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ABSTRACT: Toxicity analysis is a major challenge in drug design
and discovery. Recently significant progress has been made through
machine learning due to its accuracy, efficiency, and lower cost. US
Toxicology in the 21st Century (Tox21) screened a large library of
compounds, including approximately 12 000 environmental chem-
icals and drugs, for different mechanisms responsible for eliciting
toxic effects. The Tox21 Data Challenge offered a platform to
evaluate different computational methods for toxicity predictions.
Inspired by the success of multiscale weighted colored graph
(MWCG) theory in protein−ligand binding affinity predictions, we
consider MWCG theory for toxicity analysis. In the present work, we
develop a geometric graph learning toxicity (GGL-Tox) model by integrating MWCG features and the gradient boosting decision
tree (GBDT) algorithm. The benchmark tests of the Tox21 Data Challenge are employed to demonstrate the utility and usefulness
of the proposed GGL-Tox model. An extensive comparison with other state-of-the-art models indicates that GGL-Tox is an accurate
and efficient model for toxicity analysis and prediction.

■ INTRODUCTION

Chemical toxicity is an important measure in environmental,
agricultural, and pharmaceutical sciences. In pharmacology,
toxicity plays a crucial role in drug discovery and is the major
factor for disqualifying most drug candidates. For example, a
potential drug for cancer treatment must be studied for its
activity at multiple biological targets, including possibly novel
targets, rendering a probability of multiple toxicological
profiles.1 Therefore, it is highly desirable to develop novel
methods that can determine the fate of chemical compounds,
in order to decrease the failure rates in the early stage of drug
design and accelerate the approval of promising drug
candidates. The traditional paradigm in toxicity testing
incorporates in vivo animal studies and in vitro techniques,
which is laborious, expensive, and often impractical for
evaluating large numbers of compounds. This approach has
been gradually phased out owing to its controversial nature.2

As a result, in silico methods are in great demand for the
accurate prediction of toxicity and enable the prioritization of
drug candidates for experimental testing. These in silico
methods typically utilize experimental data generated by in
vivo and in vitro screening technologies and lead to powerful
predictive models, which could be used to screen thousands of
chemicals for potential unwanted side effects early on during
development cycles or to re-evaluate existing ones. Computa-
tional approaches are used to utilize limited experimental
resources efficiently.
Due to the availability of abundant experimental data,

machine learning (ML) algorithms have been widely used in
toxicity prediction,3−5 including k-nearest neighbors (KNN),6,7

support vectors machine (SVM),8−10 random forest (RF),11,12

and many others.13−16 The traditional machine learning
techniques depend heavily on the quantity and quality of
training data and domain knowledge-based feature engineer-
ing. For example, nonlinear SVM can be capable of dealing
with high-dimensional data but may not be robust to the
presence of diverse chemical descriptors.17 Deng and Zhao18

reported that the computational cost of KNN increases
exponentially with the size of the input samples. Recently,
deep learning (DL) has attracted much attention for predicting
the outcome of biological assays and becomes a key candidate
for toxicity prediction due to its ability to bypass feature
extraction. Mayr et al. developed the DeepTox pipeline using
deep neural networks (DNNs) to study toxicology in the 21st
Century (Tox21) Data Challenge 10k library data sets and
found that DL outperformed other computational approaches
like naive Bayes, SVM, and RF.14,19 Molecular and
biomolecular data sets involve structural complexity, which
makes ML performance highly dependent on structural
representations.20 By using a molecular graph encoding
convolutional neural network (MGE-CNN) architecture, Xu
et al. constructed deepAOT (DL-based acute oral toxicity)
models for both quantitative toxicity prediction and toxicant
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category classification.21 In addition, Wu and Wei introduced
an algebraic topology-based approach that combines multitask
DNN and element-specific persistent homology (ESPH) for
quantitative toxicity prediction using four benchmark ecotox-
icity data sets.22 More references about molecule structural
representation and toxicity prediction can be found in the
literature.23−26

Graph theories have been widely applied to problems in the
biological, physical, social, chemical, and computer sciences.
Pairwise relations in reality can be easily represented and
analyzed by graphs. For instance, in chemistry and biology, a
graph can model the structure of a molecule, where graph
vertices indicate atoms and graph edges indicate possible
bonds. Graphs have widespread applications in chemical
analysis27 and macromolecular modeling,28 such as normal-
mode analysis (NMA)29 and elastic network models
(ENMs)30 for modeling protein flexibility and long time
dynamics. In particular, graphs bridge the gap between the
toxicity of chemical compounds and their structure and
functional relationships. The utility of graph theory makes it
a popular approach not only for toxicity prediction but also for
describing chemical data sets,31,32 biomolecular data sets,33,34

protein thermal fluctuations,35 protein−ligand binding affin-
ity,36,37 deep learning,38 and chemical molecule design.39

Recently, a new graph theory, multiscale weighted colored
graph (MWCG), has been proposed for protein flexibility
analysis35 and protein−ligand binding prediction.36,37 Mathe-
matical properties of MWCGs include low-dimensionality,
simplicity, robustness, and invariance of rotations, translations,
and reflections. The molecular modeling of MWCGs requires
only atomic names and coordinates. Paired with machine
learning algorithms, MWCGs were shown to outperform other
approaches in the D3R Grand Challenges, a worldwide
competition series in computer-aided drug design.20,40

However, the potential of MWCGs for small molecular
property analysis, such as small molecular toxicity prediction,
remains unknown.
The objective of the present work is to understand the utility

and performance of MWCGs for small molecular representa-
tion and modeling. To this end, we consider the Tox21 10k
library (12 data sets) as a benchmark to test MWCGs’
performance. Many alternative molecular representations,
particularly popular two-dimensional (2D) fingerprints,49−51

are employed to calibrate MWCGs. Additionally, to under-
stand the robustness of MWCGs and other 2D fingerprints, we
consider three simple machine learning algorithms, namely,
SVM, RF, and gradient boosting decision tree (GBDT), to
build a variety of predictive models. Among them, the
combination of MWCGs and GBDT, denoted as the geometric
graph learning toxicity (GGL-Tox) model, outperforms other
models we have examined for the Tox21 10k library. Finally,
we compare the performance of GGL-Tox with that of other
well-established models in the literature. Our results indicate
that GGL-Tox achieves the state-of-the-art in toxicity
prediction and classification.

■ MATERIALS AND METHODS
Tox21 Data Challenge. The Tox21 project,41−43 started

in 2008, is a multiagency collaborative consortium, constituted
of the National Institutes of Health (NIH), the Environmental
Protection Agency (EPA), the National Toxicity Program
(NTP), National Center for Advancing Translational Sciences
(NCATS), and the Food and Drug Administration (FDA).

The goal is to develop fast and effective approaches for large-
scale assessment of toxicity in order to identify chemicals that
could be potentially toxic and impair various human biological
pathways. This consortium makes use of its combined
resources and expertise to predict more effectively how a
collection of around 12 000 compounds composed of environ-
mental chemicals and approved drugs will affect human health
and the environment. The Tox21 10k library has already been
employed in a high-throughput screening (HTS) against a
panel of nuclear receptor (NR)44−46 and stress response (SR)
pathway assays.47 NCATS launched Tox21 Data Challenge
2014 with these publicly available data sets to enlist
independent participants to unveil how well they can predict
the effects of compounds in cellular and biochemical pathways,
causing potential harm. The origin and sample introduction of
the Tox21 Data Challenge can be found in section S2 of the
Supporting Information.

Multiscale Weighted Colored Graph Theory. A graph
can be used to describe the noncovalent interaction of N atoms
in proteins with a set of vertices  and links or edges among
them, denoted as . To improve the graph theory
representation, the colored graph has attracted much attention
in which different types of elements are labeled. Labeled
protein atoms are classified into subgraphs where colored
edges correspond to element-specific interactions.
In the present work, we focus on pairwise noncovalent

interactions in our subgraph theory description. For a given
data set , we first identi fy stat ist ical ly a set of
commonly occurring chemical element types, say
 = { ···}H, C, N, O, S, P, F, Cl, Br, . For a given molecule
or biomolecule in the data set, we denote

  α α= { | ∈ ∈ = }j Nr r( , ) ; ; 1, 2, ...,j j j j
3

(1)

as a subset of N atoms (i.e., subgraph vertices) that are
members of . Note that the ith atom is labeled both by its
element type αj and its position rj. The classification of atoms
into chemical element types is a graph coloring, which is
important for encoding different types of interactions and gives
rise to a basis for the collective coarse-grained description of
the data set. We assume that all the pairwise noncovalent
interactions between element types k and  ′k in a molecule or
molecular complex can be represented by fast-decay weight
functions

  η α α

σ

= {Φ −
′

| = = ′
= − > + + }i j N r r

r r

r r

( ; ) , ;

, 1, 2, ..., ;

i j kk i k j k

i j i j (2)

where ∥ri − rj∥ is the Euclidean distance between the ith and
jth atoms, ri and rj are the atomic radii of ith and jth atoms,
respectively, and σ is the mean value of the standard deviations
of ri and rj in the data set. The distance constraint (∥ri − rj∥ >
ri + rj + σ) excludes covalent interactions. Here ηkk′ is a
characteristic distance between the atoms, and Φ is a subgraph
weight and is chosen to have the following properties:48
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Although most radial basis functions can be used,
generalized exponential functions and generalized Lorentz
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functions were shown to work very well for biomolecules.48

We, therefore, have a weighted colored subgraph  G( , ). To
construct element-level collective molecular descriptors, we
propose the multiscale weighted colored subgraph rigidity
representation (RR) between kth element type k and k′th
element type  ′k

 

∑ ∑ ∑η μ η η

α α σ

′
=

′
= Φ −

′

= = ′ − > + +r r

r r

r r

RR ( ) ( ) ( ; ),

, ;

G
kk

i
i
G

kk
i j

i j kk

i k j k i j i j (4)

where μi
G(ηkk′) is a geometric subgraph centrality for the ith

atom. The physical interpretation of eq 4 is straightforward
the summation over μi

G(ηkk′) in eq 4 leads to the total
interaction strength for the selected pair of element types k
and  ′k , which provides the element-level coarse-grained
description of molecular-level properties. Additionally, the
above formulation is a generalization of the successful bipartite
subgraph used in our earlier predictions of protein−ligand
binding affinities and free energy ranking.37 For a bipartite
subgraph, each of its edge connects one atom in the protein
and another atom in the ligand. However, in the present work,
the subgraph is undirected, and two atoms connected by edges
belong to the same molecule. An illustration of the weighted
colored subgraph GNO of the uracil molecule (C4H4N2O2) is
given in Figure 1.

The different selections of characteristic distance ηkk′ give
rise to a multiscale description of intermolecular and
intramolecular interactions. By appropriate selections of
element combinations k and k′, the characteristic distance
ηkk′, and subgraph weight Φ, we systematically construct a
family of collective, scalable, multiscale graph-based molecular
and biomolecular descriptors. The proposed multiscale
weighted colored subgraph rigidity representation is robust
and straightforwardthe only required data inputs are atomic
names and coordinates. Consequently, our graph approach is
very fast. Our fast algorithm has the computational complexity
of O(N) and is able to predict B-factors for α-carbons of an
HIV virus capsid (313 236 residues) in less than 30 s on a
single processor.48

In present work, we propose three-scale MWCGs to capture
multiscale interactions with each element where three kernels,
one exponential kernel and two Lorentz kernels at the same

time are considered and construct three sets of feature vectors.
Generally, we represent these feature vectors by RRβ1,η1;β2,η2;β3,η3

α1α2α3

as a straightforward extension of our notation. αi = E, L (i = 1,
2, 3) is a kernel index indicating either the exponential kernel
(E) or Lorentz kernel (L). Correspondingly, βi is kernel order
index such that βi = κ when αi = E and βi = ν when αi = L. The
details of parameters in the three-scale model for Tox21 Data
Challenge 2014 can be found in Table_S2 in the Supporting
Information.
Since all the chemical compounds in Tox21 Data Challenge

2014 have 53 different types of atoms in total (see Table_S3 in
the Supporting Information), the three-scale models consist of
1470 descriptors, where each kernel αi (i = 1, 2, 3) is used to
generate 490 descriptors, presenting cross-correlation between
atoms.

2D Molecular Fingerprints. In chemoinformatic studies,
molecular representations commonly used in traditional ML-
based models are molecular fingerprints,49−51 physicochemical
properties, topological properties, and thermo-dynamics
properties.52 As the property profile of a molecule, the
molecular fingerprint plays a crucial role in quantitative
structure−activity/property relationship (QSAR/QSPR) anal-
ysis. There are four types of 2D molecular fingerprints, namely
keys-based fingerprints, pharmacophore fingerprints, topolog-
ical or path-based fingerprints, and circular fingerprints.53,54 In
the present work, we consider four popular 2D fingerprints,
namely molecular access system (MACCS) fingerprint,55

Estate 1 (electro-topological state) fingerprint, Estate 2
fingerprint,56 and Morgan fingerprint with radius 2 hashed to
1024 bits length,50 which are generated by RDKit (version
2018.09.3).57 MACCS fingerprints are designed on generic
substructure keys,55 and Estate fingerprints can be used to
examine whether molecular fragments based on the electronic,
topological, and valence state indices of atom types can be
useful in prediction of toxic activity.56 Table_S4 in the
Supporting Information summarizes the essential information
related to these fingerprints.

Gradient Boosting Decision Tree (GBDT). GBDT is a
widely used ensemble algorithm of decision trees that
assembles a number of so-called weak “learners” into a
prediction model iteratively. As GBDTs are generally robust to
outliers and have strong predictive power, which can handle
heterogeneous features, they have already achieved good
performances in many different applications, such as multiclass
classification,58 learning to rank,59 and click prediction.60 In
this method, individual decision trees are trained sequentially
and are assembled in a stagewise fashion to boost their
capability of learning complex features. In general, based on N
consecutive decision trees, the prediction of the model with
data {x(i), y(i)}i=1

M (M is the number of samples) is as follows:

∑̂ =
=

y px x( ) ( ),N
n

N

n
1 (5)

where pn(x) is the predicted labels of the nth tree. Taking
regression as an example, a general loss function is given by

∑= ̂L l y y( , ),n
i

i
i

n
i( ) ( )

(6)

where li = (y(i) − ŷn
(i))2/2 with a square loss taken into

consideration. In each iteration, GBDT learns the decision
trees by fitting the negative gradients. The total loss function L
can be minimized along the following gradient direction:

Figure 1. (a) Diagram of the uracil molecular (C4H4N2O2) structure.
(b) One weighted colored subgraph GNO consisting of N and O
atoms. The edges are labeled by green-dashed lines which are not
covalent bonds.
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The main procedure of GBDT is the learning of decision
trees, which costs most of the time to find the best split spot.
Compared to another popular algorithm in toxicity prediction,
i.e., deep neural networks (DNN), GBDT is robust, relatively
insensitive to hyperparameters, more suitable for dealing with
small data sets, and easy to implement. Additionally, it is faster
to train than DNN, which is a major advantage of GBDT.
However, it is worth noting that one of the challenges of
GBDT is how to balance the trade-off between accuracy and
efficiency for big data sets.
Random Forest (RF). In order to explore the advantages

and weaknesses of different ML algorithms, another popular
ensemble method, namely, random forest (RF) is considered,
which has been widely used in solving QSAR prediction
problems and usually does not require a complicated feature
selection procedure. Particularly, it is insensitive to parameters
and robust to redundant features.
RF, developed by Breiman, is a collection of decision trees

whose prediction is averaged to get an ensemble perform-
ance.61 Each individual tree, drawn upside down, uses only a
subset of samples and features which are both chosen
randomly and begin with a trunk that splits into multiple
branches before eventually arriving at the leaves. The leaf
nodes mean the end point to be predicted, while all other
nodes are assigned a molecular feature. In order to construct a
robust decision tree, the features that optimally separate the
end points are chosen. Optimal features are selected based on
the information gain criterion or the Gini coefficient. The main
hyperparameters for RF are the number of trees, the number of
features considered in each step, the number of samples, the
feature choice, and the feature type.
Support Vector Machine (SVM). SVM, developed by

Cortes and Vapnik, is a nonprobabilistic kernel-based

supervised learning method that maps input vectors into
high-dimensional feature space where the decision hyperplane
is constructed.62 Alvarsson et al. introduced the package of
LibSVM with a radial basis function kernel to develop the
classification models with hyperparameters optimized within
the predefined ranges.63

■ RESULTS
In this section, we will present the performance of machine
learning models on the Tox21 Challenge Data sets based on
GBDT, RF, and SVM algorithms with different molecular
representations. We use the area under the ROC curve (AUC),
accuracy (ACC), balanced accuracy (BA), and Matthews
correlation coefficient (MCC) to evaluate the performance of
various models.64 AUC takes values between (0, 1). A perfect
model would have an AUC of 1, and an AUC of 0.5 means a
random classifier. ACC is defined as the number of compounds
predicted correctly over the total number of compounds. BA is
the average of correct prediction for both active and inactive
classes, and the MCC value varies from −1 to 1, with −1
implying anticorrelation, 1 implying a perfect classifier, and 0
representing no correlation between the prediction and the
known truth. For all experiments in the present study, GBDT,
RF, and SVM are implemented by the Scikit-learn package
(version 0.20.1).65

Table 1 shows the values of ACC, AUC, BA, and MCC with
five molecular fingerprints, Estate 1, Estate 2, MACCS,
MWCG, as well as hybrid, which is the combination of these
four fingerprints, combined with GBDT for toxicity prediction
of Tox21 Challenge data sets. Here, the three-scale GGL-Tox
model, RRβ1,η1;β2,η2;β3,η3

α1α2α3 , is constructed with α1 = E and α2 = α3 =
L. The hyperparameters of the GBDT algorithm are given in
Table S5 in the Supporting Information. Note that the
hyperparameters of different machine learning algorithms
provided in the Supporting Information are selected based
on all training data sets with optimal performance using 5-fold

Table 1. Comparison of Prediction Results of GBDT with Five Different Molecular Fingerprints in Tox21 Predictiona

metrics fingerprints 1 2 3 4 5 6 7 8 9 10 11 12

ACC Estate 2 0.882 0.977 0.986 0.926 0.905 0.964 0.946 0.824 0.941 0.963 0.896 0.922
Estate 1 0.886 0.979 0.986 0.926 0.909 0.962 0.944 0.820 0.941 0.963 0.913 0.933
MACCS 0.870 0.979 0.982 0.926 0.905 0.964 0.947 0.824 0.942 0.965 0.898 0.935
MWCG 0.914 0.993 0.995 0.950 0.929 0.986 0.968 0.856 0.962 0.985 0.926 0.963
hybrid 0.926 0.997 0.991 0.948 0.923 0.986 0.971 0.844 0.959 0.983 0.919 0.955

AUC Estate 2 0.822 0.706 0.720 0.698 0.739 0.793 0.735 0.714 0.704 0.757 0.876 0.739
Estate 1 0.874 0.680 0.688 0.619 0.746 0.800 0.726 0.707 0.718 0.729 0.920 0.747
MACCS 0.865 0.668 0.759 0.760 0.783 0.771 0.737 0.743 0.797 0.828 0.909 0.790
MWCG 0.887 0.915 0.991 0.834 0.836 0.892 0.773 0.803 0.833 0.978 0.931 0.810
hybrid 0.884 0.768 0.777 0.752 0.801 0.870 0.695 0.769 0.718 0.967 0.926 0.829

BA Estate 2 0.628 0.532 0.549 0.589 0.538 0.576 0.544 0.544 0.526 0.543 0.638 0.505
Estate 1 0.625 0.582 0.537 0.558 0.557 0.523 0.586 0.525 0.526 0.522 0.690 0.512
MACCS 0.625 0.571 0.524 0.512 0.601 0.524 0.573 0.556 0.540 0.566 0.712 0.536
MWCG 0.629 0.612 0.599 0.605 0.617 0.663 0.632 0.611 0.634 0.569 0.779 0.610
hybrid 0.736 0.601 0.588 0.599 0.613 0.663 0.606 0.607 0.541 0.636 0.721 0.535

MCC Estate 2 0.319 0.211 0.243 0.236 0.208 0.268 0.255 0.158 0.178 0.177 0.364 0.022
Estate 1 0.329 0.327 0.301 0.298 0.256 0.088 0.251 0.101 0.178 0.142 0.468 0.198
MACCS 0.323 0.405 0.321 0.341 0.318 0.102 0.356 0.178 0.235 0.275 0.444 0.296
MWCG 0.373 0.455 0.356 0.411 0.375 0.326 0.467 0.300 0.332 0.182 0.549 0.426
hybrid 0.535 0.423 0.332 0.400 0.334 0.326 0.429 0.273 0.173 0.277 0.475 0.180

aThe performance of the models are evaluated by the accuracy (ACC), ROC-curve (AUC), balanced accuracy (BA), and Matthews correlation
coefficient (MCC). The numbers from 1 to 12 in the first row correspond to Tox21 datasets of NR-AhR, NR-AR, NR-AR-LBD, NR-Aromatase,
NR-ER, NR-ER-LBD, NR-PPAR-gamma, SR-ARE, SR-ATAD5, SR-HSE, SR-MMP, and SR-p53, respectively.
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cross-validation (CV) and not on test data sets, and the test
data is used for the comparison of results. From this table, we
can find that in all 12 assays, the MWCG-based GBDT model
(i.e., the GGL-Tox model) achieves the highest AUC values.
The performance of test data and CV data for all 12 assays
with the GGL-Tox model can be found in Table S6 in the
Supporting Information. Additionally, the AUC values of the
hybrid fingerprint are obtained by combining MGCG and
three 2D fingerprints, i.e., Estate 1, Estate 2, and MACCS in 9
assays, except the assays of NR-Aromatase, NR-ppar-gamma,
and SR-ATAD5. These results suggest that the MWCG-based
GBDT model has the best performance in the toxicity
prediction. The behavior of the hybrid fingerprint is the
second best, and 2D fingerprints perform the worst. Addition-
ally, we consider another 2D fingerprint, the Morgan
fingerprint with radius 2 hashed to 1024 bits in the prediction,
which performs similarly with aforementioned fingerprints but
is not as good as MWCG descriptors. The details of prediction
results and hyperparameters with Morgan fingerprint for 12
data sets can be found in Tables S7 and S8 of the Supporting
Information, respectively.
Feature Importance Analysis. From the results of the

above section, we find that MWCG fingerprint could achieve
much better predictive performance than classical 2D finger-
prints. Moreover, although the hybrid fingerprint has more
features than MWCG, it does not perform well. In general,
different features play different roles in ML predictions, and
redundant or noisy features may result in a negative influence
in the training process. In this section, we try to understand the
outcomes in terms of feature importance, which refers to Gini
importance that is weighted by the number of trees in a forest
calculated by our baseline algorithm GBDT with scikit-learn
package.61 To get the optimal number of features, we construct
a family of models with top N% features based the ranking of
feature importance, where N goes from 0 to 100. Once the
AUC reaches the maximum value, its corresponding feature
size will be the optimized number of features.
Figure 2 shows the influence of the feature size on the value

of AUC of 12 data sets with the GBDT algorithm in toxicity
prediction, where the feature size of the hybrid fingerprint is
1794. One can find that this method depends on the number

of features, and the value of AUC increases quickly as the
numbers of features increase for all 12 data sets. For SR-
ATAD5, NR-AR-LBD, NR-PPAR-gamma, NR-AhR, SR-HSE,
NR-Aromatase, NR-AR, SR-MMP, and SR-ARE data sets,
when the number of features increases up to around 10, 40, 40,
41, 51, 70, 79, 80 (0.6%, 2.2%, 2.2%, 2.3%, 2.8%, 3.9%, 4.4%,
4.5% of 1794 features), respectively, the values of AUC reach
their respective maximum value. For the NR-ER, SR-p53, and
NR-ER-LBD data sets, the respective maximum values of AUC
are obtained with the feature size of around 200, 200, and 500,
which are respectively about 11.1%, 11.1% and 27.8% of their
total numbers of features. In other words, choosing at least
0.6%, or at most 27.8%, of the most important features could
optimize the prediction performance. Additionally, it should be
noticed that for all 12 data sets, when the maximum values of
AUC are reached, the value of AUC for each data set decreases
with the increasing of feature size. These results suggest that,
for the hybrid fingerprint, some redundant features may exist
with high correlation, which leads to a negative influence on
the prediction performance to some extent. The method of
ranking feature importance is a more efficient and less time-
consuming method for ML.

Comparison with Other ML Algorithms. In order to
compare the predictive results of different ML algorithms,
Figure 3 shows the comparison of three algorithms, GBDT,

RF, and SVM in association with MWCG representations in
toxicity prediction. The values of AUC and ACC of these
algorithms and the details of the main hyperparameters of RF
and SVM in the implementation can be found in Tables S9−
S11 of the Supporting Information, respectively. We find that
AUC values with the GBDT algorithm for 11 data sets are
larger than those with RF and SVM algorithms, which is
obvious and shown with blue in the figure. Only for data set
SR-p53 is the AUC value with the GBDT algorithm 6.0%
smaller than the maximum AUC value with RF. Additionally,
the average AUC values of the NR set are 0.875 for GBDT,
0.831 for RF, and 0.811 for SVM, and the average AUC values
of SR set are 0.871 for GBDT, 0.850 for RF, and 0.812 for
SVM, respectively. This result indicates that among these three
ML algorithms, GBDT performs best, RF is second-best, and
SVM is the worst.

Comparison with Other Models in the Literature.
Figure 4 represents the comparison of our GGL-Tox model
with others on Tox21 Data Challenge 2014, where our model
outperforms other methods with the highest average AUC for
SR and NR toxicity data sets marked in red. Notice that in

Figure 2. Relationship between AUC value and the number of top
features for hybrid fingerprint in 12 data sets obtained using GBDT in
toxicity prediction.

Figure 3. Comparison of prediction results realized by GBDT, RF,
and SVM in association with MWCG in toxicity prediction,
respectively. AUC values with the GBDT algorithm for 11 data sets
are larger than those with RF and SVM algorithms, except for data set
SR-p53.
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order to make a fair comparison between our model and other
state-of-the-art models, we carried out data preprocessing for
each data set prior to modeling steps. The details of this
procedure can be found in section S3 of the Supporting
Information. Among these methods, Abdul et al.25 developed a
single task-based chemical toxicity prediction framework using
only 2D fingerprints as well as shallow neural networks and
decision trees, which achieves an average AUC of 0.836 for NR
data sets and 0.862 for SR data sets. The winning model of
Tox21 Data Challenge 2014 was based on the DeepTox
pipeline19 or deep learning and trained on around 273 577
features, resulting in the average AUC of 0.826 for NR and
0.858 for SR on the final test set. The large numbers of features
used by the model made the training process very time-
intensive and hard to interpret which features are playing a
vital role in decision making. Amaziz et al.66 introduced
consensus models using associative neural network (ANN) to
achieve an average AUC of 0.816 for NR and 0.854 for SR data
sets. Here, ANN means a combination of an ensemble of feed-
forward neural networks and the KNN technique. Unfortu-
nately, information on the total number of features was not
reported. Additionally, Capuzzi et al. used DNN with an
ensemble of 2489 features to achieve a good overall average
AUC of 0.831 for NR and 0.848 for SR.26

Our GGL-Tox model constructed from MWCG features
and the GBDT algorithm obtains the state-of-the-art average
AUC on both NR and SR data sets. The results in Figure 4
indicate that our model is computationally efficient and opens
an avenue for interpretability.
Next, the similarity between 12 data sets of Tox21 Data

Challenge 2014 was examined in Figure. 5 according to the
Tanimoto coefficient (SA,B):
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where xiA (xiB) denotes the ith feature of molecule A (B). SA,B
∈ [0, 1] is used in the present work to calculate the degree of
similarity between two molecule structures. A large average
value of SA,B between two data sets means there is a high
similarity between them. As shown in Figure 5, there are three

clusters. One cluster consists of five assays, NR-AR, NR-AR-
LBD, NR-Aromatase, NR-ER, and NR-PPAR-gamma, with an
average Tanimoto similarity of S = 0.914, which can be seen on
the top-left corner of the figure. The other cluster has three
assays, NR-ER-LBD, SR-ATAD5, and SR-p53, with an average
Tanimoto similarity of S = 0.936, which is in the middle of the
figure. The last cluster has four assays, NR-AhR, SR-ARE, SR-
MMP, and SR-HSE, with an average Tanimoto similarity of S
= 0.987, which can be observed on the bottom-right corner of
the figure. The presence of three clusters indicates that ligand
bind domains in each cluster share some structural similarities
that can accommodate similar ligands. On the contrary, weak
similarities are found between NR-ER and SR-MMP and
between NR-ER and SR-MMP, whose similarities are S =
0.286 and 0.287, respectively.

Applicability Domain. The “Distance to model” (DM)
approach is commonly used in the study of applicability
domain assessment of QSAR models. In the present work, the
method of Class-lag, a distance-based approach introduced by
Sushko et al.,70,71 is used to estimate the applicability domain
of the GGL-Tox model for 12 data sets. For the binary
classification problem of toxicity prediction, the label for
nontoxic compounds can be marked by +1 when the
prediction value is larger than 0, or marked by −1 otherwise,
after we normalize the prediction values to the interval of −0.5
and 0.5. Then, the absolute value of the difference between the
prediction value and the nearest of the labels can be used as a
measure of prediction uncertainty. This measure, named as
Class-lag, is calculated as

= {|− − | | − |}‐d p i p imin 1 ( ) , 1 ( ) ,i
Class lag

(9)

where i labels the ith compound to be predicted and p(i) is its
prediction value. Class-lag indicates the degree of close to
nearest class label of a compound.
Figure 6 shows the effect of Class-lag DM of prediction with

12 data sets, where the y-axis corresponds to the values of 1 −
di
Class‑lag and the x-axis corresponds to the compound number.
Green dots, which are closer to 0.5 in the y-axis, are predicted
with better prediction accuracy than red dots that are closer to
0 in the y-axis. In other words, the “prediction certainty area” is
labeled with green dots, and the “prediction uncertainty area”
is labeled with red dots. Additionally, circles and squares are
positive (nontoxic) and negative (toxic) predictions, respec-

Figure 4. Comparison of prediction results with different methods on
Tox21 Data Challenge 2014. The result of our model GGL-Tox is
marked in red: (a) NR and (b) SR sets. The average AUC values of
other methods are taken from refs 19, 25, 26, and 66−68 in blue.

Figure 5. Heatmap of Tanimoto similarity between the different data
sets of Tox21 Data Challenge 2014. Three clusters can be found
obviously in the diagonal of the heatmap containing 5, 3, and 4 assays,
respectively.
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tively. From Figure 6, we can find that most of the predictions
have a few of red dots, except with data sets of NR-AhR, NR-
ER, SR-ARE, and SR-MMP, which suggests that our GGL-Tox
model predictions are reliable.

■ CONCLUSION
Chemical toxicity is of major concern in environment sciences
and a vital factor for drug design and discovery. Despite of
significant progress in the last two decades, toxicity analysis
and prediction remain a challenging task due to chemical
diversity, structural complexity, limited size, and poor quality
of current toxicity data sets, which calls for innovative
approaches. Geometric graph theories are commonly used in
the study of molecular and biomolecular systems. Motivated by
the success of the multiscale weighted colored graph (MWCG)
approach for B-factor predictions,35 we propose a geometric
graph learning toxicity (GGL-Tox) model for toxicity analysis
and prediction. In our GGL-Tox model, molecules are
represented by MWCGs and the gradient boosting decision
tree (GBDT) is chosen as the machine learning algorithm. Our

GGL-Tox model is validated by using the Tox21 Data
Challenge 2014, a benchmark tested for toxicity prediction
methodologies. MWCGs are compared with standard two-
dimensional (2D) fingerprints. The performance of GGL-Tox
model is compared with other state-of-the-art methods in
toxicity prediction and shows a cutting edge advantage.
Additionally, our model shows high flexibility of applicability,
which can be applied to toxicity prediction, and other
problems, such as the prediction of solubility, solvation,
partition coefficient, mutation-induced protein folding stability
change, and protein−nucleic acid interactions.

Data and Model Availability. All data sets used in
present work can be downloaded from the Web site https://
tripod.nih.gov/tox21/challenge/, and the details of data can be
found in section S2 of the Supporting Information. Our model
is available at the online server https://weilab.math.msu.edu/
Tox. Additionally, the codes for calculating the descriptors are
available on Github https://github.com/jjlyl/descriptor-
calculation.

Figure 6. Graphical demonstration of the Class-lag DM. Green indicates the low values of the Class-lag DM, and red shows the high vales of the
Class-lag DM. Circles represent the nontoxic compounds, and squares are for toxic compounds. The reliable predictions are colored with green,
and the unreliable predictions are indicated with red.
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