicron
has a high potential to disrupt the binding of most 185
antibodies with the S protein, mainly due to its RBD mutations
K417N, E484A, and Y505H, indicating its stronger vaccine-
breakthrough capability than the Delta or any other named
variants. We have also unveiled that Omicron may seriously
reduce the efficacy of the Eli Lilly mAb cocktail because of
Omicron RBD mutations K417N, E484A, and Q493R. The
Regeneron mAb cocktail may be impaired by Omicron RBD
mutations K417N and E484A, and G446S. The efficacy of the
AstraZeneca mAb cocktail tixagevimab and cilgavimab may be
moderately reduced by Omicron RBD mutation Q498R.
Celltrion antibody Regdanvimab may be disrupted by
Omicron RBD mutations E484A, Q493R, and Q498R.
Omicron RBD mutation E484A may also disrupt Rockefeller
University mAbs. However, Omicron’s impacts on GlaxoS-
mithKline’s mAb are predicted to be mild.
We stated in an earlier work that “we anticipate that as a

complementary transmission pathway, vaccine breakthrough or
antibody-resistant mutations, like those in Omicron, will
become a dominating mechanism of SARS-CoV-2 evolution
when most of the worlds population is either vaccinated or
infected”.17 Our present finding shows it is high time to
develop a new generation of vaccines and mAbs that will not
be prone to viral mutations.

2. RESULTS

2.1. Infectivity. The infectivity of SARS-CoV-2 is mainly
determined by the binding affinity of the ACE2 and RBD
complex, although the furin cleavage site plays a crucial role as
well.18 Omicron has three mutations at the furin cleavage site
and 15 mutations on the RBD, suggesting a significant change
in its infectivity. Due to natural selection, the virus enhances its
evolutionary advantages at the RBD either by mutations to
strengthen the ACE2-RBD binding affinity or by mutations to
escape antibody protection.19 Since the virus has optimized its
infectivity in human cells, one should not expect a dramatic
increase in the viral infectivity by any single mutation. An
effective infection pathway is for the virus to have multiple
RBD mutations to accumulatively enhance its infectivity, which
appears to be the case for Omicron.

Figure 1. Illustration of the Omicron RBD and ACE2 interaction and RBD mutation-induced BFE changes. (a) 3D structure of the ACE2 and
RBD complex (PDB: 6M0J20). Omicron mutation sites are labeled. (b) Omicron mutation-induced BFE changes. Positive changes strengthen the
binding between ACE2 and S protein, while negative changes weaken the binding. (c) Comparison of predicted mutation-induced BFE changes for
few variants.
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This work analyzes the infectivity of Omicron by examining
the BFE changes of the ACE2 and S protein complex induced
by 15 Omicron RBD mutations. Figure 1a illustrates the
binding complex of ACE2 and S protein RBD. Most of the
RBD mutations are located near the binding interface of ACE2
and RBD, except for mutations G339D, S371L, S373P, and
S375F. Omicron-induced BFE changes are depicted in Figure
1b. Overall, mutations significantly increase the BFE changes,
which strengthen the binding affinity of the ACE2−RBD
complex and makes the variant more infectious. This result
indicates that Omicron appears to have followed the
infectivity-strengthening pathway of natural selection.21

The infectivity-strengthening mutations N440K, T478K, and
N501Y enhance the BFEs by 0.62, 1.00, and 0.55 kcal/mol,
respectively. Among them, T478K is one of two RBD
mutations in the Delta variant, while N501Y is presented on

many prevailing variants, including Alpha, Beta, Gamma,
Theta, and Mu. Notably, mutation Y505H induces a small
negative BFE change of −0.20 kcal/mol. All other mutations,
particular those four mutations that are far away from the
ACE2 and RBD binding interface, cause little or no BFE
changes. Figure 1c gives a comparison of Omicron with a few
other named variants, i.e., Alpha, Beta, Gamma, Delta, Theta,
Kappa, and Mu. The BFE changes indicate that Omicron is
more infectious than other named variants. Specifically, the
accumulated BFE change is 2.60 kcal/mol, suggesting a 13-fold
increase in the viral Infectivity. In comparison, Omicron is
about 2.8 times as infectious as the Delta (i.e., BFE change:
1.57 kcal/mol for Delta).

2.2. Vaccine Breakthrough. Vaccination has been proven
to be the most effective means for COVID-19 prevention and
control. There are four types of vaccines, i.e., virus vaccines,

Figure 2. Illustration of Omicron mutation-induced BFE changes of 185 available antibody and RBD complexes and an ACE2-RBD complex.
Positive changes strengthen the binding, while negative changes weaken the binding. (a) Heat map for 12 antibody and RBD complexes in various
stages of drug development. Gray color stands for no predictions due to incomplete structures. (b1) Heat map for ACE2/antibody and RBD
complexes. (b2, b3) Heat map for antibody and RBD complexes.
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viral-vector vaccines, DNA/RNA vaccines, and protein-based
vaccines.22 Essentially, the current COVID-19 vaccines in use
mainly target the S protein.23 The 32 amino acid changes,
including three small deletions and one small insertion in the
spike protein, suggest that Omicron may be induced by
antibody resistance.17 As a result, these mutations may

dramatically enhance the variant’s ability to evade current
vaccines.
In general, it is essentially impossible to accurately

characterize the full impact of Omicron’s S protein mutations
on the current vaccines in the world’s populations. First,
different types of vaccines may lead to different immune

Figure 3. Analysis of variant mutation-induced BFE changes of 185 antibody and RBD complexes. (a1, b1, c1, d1, e1, f1, g1) Distributions (counts)
of accumulated BFE changes induced by Omicron, Alpha, Beta, Delta, Gamma, Lambda, and Mu mutations, respectively, for 185 antibody and
RBD complexes. Overall, there are more complexes that are weakened upon RBD mutations than complexes that are strengthened. (a2, b2, c2, d2,
e2, f2, g2) Numbers (counts) of antibody−RBD complexes regarded as disrupted by Omicron, Alpha, Beta, Delta, Gamma, Lambda, and Mu
mutations, respectively, under different thresholds ranging from 0 kcal/mol to −0.3 kcal/mol to less than −3 kcal/mol.
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responses from the same individual. Additionally, different
individuals characterized by race, gender, age, and underlying
medical conditions may produce different sets of antibodies
from the same vaccine. Moreover, the reliability of statistical
analysis over populations may be limited because of the
inability to fully control various experimental conditions.
This work offers a molecule-based data-driven analysis of

Omicron’s impact on vaccines through a library of 185 known
antibody and S protein complexes. We evaluate the binding
free energy changes induced by 15 RBD mutations on these
complexes to understand the potential impact of Omicron’s
RBD mutations to vaccines. To ensure reliability, our study
does not include a few known antibody−S protein complexes
that are far away from the RBD, such as those in the N-
terminal domain (NTD), due to limited experimental data in
our antibody library.10,11

Figure 2a, b1, and b2 depict the Omicron RBD mutation-
induced BFE changes of 185 known antibody and RBD
complexes. Overall, Omicron RBD mutations can significantly
change the binding pattern of known antibodies. Positive
changes strengthen the binding between antibody and RBD
complexes, while negative changes weaken the binding. In the
color bar, the largest negative change is more significant than
the largest positive change, indicating more severe disruptive
impacts. In general, there are more negative BFE changes than
positive ones, as shown in Figure 2, indicating that the
Omicron mutations favor the escape of current vaccines.
Among 15 RBD mutations, K417N, also part of the Beta

variant that originated in South Africa, causes the most
significant disruption of known antibodies. Notably, E484A is
another mutation that leads to overwhelmingly disruptive
effects to many known antibodies. It is worth mentioning that
most of E484A’s disruptive effects are complementary to those
of K417N, which makes Omicron more effective in vaccine
breakthroughs. The third disruptive mutation is Y505H. It is
also able to weaken many known antibody and RBD
complexes.
Mutation G339D creates a mild impact on various

antibody−RBD complexes. One of the reasons is that it
locates pretty far away from the binding interfaces of most
known antibodies. Its change from a noncharged amino acid to
a negatively charged amino acid induces mostly favorable
bindings among many antibody−RBD complexes. S371L,

S373P, and S375F are other mutations that have mild impacts
due to their locations.
For a comparison, ACE2 is also included in Figure 2b1. The

impact of Omicron on ACE2 is significantly weak, indicating
the SARS-CoV-2 has already optimized its binding with ACE2,
and there is a relatively limited potential for the virus to
improve its infectivity. However, due to the increase in the
vaccination rate, variants can become more destructive to
vaccines in years to come.17

Figure 2a gives a separate plot of the impacts of Omicron on
a few mAbs. Similarly, there are dramatic reductions in their
efficacy. A more specific discussion is given in the next section.
Figure 3 provides the analysis of variant mutation-induced

BFE changes of 185 antibody−RBD complexes induced by
Omicron, Alpha, Beta, Delta, Gamma, Lambda, and Mu
mutations. From Figure 3a1, it is clear that most complexes
have negative accumulated BFE changes, indicating Omicron
may disrupt most antibody−RBD binding complexes. In
contrast, Delta’s distribution focuses on a smaller domain as
shown in Figure 3e1. The BEF changes are essentially
distributed around zero, suggesting Delta RBD mutations
may not disrupt most known antibody−RBD binding
complexes. The distributions of Beta and Gamma, respectively,
in Figure 3c1 and d1 also indicate potential antibody−RBD
binding complex disruption.
It becomes very subtle to judge whether a mutation would

disrupt an antibody and RBD complex as Omicron involves
multiple vaccine-escape RBD mutations, which may generate
multiple cancellations for each antibody−RBD complex over
different mutations. It is useful to focus on disruptive
mutations, i.e, mutations leading to negative BFE changes.
Therefore, we previously have used −0.3 kcal/mol as a
threshold to judge whether a mutation disrupts an antibody−
RBD complex, which would give us a total of 163 disrupted
antibody−RBD complexes as shown in Figure 3a2, suggesting
a rate of 0.88 (i.e., 163/185) for potential vaccine break-
through. As a comparison, Delta has 70 counts and a rate of
0.37 (70/185) in a similar estimation as shown in Figure 3e2.
One would have 143 and 48 disrupted antibody and RBD
complexes, respectively, for Omicron and Delta if the threshold
is increased to −0.6 kcal/mol. In both cases, Omicron is over
twice more likely to disrupt antibody−RBD complexes. Note
that Beta and Gamma in Figure 3c2 and d2 show a similar
pattern.

Figure 4. Illustration of the Omicron RBD and Eli Lilly antibody interaction and RBD mutation-induced BFE changes. (a) 3D structure of the
ACE2 and Eli Lilly antibody complex. LY-CoV555 (PDB ID: 7KMG24) and LY-CoV016 (PDB ID: 7C0125) overlap on the S protein RBD. ACE2
is included as a reference. (b) Omicron mutation-induced BFE changes for the complex of RBD and LY-CoV016. (c) Omicron mutation-induced
BFE changes for the complex of RBD and LY-CoV555.
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2.3. Antibody Resistance. The assessment of Omicron’s
mutational threats to FDA-approved mAbs and a few other
mAbs in clinical development is of crucial importance. Our AI-
based predictions of similar threats from other variants,
namely, Alpha, Beta, Gamma, Delta, Epsilon, and Kappa,
have shown excellent agreements with experimental data.11 In
this section, we select a few mAbs, specifically, mAbs from Eli
Li l ly (LY-CoV016 and LY-CoV555), Regeneron
(REGN10933, REGN10987, and REGN10933/10987), As-
traZeneca (AZD1061 and AZD8895), GlaxoSmithKline
(S309), Celltrion (CT-P59), and the Rockefeller University
(C135 and C144). Among them, mAbs from Eli Lilly,
Regeneron, AstraZeneca, and GlaxoSmithKline have had
FDA approval. In addition, Celltrion’s COVID-19 antibody
treatment had the EU drug agency’s recommendation in
November 2021. Rockefeller University’s mAbs are still in
clinical trials. Our analysis focuses on disruptive RBD
mutations.
2.3.1. Eli Lilly mAbs. Eli Lilly mAb LY-CoV555 (PDB ID:

7KMG24) is also known as Bamlanivimab and is used in
combination with LY-CoV016 (aka Etesevimab, PDB ID:
7C0125). Antibody LY-CoV016 is isolated from patient
peripheral blood mononuclear cells convalescing from
COVID-19. It was optimized based on the SARS-CoV-2
virus. The interaction of Eli Lilly mAbs with the S protein RBD
is depicted in Figure 4a. ACE2 is included as a reference,
indicating both LY-CoV016 and LY-CoV555 can directly
neutralize the virus. Clearly, LY-CoV555 has a competing
relationship with LY-CoV016, which might complicate our
predictions slightly. In this work, we carry out the analysis of
Eli Lilly mAbs separately.
Omicron mutation-induced BFE changes for the antibody

LY-CoV016 and RBD complex is given in Figure 4b. It appears
that LY-CoV555 was optimized with respect to the original S
protein but is sensitive to mutations. This complex may be
weakened by K417N and N501Y as predicted in our earlier
work.11 New mutation Y505H may also reduce LY-CoV016’s
efficacy. Overall, the complex may be significantly weakened by
Omicron, leading to the efficacy reduction of Etesevimab.
The predicted BFE changes of LY-CoV555 are shown in

Figure 4c. Mutation E484A induces a negative BFE change of
−2.79 kcal/mol for the LY-CoV555 and RBD complex. The
BFE change may translate into a dramatic efficacy reduction of

16 times for LY-CoV555, making it less competitive with
ACE2 as most Omicron mutations strengthen the S protein
and ACE2 binding. Similarly, Q493R may also reduce the
efficacy by about 5 times. However, G496S may enhance the
binding of the complex. The impacts of other mutations are
mild. Therefore, Omicron is expected to reduce LY-CoV555
efficacy significantly. A previous study indicated that LY-
CoV555 is prone to the E484K mutation presented in Beta and
Gamma variants, for which the Eli Lilly mAb cocktail was taken
off the market for many months in 2021.
Although LY-CoV555 and LY-CoV016 might slightly

complement, they are both prone to Omicron mutation-
induced efficacy reduction. We predict that the Eli Lilly mAb
cocktail will be retaken off the market if Omicron becomes a
prevailing variant in the world.

2.3.2. Regeneron mAbs. Regeneron mAbs REGN10933
and REGN10987 (aka Casirivimab and Imdevimab, respec-
tively) are FDA-approved antibody cocktails (PDB ID:
6XDG26) against COVID-19. Their 3D structures in complex
with the S protein RBD are depicted in Figure 5a. ACE2 is
inclused as a reference. Unlike the Eli Lilly mAb cocktail, the
Regeneron mAbs do not overlap each other and bind to
different parts of the RBD. Our 3D alignment shows that the
antibody REGN10987 does not directly compete with ACE2
on their binding interfaces with the RBD but still spatially
conflicts with ACE2. As a result, REGN10987 can directly
neutralize the virus but is less sensitive to infectivity-induced
RBD mutations. In contrast, REGN10933 overlaps with ACE2
both spatially and on the RBD binding interface. Con-
sequently, REGN10933 is prone to infectivity-induced RBD
mutations.
Figure 5b plots our AI predicted BFE changes of the

REGN10987-RBD complex. There are mixed responses to
various Omicron mutations. Although G446K and K417N
induce a negative BFE change, many other mutations may
enhance the binding of the complex.
Omicron-induced BFE changes of the REGN10933-RBD

complex are given in Figure 5c. Apparently, K417N and E484A
induce BFE changes of −1.08 and −0.86 kcal/mol,
respectively. However, most other Omicron mutations may
strengthen the binding of the complex.
It is interesting to study how the two Regeneron mAbs are

affected by Omicron when they are combined. Figure 5d shows

Figure 5. Illustration of the Omicron RBD and Regeneron antibody interaction and RBD mutation-induced BFE changes. (a) 3D structure of the
ACE2 and Regeneron antibody complex. REGN10987 and REGN10933 do not overlap on the S protein RBD (PDB ID: 6XDG26). ACE2 is
included as a reference. (b) Omicron mutation-induced BFE changes for the complex of RBD and REGN10933. (c) Omicron mutation-induced
BFE changes for the complex of RBD and REGN10987. (d) Omicron mutation-induced BFE changes for the complex of RBD, REGN10933, and
REGN10987.
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the BFE changes of the complex induced by various Omicron
mutations. We note that amplitudes of both positive and
negative BEF changes have significantly reduced. However,
Omicron RBD mutations K417N, G446S, and E484A may still
weaken the cocktail binding to the RBD. We predict that
Omicron will have a negative impact on the Regeneron
cocktail efficacy.
2.3.3. AstraZeneca mAbs. AstraZeneca mAbs are designed

as a cocktail of tixagevimab (AZD8895, PDB ID: 7L7D) and
cilgavimab (AZD1061 PDB ID: 7L7E) as in Figure 6a.
AZD8895 competes with ACE2 for the same binding interface
and thus is able to directly neutralize the virus. However, it is
also prone to the infection-induced RBD mutations. As shown
in Figure 6b, AZD8895 can be slightly weakened by Q493R
and K417N. In contrast, AZD1061 can be significantly
disrupted by G477N as shown in 6c. Omicron mutation
Q493R can also lead to the binding affinty reduction of the
RBD and AZD1061 complex. Omicron impacts on the
AstraZeneca cocktail are slightly alleviated as shown in 6d.
Since mutation Q493R affects both AZD8895 and AZD1061,

it may give rise to a significant BFE reduction and disrupt the
efficacy of the cocktail.

2.3.4. Other mAbs. Celltrion’s antibody CT-P59 (aka
Regdanvimab, PDB ID: 7CM4) is used as cocktail with CT-
P63, for which we do not have its 3D structure. Figure 7a
shows that antibody CT-P59 binds the RBD in a completing
region with ACE2 and thus might play a more important role
than CT-P63 in combating the virus. Figure 7b shows that
mutations E484A, Q493R, and Q498R, respectively, lead to
BFE changes of −1.49, −2.82, and −1.0 kcal/mol for the CT-
P59-RBD complex. These disruptive effects may be slightly
offset by a positive BFE change of 1.71 kcal/mol due to
mutation N501Y, which was reported in our earlier work.11

The impacts of other mutations are relatively mild. Overall,
CT-P59 may still be impaired by Omicron. Previously, we have
shown that CT-P59 is prone to L452R in Delta and Q439R
and S494P.11 Due to the lack of the CT-P63 structure, we
cannot provide an inclusive estimation for Celltrion’s cocktail
but would recommend caution toward the use of Celltrion’s
Regdanvimab in the wake of Omicron infections.

Figure 6. Illustration of the Omicron RBD and AstraZeneca antibody interaction and RBD mutation-induced BFE changes. (a) 3D structure of the
ACE2 and AstraZeneca antibody complex. AZD1061 and AZD8895 do not overlap on the S protein RBD (PDB ID: 7L7E27). ACE2 is included as
a reference. (b) Omicron mutation-induced BFE changes for the complex of RBD and AZD8895. (c) Omicron mutation-induced BFE changes for
the complex of RBD and AZD1061. (d) Omicron mutation-induced BFE changes for the complex of RBD, AZD8895, and AZD1061.

Figure 7. Illustration of the Omicron RBD and other antibodies and RBD mutation-induced BFE changes. (a) Antibody CT-P59 in reference with
ACE2. (b) BFE changes of Omicron mutation induced on the binding of CT-P59 and RBD. (c) Antibody C135 in reference with ACE2. (d) BFE
changes of Omicron mutation induced on the binding of C135 and RBD. ∗: no results due to incomplete structure of C135. (e) Antibody C144 in
reference with ACE2. (f) BFE changes of Omicron mutation induced on the binding of C144 and RBD. (g) Antibody S309 in reference with
ACE2. (h) BFE changes of Omicron mutation induced on the binding of S309 and RBD.
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We also analyze the Rockefeller University antibodies C135
(PDB ID: 7K8Z) and C144 (PDB ID: 7K90), whose binding
complexes with the RBD are given in Figure 7c and e,
respectively. Antibody C135 has a relatively small region of
interface with RBD and does not overlap with ACE2. Our
earlier study indicates that C135 is prone to R346K and R346S
mutations.11 Mutation S317L induces a BFE change of −0.63
kcal/mol, indicating a relatively weak negative impact on
C135’s efficacy. In contrast, antibody C144 shares part of its
binding domain with ACE2 and has more dramatic responses
to Omicron mutations (see Figure 7f). Our earlier study
indicates that the efficacy of C144 can be significantly reduced
by E484K in the Delta variant.11 Mutation E484A may cause a
BFE change of −1.27 kcal/mol. Therefore, we predict that the
efficacy of C144 may be also undermined by Omicron RBD
mutations.
Finally, we study antibody S309 (PDB ID: 6WPS) which is

the parent antibody for Sotrovimab developed by GlaxoS-
mithKline and Vir Biotechnology, Inc. The alignment of S309
with ACE2 was given an earlier study28 and is also presented in
Figure 7g. Since S309 does not overlap with ACE2 both
spatially and on the RBD binding interface, infectivity-induced
mutations will not affect S309 very much. Figure 7h shows that
Omicron-induced BFE changes are from −0.47 to 0.39 kcal/
mol. Therefore, Omicron may have minor impacts on S309.

3. DATA, METHODS, AND VALIDITY
Data. To deliver an accurate and reliable machine learning

model, a data set collection is of paramount importance among
other steps. Both the BFE changes and next-generation
sequencing enrichment ratios indicate the mutation-induced
effects on protein−protein interactions (PPIs) binding
affinities. Our methods integrate these two types of data sets
to improve the prediction accuracy.10,11 Considering the
urgency of COVID-19, the scattered SARS-CoV-2 data
concerning BFE changes are reported inconsistently, while
the sequencing enrichment ratio data is relatively easy to
obtain but consistently has particular protein−protein
interaction problems. The method is set up based on the
BFE change data set, SKEMPI 2.0,29 together with SARS-CoV-
2 related data sets. These data sets are obtained from the
mutational scanning on ACE2 binding to the S protein RBD,30

the mutational scanning on RBD binding to ACE2,15,16 and
the mutational scanning on RBD binding to CTC-445.2 and
on CTC-445.2 binding to RBD.15 We have also collected a
library of 185 3D structures of antibody−RBD complexes.11

Methods. Our deep learning model for predicting BFE
changes induced by mutations is constructed in two main
steps. First, once 3D structures of PPI complexes are obtained,
mathematical features and biochemical/biophysical features
are extracted. Biochemical/biophysical features provide the
chemical and physical information, such as surface areas, partial
charges, Coulomb interactions, van der Waals interaction,
electrostatics, and more. Mathematical features, including the
element-specific and site-specific persistent homology (alge-
braic topology), are implemented to simplify the structural
complexity of PPI complexes.9,31 Second, a deep learning
algorithm, artificial neural networks (ANNs), is constructed to
tackle the massive features and mutational scanning data for
predictions,11 which is available at TopNetmAb. Notice that
our early model was constructed by integrating convolutional
neural networks (CNNs) with gradient boosting trees (GBTs)
and was trained with a large data set of 8338 PPI entries from

the SKEMPI 2.0 data set,29 which had already achieved a high
accuracy.31 In the following, the idea of persistent homology is
introduced briefly, which plays a key role in the feature
processing. Moreover, the Supporting Information, Sections S3
and S4, present more detailed descriptions of data preprocess-
ing, feature generation, and machine learning methods.
Recent years have seen a booming development of

topological data analysis in a wide variety of scientific and
engineering problems, whose main workhorse is persistent
homology.32,33 By using persistent homology, molecular atoms
can be modeled as a set of point clouds. Vertices, edges, faces,
and more can be treated as simplices σ with their collections to
be simplicial complexes X. For a simplicial complex X, a chain
is a finite sum of simplices as ∑i αiσi

k with coefficients αi, and
the set of all chains is a group Ck(X), where k = 0, 1, 2, 3. Thus,
the boundary operator ∂k maps Ck(X) → Ck−1(X) defined as
∂kσ

k = ∑i = 0
k (−1)i[v0,···, v̂i,···, vk], where σk = {v0,···, vk} and

[v0,···, v̂i,···, vk] is a (k − 1)-simplex excluding vi. This is
followed by an important property of boundary operators
which is that ∂k−1∂k = 0 and

C X C X C X C X( ) ( ) ( ) ( ) 0k k 1 1 0
k k k1 1 2 1 0··· ⎯ →⎯⎯ → ⎯ →⎯⎯ ··· → → →

∂ ∂
−

∂ ∂ ∂ ∂+ −

(1)

and the kth homology group Hk is defined by Hk = Zk/Bk,
where Zk = ker ∂k = {c ∈ Ck |∂kc = 0} and Bk = im ∂k+1 = {∂k+1c |
c ∈ Ck+1}. The Betti numbers are defined by the ranks of kth
homology group Hk. This, in practice, is counting holes in the k
dimension, such as β0 reflects the number of connected
components, β1 gives the number of loops, and β2 is the
number of cavities. Then, persistent homology can be devised
to track Betti numbers along a filtration in order to describe
the topological, spatial, and geometry information, which
generates features for machine learning.

Validity. In more recent work,10,11,19 with the help of the
aforementioned deep mutational data sets associated with
SARS-CoV-2, our predictions are highly consistent with
experimental data. The predictions for the binding of CTC-
445.2 and S protein RBD were compared with experimental
data with a Pearson correlation of 0.7.11,15 In the same work,11

the predictions of emerging mutations on clinical trial
antibodies had a Pearson correlation of 0.8 with the natural
log of experimental escape fractions.34 In addition, the
predicted mutation-induced BFE changes on L452R and
N501Y for the ACE2-RBD complex have a near perfect
correlation with experimental luciferase data.11,35

Our TopNetmAb model assumes that the RBD mutations
are independent, which is very reasonable for Delta and other
variants as they involve only one, two, or three isolated RBD
mutations. As shown in Figure 1a, adjacent Omicron
mutations S477N and T478K are dependent on each other.
Similarly, S373P is just one residue away from S371L and
S375F and is deemed to be depending on its neighbors.
However, these three mutations are pretty far away from the
ACE2 binding interface and play ess important roles in our
predictions. Mutations G496S and Q498R are also one amino
acid apart, albeit their predicted BFE change amplitudes are
very small. Overall, we expect a larger error in our prediction of
Omicron infectivity compared to our earlier successful
predictions.10,11,14 However, we are still confident that the
predicted trend of the Omicron infectivity change is correct.
Figure 3 shows that the most severe antibody disruptions are
not obtained from the interdependent mutations (i.e., S371L,
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S373P, S375F, S477N, T478K, G496S, and Q498R),
suggesting the predicted trends of antibody disruptions are
still valid. The reliability and accuracy of our assumption for
Omicron are to be validated by experimental data, which may
become available in a few weeks.

4. NOTE ADDED IN PROOF

After the publication of our manuscript in arXiv on December
1, 2021,36 two sets of experimental results have been released
recently.37,38 The first set of experimental results is the
sensitivity of serum samples from COVID-19 convalescent
patients,37 and the second set of experimental results is about
antibody evasion impacted by the Omicron variant.38

Figure 8a provides a comparison of accumulated BFE
changes for variants Omicron, Alpha, Beta, Delta, Gamma,
Lambda, and Mu. For each antibody−RBD complex, the
accumulated negative BFE change is obtained by the
summation over RBD mutations (e.g., 15 mutations for
Omicron and two for Delta) with positive BFE changes being
set to zero, so that only disruptive effects are compared.
Therefore, there are 185 accumulated BFE changes for each
variant. The mean value of these 185 values is used to compute
the fold of affinity reduction, which can be compared for
different variants against the original variant (BFEchangeaverage
= 0). It appears that Omicron is near 14 folds as capable as
Delta and near 5 folds as capable as Gamma to escape vaccines.
In Figure 8b, the sensitivity of 28 serum samples from

COVID-19 convalescent patients infected with the SARS-CoV-
2 original strain was tested against pseudotyped Omicron,
Alpha, Beta, Gamma, Delta, Lambda, and Mu.37 The mean
neutralization ED50 of these sera against Omicron decreased
about 8.4 folds compared to the D614G reference strain. In
contrast, Delta neutralization capability decreased 1.6 fold.
Both our prediction and serum experiment indicate that
Omicron has the highest capability to evade vaccines. The

overall correlation between our prediction and experiment is
0.9.
Figure 9 illustrates the comparison of BFE change

predictions and the experimental data of fold changes in IC50
compared with the wild type.38 The BFE changes for each
antibody are calculated by the peak negative BFE changes.
From the figure, it is shown that only predictions for antibodies
from Regeneron do not highly match to the experimental data,
but the rest of predictions are perfectly consistent with the
experimental results.

5. CONCLUSION

The identification of Omicron as a variant of concern (VOC)
by the World Health Organization (WHO) has triggered
countries around the world to put in place travel restrictions
and precautionary measures. At this moment, the scientific
community knows little about Omicron’s infectivity, vaccine
breakthrough, and antibody resistance. Since the spike (S)
protein, particularly, its receptor-binding domain (RBD), plays
a vital role in viral infection, it has been a key target of vaccines
and antibody drugs. Therefore, the study of Omicron’s 15
RBD mutations can lead to valuable understanding of
Omicron’s infectivity, vaccine breakthrough, and antibody
resistance.
On the basis of a well-tested and experimentally confirmed

deep learning model trained with tens of thousands of
experimental data, we investigate the impacts of Omicron’s
RBD mutations to its infectivity. We show that Omicron is
about 10 times more infectious than the original virus or about
2.8 times as infectious as the Delta variant. Using the structures
of 185 known antibody−RBD complexes, we reveal that
Omicron’s vaccine-escape capability is near 14 times as high as
that of the Delta variant. We unveil that Omicron may
completely abolish the Eli Lilly antibody cocktail. Omicron
RBD mutations may also compromise monoclonal antibodies
(mAbs) from Regeneron, AstraZeneca, Celltrion, and Rock-

Figure 8. Comparison of predicted variant vaccine-breakthrough potential with experimental data. (a) Accumulated negative BFE changes induced
by Omicron, Alpha, Beta, Delta, Gamma, Lambda, and Mu mutations, respectively, for 185 antibody−RBD complexes. For each variant, the
number on the top is the fold of affinity reduction computed by e−BFEchangeaverage, where BFEchangeaverage, denoted by a circle, is the mean value of 185
antibody−RBD negative BFE changes. (b) The comparison of neutralization activity against Omicron, Alpha, Beta, Delta, Gamma, Lambda, and
Mu variants based on 28 convalescence sera.37 For each variant, the number on the top is the ratio of neutralization ED50 compared to the reference
strain D614G.

Figure 9. Comparison of predicted antibody-breakthrough potential with experimental data.38 Colors indicate three different ranges. For BFE
changes: dark red, BFE changes ≤ −2 kcal/mol; median red, −2 kcal/mol < BFE changes ≤ −1 kcal/mol; light red, BFE changes > −1 kcal/mol.
For fold changes: dark red, fold changes < −1000; median red, −1000 ≤ fold changes < −100; light red, fold changes ≥ −100.
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efeller University. However, mAbs from GlaxoSmithKline
might not be affected much. Our results call for the
development of a new generation of vaccines and mAbs that
will not be easily affected by viral mutations.

6. DATA AND SOFTWARE AVAILABILITY
The structural information on 185 antibody−RBD complexes
with their corresponding PDB IDs and the results of BFE
changes of PPI complexes induced by Omicron mutations can
be found in the Supporting Information, Section S2. The
analysis of observed SARS-CoV-2 RBD mutations is available
at Mutaton Analyzer. The TopNetTree model is available at
TopNetmAb. The detailed methods can be found in the
Supporting Information, Sections S3 and S4. The validation of
our predictions with experimental data can be located in the
Supporting Information, Section S5.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01451.

BFE changes of antibodies disrupted by Omicron
mutations and list of antibodies with corresponding
PDB IDs (ZIP)
BFE changes of 185 antibodies induced by mutations
R346K, K417T, L452R/Q, E484K/Q, F490S occurred
in prevailing variants. Preprocessing and feature
generation methods. Machine learning methods. Vali-
dations of machine learning predictions with exper-
imental data (PDF)

■ AUTHOR INFORMATION
Corresponding Author
Guo-Wei Wei − Department of Mathematics and Department
of Biochemistry and Molecular Biology, Michigan State
University, East Lansing, Michigan 48824, United States;
Department of Electrical and Computer Engineering,
Michigan State University, East Lansing, Michigan 48824,
United States; orcid.org/0000-0002-5781-2937;
Email: weig@msu.edu

Authors
Jiahui Chen − Department of Mathematics, Michigan State
University, East Lansing, Michigan 48824, United States;
orcid.org/0000-0001-5416-6231

Rui Wang − Department of Mathematics, Michigan State
University, East Lansing, Michigan 48824, United States;
orcid.org/0000-0002-7402-6372

Nancy Benovich Gilby − Spartan Innovations, East Lansing,
Michigan 48823, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jcim.1c01451

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported in part by NIH Grant GM126189,
NSF Grants DMS-2052983, DMS-1761320, and IIS-1900473,
NASA Grant 80NSSC21M0023, Michigan Economic Develop-
ment Corporation, MSU Foundation, Bristol-Myers Squibb
65109, and Pfizer.

■ REFERENCES
(1) Li, W.; Shi, Z.; Yu, M.; Ren, W.; Smith, C.; Epstein, J. H.; Wang,
H.; Crameri, G.; Hu, Z.; Zhang, H.; et al. Bats are natural reservoirs of
SARS-like coronaviruses. Science 2005, 310, 676−679.
(2) Qu, X.-X.; Hao, P.; Song, X.-J.; Jiang, S.-M.; Liu, Y.-X.; Wang, P.-
G.; Rao, X.; Song, H.-D.; Wang, S.-Y.; Zuo, Y.; et al. Identification of
two critical amino acid residues of the severe acute respiratory
syndrome coronavirus spike protein for its variation in zoonotic
tropism transition via a double substitution strategy. J. Biol. Chem.
2005, 280, 29588−29595.
(3) Song, H.-D.; Tu, C.-C.; Zhang, G.-W.; Wang, S.-Y.; Zheng, K.;
Lei, L.-C.; Chen, Q.-X.; Gao, Y.-W.; Zhou, H.-Q.; Xiang, H.; et al.
Cross-host evolution of severe acute respiratory syndrome coronavi-
rus in palm civet and human. Proc. Natl. Acad. Sci. U.S.A 2005, 102,
2430−2435.
(4) Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.;
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