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Algebraic graph-assisted bidirectional transformers
for molecular property prediction
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The ability of molecular property prediction is of great significance to drug discovery, human
health, and environmental protection. Despite considerable efforts, quantitative prediction of
various molecular properties remains a challenge. Although some machine learning models,
such as bidirectional encoder from transformer, can incorporate massive unlabeled molecular
data into molecular representations via a self-supervised learning strategy, it neglects three-
dimensional (3D) stereochemical information. Algebraic graph, specifically, element-specific
multiscale weighted colored algebraic graph, embeds complementary 3D molecular infor-
mation into graph invariants. We propose an algebraic graph-assisted bidirectional trans-
former (AGBT) framework by fusing representations generated by algebraic graph and
bidirectional transformer, as well as a variety of machine learning algorithms, including
decision trees, multitask learning, and deep neural networks. We validate the proposed AGBT
framework on eight molecular datasets, involving quantitative toxicity, physical chemistry,
and physiology datasets. Extensive numerical experiments have shown that AGBT is a state-
of-the-art framework for molecular property prediction.
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he fact that there is no specific and effective drug for

coronavirus disease 2019 (COVID-19) 1 year after the

outbreak reminds us that drug discovery remains a grand
challenge. Rational drug discovery involves a long list of mole-
cular properties, including binding affinity, toxicity, partition
coefficient, solubility, pharmacokinetics, pharmacodynamics, etc!.
Experimental determination of molecular properties is very time-
consuming and expensive. In addition, experimental testing
involving animals or humans is subject to serious ethical con-
cerns. Therefore, various computer-aided or in silico approaches
have become highly attractive because they can produce quick
results without seriously sacrificing accuracy in many cases?. One
of the most popular approaches is the quantitative structure-
activity relationship analysis. It assumes that similar molecules
have similar bioactivities and physicochemical properties.

Recently, machine learning (ML), including deep learning
(DL), has emerged as a powerful approach for data-driven dis-
covery in molecular science. For example, graph convolutional
networks (GCNs)4-6, convolutional neural networks (CNNs)7,
and recurrent neural networks (RNNs)8, have become popular for
drug discovery and molecular analysis®-10. Generative adversarial
networks (GANs)!! combined with some machine learning
strategies, such as supervised learning and reinforcement learn-
ing, have also been applied to the generation of novel molecules
and drug design!2. However, DL methods require large datasets
to determine their large number of weights and might not be
competitive for small datasets!3.

Although DL methods, particularly CNN and GANSs, can
automatically extract features from simple data, such as images
and/or texts, the performance of ML and DL methods for
molecules, particularly macromolecules, crucially depends on the
molecular descriptors or molecular representations due to their
intricate structural complexity!. Earlier molecular descriptors are
designed as the profiles or fingerprints of interpretable physical
properties in a bit string format!?. Various fingerprints have been
developed in the past few decades!®!7. There are four main
categories of two-dimensional (2D) fingerprints!’, namely sub-
structure key-based fingerprints!8, topological or path-based
fingerprints'®, circular fingerprints!®, and pharmacophore
fingerprints?. However, 2D fingerprints lack three-dimensional
(3D) structural information of molecules, especially stereo-
chemical descriptions.

To deal with the aforementioned problems, 3D-structure-based
fingerprints have been developed to capture 3D patterns of
molecules?!. However, the molecular structural complexity and
high dimensionality are the major obstacles in designing efficient
3D fingerprints!4. Recently, a variety of 3D molecular repre-
sentations based on advanced mathematics, including algebraic
topology’-22, differential geometry?3, and algebraic graph?* have
been proposed to simplify the structural complexity and reduce
the dimensionality of molecules and biomolecules!42>. These
methods have had tremendous success in protein classification,
and the predictions of solubility, solvation-free energies, toxicity,
partition coefficients, protein folding stability changes upon
mutation, and Drug Design Data Resource (D3R) Grand
Challenges!'42°, a worldwide competition series in computer-
aided drug design. However, this approach depends on the
availability of reliable 3D molecular structures.

Alternatively, a self-supervised learning (SSL) strategy can be
used to pre-train an encoder model that can produce latent space
vectors as molecular representations without 3D molecular
structures. The unlabeled data is used in the SSL strategy, but
unlike unsupervised learning, the data input to the model is
partially masked, and then the model is trained to predict the
masked part in the training process, where the originally masked
data can be used as labels. This strategy allows a large amount of

unlabeled data to be utilized. The initial development of SSL was
due to the need for natural language processing (NLP)?7-28, For
example, bidirectional encoder representations from transformers
(BERTS) are designed to pre-train deep bidirectional transformer
representations from unlabeled texts?”. The techniques developed
in understanding sequential words and sentences in NLP have
been used for understanding the fundamental constitutional
principles of molecules expressed as a simplified molecular-input
line-entry system (SMILES)?®. Unlabeled SMILES strings can be
considered as text-based chemical sentences and are used as
inputs for SSL pre-training?®30. It is worth noting that the
availability of large public chemical databases such as ZINC3! and
ChEMBL32 makes SSL a viable option for molecular representa-
tion generation. However, latent-space representations ignore
much stereochemical information, such as the dihedral angle33
and chirality®®. In addition, latent-space representations lack
specific physical and chemical knowledge about task-specific
properties. For example, van der Waals interactions can play a
greater role than the covalent interactions in many drug-related
properties3, and need to be considered in the description of these
properties.

In this work, we introduce algebraic graph-assisted bidirec-
tional transformer (AGBT) to construct molecular representa-
tions via combining the advantages of 3D element-specific
weighted colored algebraic graphs and deep bidirectional trans-
formers. The element-specific weighted colored algebraic graphs
generate intrinsically low-dimensional molecular representations,
called algebraic graph-based fingerprints (AG-FPs), that sig-
nificantly reduce the molecular structural complexity while
retaining essentially physical/chemical information and physical
insight?*. Deep bidirectional transformer (DBT) utilizes an SSL-
based pre-training process to learn fundamental constitutional
principles from massive unlabeled SMILES data and a fine-tuning
procedure to further train the model with task-specific data. The
resulting molecular fingerprints, called bidirectional transformer-
based fingerprints (BT-FPs), are latent-space vectors of the DBT.
The proposed AGBT model is applied to eight benchmark
molecular datasets involving quantitative toxicity and partition
coefficient>13:36:37 Extensive validation and comparison suggest
that the proposed AGBT model gives rise to some of the best
predictions of molecular properties.

Results

In this section, we present the proposed AGBT model and its
results for molecular prediction on eight datasets, ie., LD50,
IGC50, LC50, LC50DM, partition coefficient, FreeSolv, Lipophi-
licity, and BBBP datasets. Supplementary Table 1 lists the basic
information of these datasets and the CheMBL3? dataset was used
in the pre-training. More descriptions of the datasets can be
found in Supplementary Note 1.

Algebraic graph-assisted deep bidirectional transformer
(AGBT). As shown in Fig. 1, the proposed AGBT consists of four
major modules: AG-FP generator (i.e., the blue rectangles), BT-
FP generator (i.e., the orange rectangles), random forest (RF)-
based feature-fusion module (ie., the green rectangle), and
downstream machine learning module (i.e., the pink rectangle).
For the graph fingerprint generation, we use element-specific
multiscale weighted colored algebraic graphs to encode the che-
mical and physical interactions into graph invariants and capture
3D molecular structural information. The BT-FPs have created in
two steps: an SSL-based pre-training step with massive unlabeled
input data and a task-specific fine-tuning step. The task-specific
fine-tuning step can be executed in two ways. The first way is
merely to adopt the same SSL procedure to fine-tune the model
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Fig. 1 lllustration of AGBT model. For a given molecular structure and its
SMILES strings, AG-FPs are generated from element-specific algebraic
subgraphs module and BT-FPs are generated from a deep bidirectional
transformer module, as shown inside the dashed rectangle, which contains
the pre-training and fine-tuning processes, and then finally completes the
feature extraction using task-specific SMILES as input. Then the random
forest algorithm is used to fuse, rank, and select optimal fingerprints
(AGBT-FPs) for machine learning.

with task-specific data and generate their BT-FPs. The other way
is to utilize labels in task-specific data via a SL procedure to fine-
tuning model and generate latent-space vectors of task-specific
data, denoted as BT-FPs (i.e, the orange vector). The random
forest algorithm is used to rank the importance of fused AG-FP
and BT-PF features and select an optimal set of AGBT-FPs of a
fixed number of components. The downstream machine learning
algorithms are fed with optimal features to achieve the best
performance on four benchmark toxicity datasets.

We carry out our final predictions by using some standard
machine learning algorithms, namely, gradient boosted decision
tree (GBDT), random forest (RF), and deep neural networks
(DNNs), including single-task DNN (ST-DNN, Supplementary
Fig. 10a) and multitask DNN (MT-DNN, Supplementary
Fig. 10b). Our training follows the traditional pipeline8. To
eliminate systematic errors in the machine learning models, for
each machine learning algorithm, the consensus of the predicted
values from 20 different models (generated with different random
seeds) was taken for each molecule. Note that the consensus value
here refers to the average of the predicted results from different
models for each molecule of each specific training-test splitting.
In this work, the squared Pearson correlation coefficient (RZ%),
root-mean-square error (RMSE), and mean absolute error (MAE)
are used to assess the performance of the regression task, while
the classification accuracy and the area under the receiver
operating characteristic convex hull (AUC-ROC) are used to
evaluate the performance of classification model. All definitions
are given in Supplementary Note 2. Further details on our AGBT
model are given in the “Method” Section and the parameters set is
provided in Supplementary Note 3.

Toxicity prediction. Toxicity, a critical issue to consider in drug
lead optimization, measures the degree to which a chemical
compound can affect an organism adversely2. Indeed, toxicity and
side effects are responsible for more than half of drug candidate
failures on their path to the market3°. The LC50DM set refers to
the concentration of test chemicals in the water in milligrams per
liter that cause 50% Daphnia Magna to die after 48 h. Its size is
the smallest among the four datasets. Among its 353 molecules,

283 are used as a training set and the rest 70 as a test set?. The
small size leads to difficulties in training a good prediction model.
The overfitting issue poses a challenge to traditional machine
learning methods if a large number of descriptors is used. In this
work, the MT-DNN is applied to extract information from data
sets that share certain statistical distributions, which can effec-
tively improve the predictive ability of models and avoided
overfitting on the small datasets®!13.

Based on the AGBT framework, we fuse AG-FPs and BT,-FPs,
ie, BT-FPs with a supervised fine-tuning procedure for task-
specific data. The best performance is obtained by the MT-DNN
model, which R? = 0.830 and RMSE = 0.743. As shown in Fig. 2b,
our model yields the best result, which is over 13% better than the
previous best score of R2 = 0.733.

The IGC50 set is the second-largest toxicity set and its toxicity
values range from 0.334 —log;o mol/L to 6.36 —log;, mol/L2. As
shown in Fig. 2a, the R?s from different methods fluctuate from
0.274 to 0.810 Karim et al.#0 also studied IGC50 dataset, but their
training set and test set are different from those of others? and
thus their results cannot be included in the present comparison.
For our method, the R? of MT-DNN with AGBT-FP is 0.842,
which exceeds that of all existing methods on the dataset IGC50.

The oral rat LD50 set measures the number of chemicals that
can kill half of the rats when orally ingested36-3741, This dataset is
the largest set among the four sets with as many as 7413
compounds. However, a large range of values in this set makes it
relatively difficult to predict*2. Gao et al.!” studied this problem
using many 2D molecular fingerprints and various machine
learning methods, which include GBDT, ST-DNN, and MT-
DNN. However, the prediction accuracy of the LD50 data set was
not improved much. As shown in Table 1 (the complete
comparison in Supplementary Table 6), the R? values for all
existing methods range from 0.392 to 0.643. In our case, our
method can achieve R? 0.671 and RMSE 0.554 log(mol/L), which
are better than those methods.

LC50 dataset reports the concentration of test chemicals in
water by milligrams per liter that cause 50% of fathead minnows\
to die after 96 h*l. Wu et al.2 used physical information including
energy, surface energy, electric charge, and so on to construct
molecular descriptors. These physical properties are related to
molecular toxicity, achieving the prediction accuracy of R? 0.771.
In this work, our AGBT-FPs with MT-DNN deliver the best R? of
0.776. We also test the performance of our BT-FPs, which achieve
R% 0.783 with MT-DNN. As listed in Table 1, our model
outperforms all other existing methods.

Partition coefficient prediction. Partition coefficient denoted P,
derived from the ratio of the concentration of a mixture of two
mutually insoluble solvents (octanol and water in these data) at
equilibrium, measures the drug relevance of the compound as
well as its hydrophobicity to the human bodies. The logarithm of
this coefficient is denoted as logP*3. The training set used for logP
prediction includes 8199 molecules*4. A set of 406 molecules
approved by the Food and Drug Administration (FDA) is used as
organic drugs were used as the test set** and its logP values range
from —3.1 to 7.57. The comparison of different prediction
methods for FDA molecular data set is listed in Table 1 and
Supplementary Table 6. It should be mentioned that the ALOGPS
model established by Tetko et al.#> can also be used in logP
prediction, however, there is no guarantee that the training set of
ALOGPS are independent of the test set and thus its result is not
included in the comparison. As we can see from Table 1, our
AGBT,-FPs with STDNN model produce the best R* of 0.905.
The predicted result of AGBT,-FPs with STDNN model for FDA
data set are shown in Supplementary Fig. 11c.
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Fig. 2 Results from AGBT framework and feature analysis. a, b |llustrate the comparison of the R2 by various methods for the IGC50 set and the LC50DM
set, respectively. AGBT,-FP means a supervised fine-tuning process is applied to AGBT-FP. The other results were taken from refs. 213.17.23,40.41 ¢ The bar
charts illustrate the R? of AGBT-FPs and BT-FPs with three machine learning algorithms for the IGC50 dataset. d The bar charts illustrate the consensus R?
of AGBT-FPs and AGBT,-FPs with three machine learning algorithms for the LC50DM dataset. e Visualization of the LD50 set. The axes are the top three
important features of AGBT-FPs. f Predicted results of AGBT-FPs with MT-DNN model for the IGC50 set(left) and the LC50DM set(right), respectively.
The box plots statistic R2 values for n =358 (left), and 70 (right) independent samples examined over 20 independent machine learning experiments, and
the detailed statistic values are listed in Supplementary Table 5. g The AGBT-FPs of the IGC50 and LC50DM datasets were ranked by their feature

importance. For both datasets, 188/512 of the AGBT features are from AG-FPs and the remaining 348/512 are from BT-FPs. h Based on AGBT-FPs and
AGBT,-FPs, the variance ratios in the first two components from the principal component analysis (PCA) are used to visualize the IGC50 and LC50DM

datasets.

FreeSolv and lipophilicity prediction. Solvation-free energy and
lipophilicity are basic physical and chemical properties for
understanding how molecules interact with solvents. In this work,
FreeSolv and Lipophilicity —datasets are derived from
MoleculeNet?, which is a benchmark for molecular property
prediction. There are 643 samples and 4200 samples for FreeSolv
and Lipophilicity datasets, respectively. For comparison, the
datasets were split into train, validation, test sets with the ratio of
8:1:1, which follows the same procedure as MoleculeNet®. We set
different random seeds and follow the same procedure ten times
to obtain ten different data splitting. To eliminate systematic
errors in downstream machine learning models and to better
compare molecular descriptors, for each machine learning algo-
rithm, the consensus of the predicted values from 20 models of
different random seeds for each data-splitting was taken for each
molecule. And the final score for the dataset is the average score
over ten different data-splittings. As shown in Table 1, using the
STDNN algorithm, our method obtains the best RMSE of 0.994
on FreeSolv, which is better than the best results reported by
Chemprop#® (RMSE = 1.075), MMNB# (RMSE = 1.155), and
MoleculeNet® (RMSEg,apncony = 1.15). For the Lipophilicity

dataset, using the RF algorithm, the RF method, our descriptors
obtains the best RMSE of 0.573 + 0.026, a result that is close to the
best result reported by Chemprop?® (RMSEg,apncor = 0.555). A
complete result with multiple evaluation metrics is available in
Supplementary Table 7.

Classification task for binary labels of blood-brain barrier
penetration (BBBP). The BBBP dataset contains 2042 small
molecules and original from a study on the modeling and pre-
diction of barrier permeability*3. The binary labels for compound
permeability properties are used in this study. For a better com-
parison, we follow the same scaffold splitting method described in
MoleculeNet®. The dataset was split into training, validation, and
the test set follow the ratio of 8/1/1. Table 1 reports the best
achieved AUC-ROC of our method is 0.763, which is better than
results reported in Chemprop#® (AUC-ROC = 0.738), MMNB*/
(AUC-ROC =0.739), and MoleculeNet? (AUC-ROCgcpp=
0.671).

It is worth noting that to validate the performance of our
AGBT framework, for downstream machine learning models, we
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Table 1 Comparison of the best-achieved performance with
the reported score on six datasets.
LD50 LC50 FDA
Method R2 Method R2 Method R2
Ours 0.671 Ours 0.783 Ours 0.905
MACCSY 0.643 BTAMDL23 0.750 ESTD-143 0.893
FP217 0.631 ESTDS? 0.745  Estate2!” 0.893
HybridModel40  0.629  Daylight- 0.724 XLOGP344 0.872
MTDNNY
FreeSolv Lipophilicity BBBP
Method RMSE Method RMSE Method AUC-
ROC
Ours 0.994 Ours 0.570 Ours 0.763
MMNB47 1155 MMNB47 0.625 MMNB4/ 0.739
Chemprop#®  1.075  Chemprop4® 0.555 Chemprop#® 0.738
GraphConv®  1.15 GraphConv® 0.715  ECFP? 0.671
The best result for each data set has been bolded. Comparison of the R for the rest datasets,
IGC50, and LC50DM, are shown in Fig. 2 and Supplementary Table 6. A complete table with
multiple evaluation metrics for all eight datasets is available in Supplementary Table 7.

did not over-tune the parameters to optimize our results in this
study. For all the above-mentioned datasets, the same set of
parameters is taken for each type of descriptors in our model. The
details of the parameter settings can be found in Supplementary
Note 3. Our method exhibits state-of-the-art results in seven out
of eight above-mentioned datasets. This illustrates the stable and
robust performance of our AGBT framework and its applicability
to a wide range of molecular prediction tasks.

Discussion

In this section, we discuss how the AGBT model brings insights
to molecular property predictions, as well as the enhancement
that algebraic graph-based fingerprints and deep bidirectional
transformers-based fingerprints give rise to our proposed AGBT
method.

Impact of algebraic graph descriptor. Pre-trained on a large
number of molecules, deep SSL-based molecular fingerprints
could achieve high accuracy. Many deep learning-based mole-
cular fingerprints have shown a better performance than con-
ventional fingerprints. However, deep learning fingerprints,
including our BT-FPs, are prone to the loss of molecular ste-
reochemical information. This lack of information often makes
"activity cliff” a nuisance. An example in Supplementary Fig. 16
demonstrates this drawback. Therefore, we propose the use of
algebraic graph theory in association with our AGBT framework
to retain stereochemical and physical information and enhance
the performance of original BT-FPs. Moreover, in this work, we
set the total dimension of molecular fingerprints after feature
fusion to 512, and thus we only need to optimize one neural
network architecture. Our AGBT model is an efficient framework
for molecular property predictions.

Figure 2f shows the best prediction performance on the IGC50
and LC50DM datasets using the AGBT framework, namely, R? =
0.842 on IGC50 and R?=0.830 on LC50DM. The orange bar at
each point is the deviation of predicted toxicity with 20 models
(with different random seed). For each model, R? was calculated
and the distribution of R? is shown in subfigures. The
performance on the LD50 and LC50 datasets is shown in
Supplementary Fig. 11b. For LD50, IGC50, and LC50DM
datasets, the best prediction results are obtained by the algebraic
graph-assisted with MTDNN. For the IGC50 dataset, the R? of

the toxicity predictions from the three machine learning
algorithms, i.e., GBDT, ST-DNN, and MT-DNN, are shown in
the bar plot of Fig. 2c. It is obvious that, for the IGC50 dataset,
AGBT-FP performs better than BT-FP with GBDT and MT-
DNN, while it shows the opposite result on the STDNN. It is
mainly because that AG-FPs and BT-FPs are produced from two
different molecular fingerprint generators and have the dimen-
sions of 1800 and 512, respectively. The fused molecular
fingerprints, AGBT-FPs, return 512 components with hetero-
geneous information from AG-FPs and BT-FPs and tend to cause
some anomalies in the STDNN method.

For the IGC50 dataset, 1434 molecular structures were used to
train the AGBT model, leading to fluctuation in prediction Fig. 2f.
Similar situations are found in the LD50 dataset and the LC50DM
dataset, as shown in Supplementary Fig. 11. For the LC50 dataset,
the best result is obtained with BT-FPs, but the result of AGBT-
FPs also reaches R? 0.776, exceeding the other reported methods.
As shown in Table 2 and Supplementary Table 8, for FreeSolv
and Lipophilicity datasets, the best results are all generated by
using fused descriptors, which illustrate that algebraic graph does
have an important impact on the molecular property prediction.
In Supplementary Table 8, the standard deviation on R2, RMSE,
and MAE of FreeSolv and Lipophilicity’s prediction also show
that AGBT;-FP can obtain the most stable performance in most
cases (5/6). Therefore, the fusion of AG-FPs and BT-FPs
improves the accuracy and stability of predictions for most
datasets. Mathematically based molecular descriptors can com-
plement data-driven potential spatial descriptors.

Predictive power of fine-tuning strategies. In this work, we
develop two strategies in the fine-tuning stage: SSL and SL with
task-specific data. It is found that SSL strategy (See Supplemen-
tary Fig. 3 performs better on LD50, IGC50, and LC50 data sets,
as shown in Fig. 2f and Supplementary Fig. 11, while SL strategy
with task-specific data (See Supplementary Fig. 4 is the best for
LC50DM dataset. The LC50DM dataset is the smallest set with
only 283 molecules in its training set. Conventional methods
cannot capture enough information from such a small dataset to
achieve satisfactory results. In the AGBT model, the pre-training
strategy with a bidirectional transformer enables the model to
acquire a general knowledge of molecules. During the fine-tuning
phase, we further feed the model with four toxicity datasets with
labels, and the labeled data guide the model to specifically extract
toxin-related information from all the training data. Then we
complement fine-tuning fingerprints with algebraic graph
descriptors to ultimately enhance the robustness of the AGBT
model and improve the performance on the LC50DM set (R =
0.830, RMSE = 0.743).

Figure 2d shows the performance of AGBT-FPs and AGBT;-
FPs on the LC50DM dataset using three advanced machine
learning methods. The bar charts show the R? of prediction
results with three machine learning algorithms. This figure shows
that AGBT,-FPs have an excellent performance with all three
machine learning algorithms, with R2 values being 0.822 (GBDT),
0.815 (ST-DNN), and 0.830 (MT-DNN), respectively. This
indicates that AGBT,-FPs can capture general toxin-related
information during the sequential fine-tuning process. There is
no significant difference among the three predictions based on
GBDT, ST-DNN, and MT-DNN. In contrast, AGBT-FPs are
derived from the model after self-supervised training. Their pre-
training and fine-tuning processes do not involve any labeled
data. The resulting prediction accuracies with GBDT and ST-
DNN are quite low with R? being 0.587 and 0.659, respectively.
Through the MT-DNN model, the performance of AGBT-FPs
can be improved from R2 0.587 to 0.781.
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Table 2 Performance of descriptors generated with the AGBT framework on eight datasets.

Datasets LD50 IGC50 LC50 LC50DM LogP FreeSolv Lipophilicity BBBP
Metric R? R? R? R? R2 RMSE RMSE AUC-ROC
AG-FP 0.647 0.788 0.713 0.75 0.838 1.018 0.664 0.677
BT-FP 0.667 0.839 0.7834 0.763 0.895 1125 0.626 0.736
BT,-FP 0.617 0.798 0.75 0.829 0.903 1.036 0.572 0.763"
AGBT-FP 0.671¢ 0.842¢ 0.776 0.781 0.885 0.994¢ 0.663 0.738
AGBT-FP 0.612 0.805 0.75 0.83d 0.905¢ 1.039 0.579 0.761

A complete result with multiple evaluation metrics is available in Supplementary Table 7; Best performances are produced on 23GBDT, PRF, <SSTDNN, and 9IMTDNN, and are bolded.

The above discussion indicates that SSL can acquire general
molecular information and universal molecular descriptors
without the guidance of labels. In downstream tasks, the MT-
DNN model can also help to extract the task-specific information
from related data. As for small datasets, such as the LC50DM
dataset (300 samples), the subsequent fine-tuning with an SL
strategy is much more promising.

The results of all eight datasets using AG-FP, BT-FP/BT,-FP,
and AGBT-FP/AGBT,-FP are shown in Table 2. The fused
descriptors (AGBT-FP/AGBT,-FP) achieved the best perfor-
mance in 5/8 of the tasks. For the LC50 dataset, the AGBT-FP
prediction of 0.776 is very close to the best performance of 0.783
obtained by BT-FPs. For Lipophilicity dataset, the performance of
AGBT,-FP is RMSE = 0.579. It is close to the best RMSE (0.57).
And for the BBBP dataset, the classification performance of
AGBT,-FP is AUC-ROC = 0.761, which is almost the same as the
best 0.763. The complete results for all 8 datasets with multiple
evaluation metrics are shown in Supplementary Table 7.

Molecular representations and structural genes. In chemistry,
the properties of molecules, such as toxicity, are often determined
by some specific functional groups or fragments. Similar to bio-
logical genes, molecules have some determinants of their prop-
erties, which are called structural genes in this work. For some
path-based fingerprints, such as FP2, a molecule is represented by
256 length vectors, each corresponding to a specific fragment.
However, it is difficult to achieve the best results from such a
fingerprint, as shown in Fig. 2a, b. The proposed AGBT-FP is a
512-dimensional fingerprint, with each dimension being a pro-
jection of various physical information about the molecule. In this
section, we hope to characterize the key dimensions of AGBT-FPs
to identify the structural genes.

Using a random forest algorithm, we performed a feature
importance analysis of AGBT-FPs. As shown in Supplementary
Fig. 13, for the LD50, IGC50, and LC50 datasets, the top three
features in the feature importance ranking are all from algebraic
graph-based descriptors. For the toxicity datasets, the ratio of
components from AG-FPs and BT-FPs in the AGBT-FPs is 188:
324, as shown in Fig. 2g and Supplementary Fig. 13. For the
LC50DM dataset, the most important feature is from BT-FPs and
the 2nd and 3rd important features are from AG-FPs. This
implies that the multiscale weighted colored algebraic graph-
based molecular descriptors contribute the critical molecular
features, which are derived from embedding specific physical and
chemical information into graph invariants. The top three
important features of the LD50 set are illustrated in Fig. 2e,
where each point represents a molecule and the toxicity is
represented by the color. It is easy to find that the top three
important dimensions in AGBT-FP, denoted as Feature 1, Feature
2, and Feature 3, divide the molecules into two groups: one can be
distinguished by Feature 3 and the other is a linear combination
of Feature 1 and Feature 2. This means the molecule can be
classified by just three key dimensions (features), indicating that

these three features, or structural genes, dominate the intrinsic
characteristics of molecules. However, since predicting molecular
toxicity is complex, it is difficult to directly distinguish the toxicity
of each molecule in AGBT-FPs through the first three dimen-
sions. Similarly, the visualizations for the IGC50, LC50, and
LC50DM datasets can be seen in Supplementary Fig. 14.

We projected both AGBT-FPs and AGBTFPs into an
orthogonal subspace by principal component analysis. As shown
in Fig. 2h, the first two principal components of AGBT-FPs can
roughly divide the data into two clusters and the molecules in the
same cluster have similar toxicity. Similarly, the top two
components of AGBT-FPs are given in Fig. 2h. Along the
direction of the first principal components, the molecular data
can be well clustered according to the toxicity, with low toxic
molecules on the left (green) and higher toxic molecules on the
right (red). It indicates these two molecular fingerprints contain
very different information. As shown in Supplementary Fig. 15,
for AGBT-FPs we need 112 components to explain 90% of the
variance, while for AGBT,-FPs we only need 48 components. The
top two principal components of AGBT-FPs are just explaining
9% and 8% of the variance, which indicates that, since there is no
labeled data to train the model, the generated AGBT-FPs
represent general information about the molecular constitution
rather than specific molecular properties. The first two compo-
nents for AGBT,-FPs can explain 40% and 13% of the variance
respectively, which indicates that by using SL-based fine-tuning
training, the model can effectively capture task-specific
information.

The AGBT,-FP model performs better in predicting specific
properties because the labeled data are used to train the model
during fine-tuning. It should be noted that some molecular
information irrelevant to that particular property might be lost in
this way. This strategy leads to better results for some datasets
with minimal data, such as LC50DM, whose small amount of data
is not enough to effectively obtain property-specific information
in downstream tasks. However, if more downstream data are
available, such as LD50, IGC50, and LC50, downstream machine
learning methods can also derive property-specific information
from general molecular information. For example, AGBT-FPs
perform better on LD50, IGC50, and LC50 datasets.

Despite many efforts in the past decade, accurate and reliable
prediction of numerous molecular properties remains a challenge.
Recently, deep bidirectional transformers have become a popular
approach in molecular science for their ability to extract
fundamental constitutional information of molecules from
massive SSL. However, they neglect crucial stereochemical
information. The algebraic graph is effective in simplifying
molecular structural complexity but relies on the availability of 3-
D structures. We propose an AGBT framework for molecular
property prediction. Specifically, element-specific multiscale
weighted colored algebraic subgraphs are introduced to char-
acterize crucial physical/chemical interactions. Moreover, for
small datasets, we introduce a supervised fine-tuning procedure
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to the standard pre-trained SSL to focus on task-specific
information. These approaches are paired with random forest,
gradient boosted decision trees, multitask deep learning, and deep
neural network algorithms in AGBT. We demonstrate that the
proposed AGBT framework achieves R? values of 0.671, 0.842,
0.783, 0.830, and 0.905 on LD50, IGC50, LC50, LC50DM, and
FDA logP dataset, respectively. In the datasets FreeSolv and
Lipophilicity, we obtained RMSE scores of 0.994 and 0.579,
respectively, and in the classification dataset BBBP, we obtained
an AUC-ROC score of 0.763. Our model can be easily extended to
the prediction of other molecular properties. Our results show
that the proposed AGBT is a robust, and powerful framework for
studying various properties of small molecules in drug discovery
and environmental sciences.

Methods
Algebraic graph-based molecular fingerprints (AG-FPs). Graph theory can
encode the molecular structures from a high-dimensional space into a low-
dimensional representation. The connections between atoms in a molecule can be
represented by graph theory, as shown in Fig. 3a, b. However, ignoring the
quantitative distances between atoms and the different atomic types in traditional
graphs will result in the loss of critical chemical and physical information about the
molecule. Element-specific multiscale weighted colored graph representations can
quantitatively capture the patterns of different chemical aspects, such as van der
Waals interactions and hydrogen bonds between different atoms24. Figure 3c
illustrates a colored graph representation, which captures the element information
by using colored vertices and different edges are corresponding to different pair-
wise interactions in the molecule. Moreover, the algebraic graph features are easily
obtained from the statistics of the eigenvalues of appropriated graph Laplacians
and/or adjacency matrices?%.

As shown in Fig. 3d, for a given molecule, we first construct element-specific
colored subgraphs using selected subsets of atomic coordinates as vertices,

V={(ri7‘xi)|ri€R3;‘xieg;i=172:~-->N} (1)

where £ = {H,C,N, O,S,P,F,Cl,Br, ...} is a set of commonly occurring element
types for a given dataset. And ith atom in a N-atom subset is labeled both by its
element type «; and its position r;, We denote all the pairwise interactions between
element types £ and & in a molecule by fast-decay radial basis functions

W= {‘F(Hri —rl; Wk\kz)lai =& 0 =E i j=1,2,..,N;
@
x|l =l >ri + 1+ 0}

where ||r; — rj|| is the Euclidean distance between ith and jth atoms in a molecule,
r; and r; are the atomic radii of ith and jth atoms, respectively, and ¢ is the mean
standard deviation of r; and r; in the dataset. Figure 3e gives the illustration of

Laplace and adjacency matrices based on the weighted colored subgraph. For the

prediction of toxicity, van der Waals interactions are much more critical than
covalent interactions and thus the distance constraint (||r; — r;|| >r; +r; + 0) is
used to exclude covalent interactions. In biomolecules, we usually choose
generalized exponential functions or generalized Lorentz functions as ¥, which are
weights between graph edges®®. Here, fi,x, in the function is a characteristic
distance between the atoms and thus is a scale parameter. Therefore, we generate a
weighted colored subgraph G(V, W). In order to construct element-specific
molecular descriptors, the multiscale weighted colored subgraph rigidity is defined
as

RIG(ﬂklkz) = ;M?(ﬂklkz) = Zx:%:“l’(lll‘, - l'j”'-, rlklkz)’

ai:gkl‘,“jzgkz;”ri_l}'” >ri+ri+o

(3)

where yf(nkl x,) is a geometric subgraph centrality for the ith atom?’. The ;4?(11,(1 %)
here is a weight subgraph generalization of Gaussian network model or a subgraph
generalization of the multiscale flexibility-rigidity index. The summation over
Zjl‘ic(ﬂk, x,) represents the total interaction strength for the selected pair of element
types & and &, , which provide the element-specific coarse-grained description of
molecular properties. By choosing appropriate element combinations k; and k,, the
characteristic distance 7, ; , and subgraph weight ¥, we finally construct a family
of element-specific, scalable (i.e., molecular size independent), multiscale geometric
graph-based molecular descriptors?4.

To generate associated algebraic graph fingerprints, we construct corresponding
graph Laplacians and/or adjacency matrices. For a given subgraph, its matrix
representation can provide a straightforward description of the interaction between
subgraph elements. To construct a Laplacian matrix, we consider a subgraph G ;.
for each pair of element types £ and £ and define an element-specific weighted
colored Laplacian matrix L(1 ;) as**

—V(lr; —xll) if i#j 0 =E 05 =& and|r; — x| >1; 4+ 1+ 05

Li(x,) = {
! -

ifi=j
4

Mathematically, the element-specific weighted Laplacian matrix is symmetric,
diagonally dominant, and positive semi-definite, and thus all the eigenvalues are
non-negative. The first eigenvalue of the Laplacian matrix is zero because the
summation of every row or every column of the matrix is zero. The first non-zero
eigenvalue of Ly(r ;) is the algebraic connectivity (i.e., Fiedler value).
Furthermore, the rank of the zero-dimensional topological invariant, which
represents the number of the connected components in the graph, is equal to the
number of zero eigenvalues of L;(r ; ). A certain connection between geometric
graph formulation and algebraic graph matrix can be defined by:
RIg(”lklkz) =Tr L(Wklkz)v )
where Tr is the trace. Therefore, we can directly construct a set of element-specific
weighted colored Laplacian matrix-based molecular descriptors by the statistics of
nontrivial eigenvalues {AiL }iz123.> i, summation, minimum, maximum, average,
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and standard deviation of nontrivial eigenvalues. Note that the Fiedler value is
included as the minimum.
Similarly, an element-specific weighted adjacency matrix can be defined by

V(I =gl if izje =& o =& and|r; — x|l >+ 1+ 0;

6
0 ifi=j ©

AiJ(VIk|k2) = {

Mathematically, adjacency matrix A;(7, , ) is symmetrical non-negative matrix.
The spectrum of the proposed element-specific weighted colored adjacency matrix
is real. A set of element-specific weighted labeled adjacency matrix-based molecular
descriptors can be obtained by the statistics of {12} i—123. -6, summation,
minimum, maximum, average, and standard deviation of all positive eigenvalues.
To predict the properties of a molecule, graph invariants, such as the eigenvalue
statistics of the above matrix, can capture topological and physical information
about the molecules, which is named AG-FPs. Detailed parameters of the proposed
algebraic graph model can be found in Supplementary Note 3.

Bidirectional transformer fingerprints (BT-FPs). Unlike RNN-based models,
DBT is based on the attention mechanism and it is more parallelable to reduce the
training time with massive data®®. Based on the DBT architecture, Devlin et al.?’
introduced a representation model called BERT for natural language processing.
There are two tasks involving BERT, masked language learning, and consecutive
sentences classification. Masked language learning uses a partially masked sentence
(i.e., words) as input and employs other words to predict the masked words. The
consecutive sentences classification is to classify if two sentences are consecutive. In
the present work, the inputs of the deep bidirectional transformer are molecular
SMILES strings. Unlike the sentences in traditional BERT for natural language
processing, the SMILES strings of different molecules are not logically connected.
However, we train the bidirectional encoder from the transformer to recover the
masked atoms or functional groups.

Because a molecule could have multiple SMILES representations, we first convert
all the input data into canonical SMILES strings, which provide a unique
representation of each molecular structure®!. Then, a SMILES string is split into
symbols, e.g.,, C, H, N, O, =, Br, etc,, which generally represent the atoms, chemical
bonds, and connectivity, see Supplementary Table 2 for more detail. In the pre-
training stage, we first select a certain percentage of the input symbols randomly for
three types of operations: mask, random changing, and no changing. The purpose of
the pre-training is to learn fundamental constitutional principles of molecules in a SSL
manner with massive unlabeled data. A loss function is built to improve the rate of
correctly predicted masked symbols during the training. For each SMILES string, we
add two special symbols, <s> and <\s>. Here, <s> means the beginning of a SMILES
string and <\s> is a special terminating symbol. All symbols are embedded into input
data of a fixed length. A position embedding is added to every symbol to indicate the
order of the symbol. The embedded SMILES strings are fed into the BERT framework
for further operation. Supplementary Fig. 2 shows the detailed process of pre-training
procedure. In our work, more than 1.9 million unlabeled SMILES data from
CheMBL?2 are used for the pre-training so that the model learns basic "syntactic
information” about SMILES strings and captures global information of molecules.

Both BT-FPs and BT,-FPs are created in the fine-tuning training step, which
further learns the characteristics of task-specific data. Two types of fine-tuning
procedures are used in our task-specific fine-tuning. The first type is still based on
the SSL strategy, where the task-specific SMILES strings are used as the training
inputs, as shown in Supplementary Fig. 3. To accurately identify these task-specific
data, only the “mask” and “no changing” operations are allowed in this fine-tuning.
The resulting latent-space representations are called BT-FPs.

The second fine-tuning procedure is based on an SL strategy with labeled task-
specific data. As shown in Supplementary Fig. 4, when dealing with multiple
datasets with cross-dataset correlations, such as four toxicity datasets in the present
study (Supplementary Table 4), we make use of all the labels of four datasets to
tune the model weights via supervised learning before generating the latent-space
representations (i.e., BT-FPs), which significantly strengthens the predictive power
of the model on the smallest dataset.

In our DBT, an input SMILES string has a maximal allowed length of
256 symbols. During the training, each of the 256 symbols is embedded into a 512-
dimensional vector that contains the information of the whole SMILES string. In
this extended 256 x 512 representation, one can, in principle, select one or multiple
512-dimensional vectors to represent the original molecule. In our work, we choose
the corresponding vector of the leading symbol <s> of a molecular SMILES string
as the bidirectional transformer fingerprints (BT-FPs or BT,-FPs) of the molecule.
In the downstream tasks, BT-FPs or BT-FPs are used for molecular property
prediction. Detailed model parameters can be found in Supplementary Note 3.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The pre-training dataset used in this work is CheMBL26, which is available at https://ftp.
ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_26/. To ensure the
reproducibility of this work, the eight datasets used in this work, including four

quantitative toxicity datasets (LD50, IGC50, LC50, and LC50DM), partition coefficient
dataset, FreeSolv dataset, Lipophilicity dataset, and BBBP dataset, are available at https://
weilab.math.msu.edu/Database/.

Code availability
The overall models and related code have been released as an open-source code and is
also available in the Github repository: https://github.com/ChenDdon/AGBTcode>2.
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