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SARS-CoV-2 becoming more infectious as revealed
by algebraic topology and deep learning
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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
caused by coronavirus disease 2019 (COVID-19) has led to a tremen-
dous human fatality and economic loss. SARS-CoV-2 infectivity is
a key reason for the widespread viral transmission, but its rigorous
experimental measurement is essentially impossible due to the on-
going genome evolution around the world. We show that artificial
intelligence (AI) and algebraic topology (AT) offer an accurate and
efficient alternative to the experimental determination of viral in-
fectivity. AI and AT analysis indicates that the on-going mutations
make SARS-CoV-2 more infectious.
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The expeditious spread of coronavirus disease 2019 (COVID-19) pandemic
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
has led to over 40 million confirmed cases and over one million fatalities. In
the 21st century, three major outbreaks of deadly pneumonia are caused by
β-coronaviruses: SARS-CoV (2002), Middle East respiratory syndrome coro-
navirus (MERS-CoV) (2012), and SARS-CoV-2 (2019). However, SARS-
CoV-2 has an unprecedented scale of infection and potentially becomes a
seasonal disease.

SARS-CoV-2 infectivity is a vital factor in COVID-19 transmission, pre-
vention, and economic reopening. Viral infectivity is related to the viral
infection rate of a population, which can be affected by the prevention mea-
sures, such as social distancing, use of masks, quarantine, contact tracing,
etc. The intrinsic viral infectivity can be determined by virus quantifica-
tion that counts the number of viruses in a specific volume over a unit of
time by using either traditional or modern methods [5]. The former includes
plaque assay, focus forming assay, endpoint dilution assay, protein assay,
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hemagglutination assay, bicinchoninic acid assay, single radial immunodif-
fusion assay, and transmission electron microscopy. The latter has tunable
resistive pulse sensing, flow cytometry, quantitative polymerase chain reac-
tion, and enzyme-linked immunosorbent assay (ELISA). Traditional meth-
ods are generally slow and labor-intensive, while modern methods can signif-
icantly reduce quantification time. Among these methods, ELISA is based
on protein-protein interactions (PPIs), such as antibody-antigen binding
events being counted by chromogenic or fluorescence reporters. Both tradi-
tional and modern methods for viral infectivity measurement are expensive
and time-consuming. Epidemiological and biochemical studies show that
the infectivity of different SARS-CoV strains in host cells is proportional
to the binding free energy between the spike (S) protein receptor-binding
domain (RBD) of each strain and angiotensin-converting enzyme 2 (ACE2)
expressed by host cells [11]. ACE2 is a single-pass transmembrane protein
with its active domain exposed on the cell surface and is expressed in the
lungs and many other tissues. It is the main cell entry point for SARS-CoV
and SARS-CoV-2, and some other coronaviruses. The cell entry is primed
by TMPRSS2 (transmembrane serine protease 2) [5].

For an on-going pandemic, viral infectivity can be further changed by
viral evolution [17]. Mutagenesis is a basic biological process that changes
the genetic information of organisms, which serves as a primary source for
infectivity variation and many kinds of cancers and heritable diseases, as well
as a driving force for natural evolution. SARS-CoV-2 belongs to the coro-
naviridae family and the Nidovirales order, which has been shown to have
a genetic proofreading mechanism in its replication achieved by an enzyme
called non-structure protein 14 (NSP14) in synergy with NSP12, i.e., RNA-
dependent RNA polymerase. Therefore, SARS-CoV-2 has a higher fidelity in
its transcription and replication process than that of other single-stranded
RNA viruses, such as flu virus and HIV. In general, the frequency of virus
mutations is accumulated by the natural selection, cellular environment,
polymerase fidelity, random genetic drift, features of recent epidemiology,
host immune responses, gene editing, replication mechanism, etc [9, 13]. Al-
though it is difficult to determine the detailed mechanism of a specific mu-
tation, mutations tracked by single nucleotide polymorphism (SNP) calling
provide a method to understand the molecular mechanism of SARS-CoV-2
proteins, PPIs, and their synergy with host cell proteins, enzymes, and sig-
naling pathways. By applying SNP calling to more than 60,000 genome iso-
lates deposited at the GISAID database (https://www.gisaid.org/) we found
over 18,000 single mutations, mostly caused by host gene editing [13], com-
pared with the first SARS-CoV-2 genome collected on December 24, 2019, in
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Wuhan [15]. In our work, we use the Cluster Omega (https://www.ebi.ac.uk/
Tools/msa/clustalo/) for multiple sequence alignment. We identify 6 SARS-
CoV-2 substrains in the world by using the K-means clustering based on
pairwise Jaccard distances between sequences [2]. Since there are more than
2,000 unique mutations found for the SARS-CoV-2 S protein gene [13], it is
extremely challenging to experimentally determine the virus infectivity as-
sociated with various SARS-CoV-2 genetic variants found around the world.

The computational estimation of mutation-induced protein-protein bind-
ing free energy (BFE) changes is an important approach for understanding
the impact of mutations on PPIs and viral infectivity. A variety of advanced
methods has been developed [8], and their performance can be validated by
standard databases, including SKEMPI (https://life.bsc.es/pid/skempi2/)
for PPIs and AB-Bind, a database for mutation-induced antibody-antigen
complex BFE changes [10]. However, due to the challenges of the intricate
complexity of PPIs and relatively scarce experimental data, limited success
has been achieved for the AB-Bind problem.

Mathematical techniques, such as persistent homology [1, 4, 7, 16], evolu-
tionary de Rham-Hodge theory [3], and persistent spectral graph [14] provide
an essential representation with a controllable simplification of biomolecular
complexity and retain crucial physical and biological information of PPIs.
A deep learning algorithm called NetTree, which combines convolutional
neural networks and gradient boosting trees, was constructed to tackle the
challenge of scarce data. The resulting method that integrates the topolog-
ical representation of complex data and NetTree, called TopNetTree, was
about 22% better than the previous best result for the AB-Bind dataset
and significantly outperformed the state-of-the-art in the literature on the
SKEMPI database [12]. Figure 1 illustrates the architecture of the TopNet-
Tree. TopNetTree was retrained on a large dataset of 8338 PPI entries to
improve its reliability before applied to predict the BFE changes following
mutations on the S protein RBD [2]. By examining the mutation-induced
BFE changes of the ACE2 and S protein complex, it was found that three out
of six SARS-CoV-2 substrains have become slightly more infectious, while
the other three substrains have significantly strengthened their infectivity
[2]. We also found that SARS-CoV-2 is slightly more infectious than SARS-
CoV [2]. A mutation at the residue 614 of the S protein was also reported
to make SARS-CoV-2 infectious [6].

It is imperative to have geographic- and demographic-specific strategies
in virus control, containment, prevention, and medication. Such strategies
depend on our understanding of how mutations have changed the SARS-
CoV-2 structure, function, activity, infectivity, and virulence of various viral
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Figure 1: Illustration of the TopNetTree architecture for the prediction of
mutation-induced ACE2 and S protein RBD binding free energy (BFE)
changes [2]. Hk is the kth dimensional topological barcodes. Here, we will
first take the number of H0 as the input of the convolutional neural network
(CNN). Next, the flatten layer of CNN, the number of H1, H2 will be used as
the input features of the gradient boosting decision tree (GBDT) to predict
the BFE changes from wild type to mutant type. The positive (negative)
BFE changes strengthen (weaken) SARS-CoV-2 infectivity. A mutation at
residue 484 from E (glutamic acid) to D (aspartic acid) near ACE2 is high-
lighted for its largest positive BFE change.

variants. Advanced mathematics offers some of the most powerful tools for

such understanding [2, 13]. Although our method works better for both root

mean square error (RMSE) and Pearson’s r (R) compared to other methods

[2], the limited size of training data related to SARS-CoV-2 may still affect

the prediction of the BFE changes. However, we will still make efforts to

collect more training data related to SARS-CoV-2, aiming to improve the

performance of TopNetTree.
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