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ABSTRACT: Current drug discovery is expensive and time-
consuming. It remains a challenging task to create a wide variety of
novel compounds that not only have desirable pharmacological
properties but also are cheaply available to low-income people. In
this work, we develop a generative network complex (GNC) to
generate new drug-like molecules based on the multiproperty
optimization via the gradient descent in the latent space of an
autoencoder. In our GNC, both multiple chemical properties and
similarity scores are optimized to generate drug-like molecules with
desired chemical properties. To further validate the reliability of
the predictions, these molecules are reevaluated and screened by
independent 2D fingerprint-based predictors to come up with a
few hundreds of new drug candidates. As a demonstration, we
apply our GNC to generate a large number of new BACE1 inhibitors, as well as thousands of novel alternative drug candidates for
eight existing market drugs, including Ceritinib, Ribociclib, Acalabrutinib, Idelalisib, Dabrafenib, Macimorelin, Enzalutamide, and
Panobinostat.

I. INTRODUCTION
Drug discovery ultimately tests our understanding of molecular
biology, medicinal chemistry, genetics, physiology, and
pharmacology, the status of biotechnology, the utility of
computational sciences, and the maturity of mathematical
biology. Technically, drug discovery involves target discovery,
lead discovery, lead optimization, preclinical development, three
phases of clinical trials, and, finally, launching to the market only
if a drug can be demonstrated to be safe and effective in every
stage. Among them, lead discovery, lead optimization, and
preclinical development disqualify tens of thousands of
compounds based on their binding affinity, solubility, partition
coefficient, clearance, permeability, toxicity, pharmacokinetics,
etc., leaving only about tens of them to clinical trials. Therefore,
drug discovery is expensive and time-consuming currently: it
takes about $2.6 billion dollars and more than ten years, on
average, to bring a new drug to the market.1 Reducing the
expense and speeding up the process is one of the top priorities
of the pharmaceutical industry.
One of the key challenges in small molecule drug discovery is

to find novel chemical compounds with desirable properties.
Much effort has been taken to optimize this critical step in the
drug discovery pipeline. For example, the development of high-
throughput screening (HTS) has led to an unprecedented
increase in the number of potential targets and leads.2 HTS can
quickly conduct millions of tests to identify active compounds of
interest from compound libraries.3 While there has been an
increase in the number of potential targets and leads, the number

of newly generated molecular entities has remained stable
because of a high attrition rate by the elimination of leads with
inappropriate physicochemical or pharmacological properties
during preclinical development and clinical phases.4,5 Rational
drug design (RDD) approaches are proposed to better identify
candidates with the highest probability of success.6 These
methods aim at finding new medications based on the
knowledge of biologically druggable targets.1,7

More recently, computer-aided drug design (CADD) has
emerged as a useful approach in reducing the expense and period
of drug discovery.8 Computational techniques have been
developed for both virtual screening (VS) and optimizing
ADME properties of lead compounds. Primarily, these methods
are designed as in silico filters to eliminate compounds with
undesirable properties. These filters are widely applied for the
assembly of compound libraries using combinatorial chemistry.9

The integration of early ADME profiling of lead chemicals has
contributed to speeding up lead selection for phase-I trials
without large amounts of revenue loss.10 Currently, compounds
are added in libraries based on target-focused design or diversity
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considerations.11 VS and HTS can screen compound libraries to
a subset of compounds whose properties are in agreement with
various criteria.12

Despite these efforts, current databases of chemical
compounds remain small when compared with the chemical
space spanned by all possible energetically stable stoichiometric
combinations of atoms and topologies in molecules. It is
estimated that there are about 1060 distinct molecules; among
them, roughly 1030 are drug-like.3 As a result, computational
techniques are also being developed for de novo design of drug-
like molecules13 and generating large virtual chemical libraries,
which can be screened more efficiently for in silico drug
discovery.
Among the available computational techniques, deep neural

networks (DNNs) have gathered much interest for their ability
to extract features and learn physical principles from training
data. Currently, DNN-based architectures have been success-
fully applied in a wide variety of fields in the biological and
biomedical sciences.14,15

More interestingly, many deep generative models based on
sequence-to-sequence autoencoders (Seq2seq AEs),16 varia-
tional autoencoders (VAEs),17 adversarial autoencoders
(AAEs),18 generative adversarial networks (GANs),19 reinforce-
ment learning,20 etc. have been proposed for exploring the vast
drug-like chemical space and generating new drug-like
molecules. Winter et al.21,22 performed the optimization based
on particle swarm optimization on the continuous latent space of
a Seq2seq AE to generate newmolecules with desired properties.
Gomez-Bombarelli et al.23 used a VAE to encode a molecule in
the continuous latent space for exploring associated properties.
Skalic et al.24 combined a conditional VAE and a captioning
network to generate previously unseen compounds from input
voxelized molecular representations. Kadurin et al.25 built an
AAE to create new compounds. Sattarov et al.26 combined deep
autoencoder RNNs with generative topographic mapping to
carry out de novomolecule design. A policy-based reinforcement
learning approach was proposed to tune RNNs for episodic
tasks,27,28 and extended to design desired molecules.29 Zhou et
al.30 also proposed a strategy to optimize molecules by
combining domain knowledge of chemistry and state-of-the-
art reinforcement learning techniques.
However, the generative strategies mentioned above are not

drug-specified. What is vital to drug discovery is to design
potential drug candidates for specific drug targets. In a regular
drug discovery procedure, the starting point is target
identification, followed by lead generation. Then, lead
optimization is performed to make lead compounds more
drug-like.2

It is useful to find new lead compounds to replace existing
market drugs for several reasons. First, existing market drugs
might not be optimal. For example, they might not be potent
enough, be too toxic and harmful to human health, or be too
hard to synthesize. Additionally, they might have side effects,
insufficient aqueous solubility (log S) that reduces the
absorption of drugs,31 or higher partition coefficients (log P)
that lead to improper drug distributions within the body.32

Moreover, for very expensive drugs, it is desirable to find cheap
alternatives.
With the generation of new alternative lead compounds in

mind, one can make use of existing drug data sets to develop
drug-specified generative models. In this process, it is critical to
apply a similarity restraint to generate hundreds or even
thousands of new drug-like molecules inside the chemical space

close to the reference molecule. This similarity restraint enables
us to generate new molecules that remain effective to the target.
Moreover, from the viewpoint of machine learning, higher
similarities to existing data always lead to more reliable
predictions in generating molecules. The generative model can
also realize lead optimization: by incorporating optimizers,
generated molecules are designated to have one or more
chemical properties better than the reference molecule. As a
result, a large number of alternative drug candidates are created
by drug-specified generative models. These candidates could be
an effective and specified library to further screen for better or
cheaper drug alternatives.
Therefore, in this work, we develop a generative network

complex (GNC) based on the multiple-property optimization
via gradient descent in the latent space to automatically generate
new drug-like molecules. One workflow of our GNC consists of
three following stages

1. The SMILES string of a seed molecule are encoded into a
vector in the latent space by a pretrained encoder.

2. Starting with the latent vector of the seed molecule, a
DNN-based drug-like molecule generator modifies the
vector via gradient descent, so that new latent vectors that
satisfy multiple property restraints including chemical
properties and similarity scores to the desired objectives
are created.

3. A pretrained decoder decodes these new latent vectors
into the SMILES strings of newly generated molecules.

The remainder of the paper is organized as follows. Section II
introduces our new GNC framework formed by the seq2seq AE
and drug-like molecule generator. Section III discusses its
reliability test on the BACE1 target and, more importantly,
presents the performance of our GNC on a variety of existing
drug targets. Insight into the roles of the multiple property
restraints is offered in Section IV. The conclusion is given in
Section V.

II. METHODS
II.A. Sequence to Sequence Autoencoder (seq2seq

AE). The seq2seq model is an autoencoder architecture
originated from natural language processing.16 It has been
demonstrated as a breakthrough in language translation. The
basic strategy of the seq2seq AE is to map an input sequence to a
fixed-sized vector in the latent space using a gated recurrent unit
(GRU)33 or a long short-term memory (LSTM) network,34 and
then map the vector to a target sequence with another GRU or
LSTM network. Thus, the latent vector is an intermediate
representation containing the “meaning” of the input sequence.
In our case, input and output sequences are both SMILES

stringsa one-dimensional “language” of chemical structures.35

The seq2seq AE is trained to have a high reconstruction ratio
between inputs and outputs so that the latent vectors contain
faithful information on the chemical structures (see the upper
part of Figure 1). Here we utilize a pretrained seq2seq model
from a recent work.22

II.B. Drug-like Molecule Generator Based on the
Multiproperty Optimization. In our new GNC, we design
a drug-like molecule generator elaborately, so that generated
molecules not only satisfy desired properties but also share
common pharmacophores with reference compounds. From a
seed molecule, one generative workflow of the GNC is depicted
in Figure 1 and described as below.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c00599
J. Chem. Inf. Model. 2020, 60, 5682−5698

5683

pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00599?ref=pdf


1. Randomly pick a low-binding-affinity molecule from a
target-specified training set as the seed, and then the
SMILES string of the seed molecule is encoded by a
pretrained encoder (in our case a GRU encoder) into a
latent vector.

2. The latent vector of the seed is fed into our DNN
molecule generator. In every epoch, the generator comes
up with a new vector ∈X n, and the deep learning
network is instructed to evaluate X via the following loss
function

∑= | ̂ − |
=

X
n

k y X y( )
1

( )
i

n

i i i
1

0
(1)

where ki is the ith predefined weight serving the purpose
of emphasizing or deemphasizing different property
restraints and ŷi(X) is the predicted ith property value
by a pretrained predictor i. Additionally, yi0 is the
objective value of the ith property. The restrained
properties can be binding affinity (BA), the similarity
score (Sim) to a reference molecule or others such as
partition coefficient (Log P), Lipinski’s rule of five,36 etc.
A guideline for yi0 includes, in the BA restraint, often
setting yΔG < −9.6 kcal/mol; in the Log P condition, it is
common to set yLogP < 5, etc.

3. Gradient descent is used to minimize the loss function in
eq 1 until the maximum number of epochs is reached.

4. The generated latent vectors satisfying the desired
restraints are decoded into SMILES strings through a
pretrained decoder, as shown in Figure 1.

To create a variety of novel drug-like molecules originated
from leads or existing drugs (reference molecules), one can
adopt different seed molecules as well as different objective
values to achieve desired properties and similarity scores. The
ultimate purpose of our molecule generator is to keep modifying
the latent vector to satisfy the multiple druggable property
restraints. Figure 2 illustrates the general mechanism of our
generator. Notably, the pretrained predictor weights inside our
model stay intact throughout the backpropagation of the
training process to the generator. The loss function converges
when all conditions aremet, and then, resulting latent vectors are
decoded into SMILES strings.
II.C. Parameters of the Molecule Generator. In our

model, the dimension of the latent space is 512, so the input and
output dimensions of the DNNmolecule generator are also 512.
The DNN generator has two hidden layers, with 1024 neurons

in each layer. The activation function is tanh, the learning rate is
0.1, and the momentum is also 0.1. In this work, we are
interested in binding affinity and similarity score restraints. The
regularization coefficients of these two restraints (kΔG and kSim)
are set to 1 and 10, respectively. The similarity score restraint is
determined via the Tanimoto coefficient between a generated
latent vector and the latent vector of a reference molecule.
The binding affinity restraint relies on pretrained binding

affinity predictors. A pretrained binding affinity predictor (LV-
BP) takes latent vectors as its inputs and return predicted
binding affinities. Therefore, typically, the input dimension of
the predictor is 512, and the output dimension is 1. The DNN
predictor has three hidden layers with 1024, 1536, and 1024
neurons, respectively. The ReLU activation function is applied.
The learning rate is 0.001, the number of training epochs is 4000,
and the batch size is 4. The predictor network is trained on
target-specified data sets carefully selected from public databases
such as ChEMBL.37 The generator and predictor are both
programmed in the framework of PyTorch (Version 1.0.0).38

In the current work, for each generation task, we randomly
pick 50 low-binding-affinity molecules from the preselected data
set as seeds. For each seed, the generative network is run in a
total of 2000 epochs, which takes less than 10 min under the
supercomputer equipped with one Nvidia K80 GPU card. In
practice, to quickly fill up the potential chemical search space,
one can use more seeds and run more epochs for each seed.

II.D. Binding Affinity Reevaluation by the 2D-Finger-
print Predictor. Besides generating new molecules, the LV-BP
in our GNC also predicts their binding affinities. However, no
experimental values are available to validate these predicted
affinities. Therefore, we cross-validate them using alternative
binding affinity predictors. In the present work, we construct
machine learning predictors based on 2D fingerprints (2DFP-
BPs) to reevaluate the affinities of generated compounds. The
2D fingerprints computed from their SMILES strings are inputs
to these 2DFP-BPs. If the predictions from the LV-BP and
2DFP-BPs are consistent, we regard the predictions as reliable.
According to our previous tests,39 the consensus of ECFP4,40

Estate141 and Estate241 fingerprints performs best on binding-
affinity prediction tasks. Therefore, this work also makes use of
this consensus. We employ the RDKit software (version
2018.09.3)42 to generate 2D fingerprints from SMILES strings.
Since the training sets in our current cases are not so large, we
apply gradient boosting decision tree (GBDT)43 model due to
its accuracy and speed when handling small data sets. This

Figure 1. Schematic illustration of our generative network complex.
Figure 2. Illustration of the latent-space molecule generator. Here, X is
a latent vector representing a molecule and ΔX is the negative gradient
of the loss function.
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GBDT predictor is constructed using the gradient boosting
regressor module in scikit-learn (version 0.20.1)44 and the
following parameters: n_estimators = 10000, max_depth = 7,
min_samples_split = 3, learning_rate = 0.01, subsample = 0.3,
and max_features = sqrt.
The criteria used in our reevaluation are the root-mean-square

error (RMSE), Pearson correlation coefficient (RP), and active
ratio. Here, the active ratio means the ratio of the number of the
active molecules indicated by both the 2DFP-BP and LV-BP to
the number of the active ones indicated by the LV-BP.
II.E. Multitask DNN Predictors. Multitask DNN predic-

tors45 for both latent vectors and 2D fingerprints are built for the
drug Ribociclib with two different targets.
The latent-vector based model has three hidden layers with

1024, 1536, and 1024 neurons. For the 2D-fingerprint based
models, because the three different 2D fingerprints ECFP4,
Estate1, and Estate2 have 2048, 79, and 79 features, respectively,
two different network architectures are used. For ECFP4, the
numbers of neurons in the three hidden layers are 2500, 1500,
and 500, respectively. For Estate1 and Estate2, their numbers of
neurons are 500, 1000, and 500. Other parameters are the same
as those of our single task predictors. Thesemultitaskmodels are
also programmed in the framework of PyTorch (Version 1.0.0).
II.F. Drug−Target Interaction and Common Pharma-

cophore Analysis. The interactions between drugs and their
targets, as well as the pharmacophores of the drugs, are
investigated. The purpose is to explore whether our generated
molecules can still bind to the drug targets.
Drug−target interactions are analyzed via the protein−ligand

interaction profiles.46 It can identify drug−target interaction
types such as hydrogen bonds, hydrophobic interactions, etc.
However, the interaction analysis itself could not determine

whether interactions are critical or not to the drug−target
binding. By using the Phase module in Schrödinger (version
2018-4),47 we build pharmacophore models via searching
common pharmacophores in all the active compounds to the
target. Since these pharmacophores are widespread to all the
active compounds, they are critical to the binding. Thus, if
generatedmolecules still contain such pharmacophores, they are
potential binders.
It could be time-consuming to recognize common pharma-

cophores of hundreds of compounds. To avoid this obstacle, we
group compounds into 50 clusters via the k-means algorithm
implemented by scikit-learn.44 We, then, collect the centroids of
these 50 clusters for the common pharmacophore search.
II.G. Data Sets. In this work, first, we explore the effect of

different objective values in our generator on the binding-affinity

prediction reliability to generated molecules. We carry out this
reliability test on the Beta-Secretase 1 (BACE1) data set.
BACE1 is a transmembrane aspartic acid protease human

protein encoded by the BACE1 gene. It is essential for the
generation of β-amyloid peptide in neural tissue,48 a component
of amyloid plaques widely believed to be critical in the
development of Alzheimer’s, rendering BACE1 an attractive
therapeutic target for this devastating disease.49 We download
3916 BACE1 compounds from the ChEMBL database. In the
seq2seq autoencoder we utilized, there is a molecule filter that
only selects organic molecules with more than 3 heavy atoms,
their weights between 12 and 600, and their Log P values
between −5 and 7.22 As a result, a total of 3151 molecules in the
BACE1 data set pass this filter and are used as the training set.
More importantly, we employ our GNC to design alternative

promising drug candidates for the eight drugs on themarket. For
each drug, we construct a data set of the compounds that bind to
the same drug target from the ChEMBL database. The collected
compounds are also filtered by the filter in the seq2seq
autoencoder. Table 1 lists information regarding these eight
drugs, namely drug name, ChEMBL ID, FDA approval year,
experimental drug affinity (ΔG), filtered training set size, and
affinity range of the training set.
SciFinder is one of the most comprehensive databases for

chemical literature and substances (https://scifinder-n.cas.org).
It contains more than 143 million organic and inorganic
substances. Here, we search our generated molecules in this
database to confirm they are new and have never existed before.

III. EXPERIMENTS

III.A. Designing BACE1 Inhibitors. III.A.1. Accuracy of the
seq2seq AE and Predictors. We first test the accuracy of the
seq2seq autoencoder and the LV-BP and 2DFP-BP predictors.
When performing the seq2seq model on the filtered BACE1

data set with 3151 molecules, the reconstruction ratio is 96.2%.
This high ratio guarantees the essential information on these
input molecules is encoded into the corresponding latent
vectors.
Subsequently, these latent vectors are used as the features to

train our latent-vector DNN binding affinity predictor (LV-BP);
the labels are their corresponding experimental binding
affinities. In a 5-fold cross-validation test on the BACE1 data
set, the LV-BP achieves an average Pearson correlation
coefficient (RP) of 0.871 and an average RMSE of 0.704 kcal/
mol.
The 2D-fingerprint GBDT binding affinity predictor (2DFP-

BP) is used to reevaluate the predictions from the LV-BP. We
also test this 2DFP-BP by the 5-fold cross-validation. The

Table 1. Information about the Eight Market Drugs Used in the Present Study

Drug name
ChEMBL

ID Treatment
FDA approval

year ΔG (kcal/mol)
Filtered training set

size
ΔG range of training set

(kcal/mol)

Ceritinib 2403108 Nonsmall cell lung cancer 2014 −10.77 1203 −5.26 to −13.93
Ribociclib 3545110 Breast cancer 2017 −10.98 and

−10.16
918 and 289 −6.31 to −12.98 and −4.11 to

−14.13
Acalabrutinib 3707348 Mantle cell lymphoma 2017 −11.67 1451 −4.21 to −14.05
Idelalisib 2216870 Blood cancers 2014 −10.43 1959 −1.92 to −14.16
Macimorelin 278623 Adult growth hormone

deficiency
2017 −10.48 608 −4.18 to −14.68

Dabrafenib 2028663 Cancers with a mutated gene
BRAF

2013 −12.35 2254 −5.49 to −14.68

Enzalutamide 1082407 Prostate cancer 2012 −10.53 1386 −3.83 to −13.72
Panobinostat 483254 Cancers 2015 −12.46 1645 −2.91 to −12.46
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average RP and RMSE are 0.874 and 0.692 kcal/mol,
respectively, quite comparable to the LV-BP.
III.A.2. Convergence Analysis.Here we conduct our GNC to

generate new molecules and analyze how these new molecules
evolve over a generation course. We start this experiment with a
seed molecule picked from the BACE1 data set; this molecule is
far from active with binding free energy (ΔG) =−6.81 kcal/mol.
The reference molecule is also from the BACE1 data set, it is
highly active with ΔG = −12.02 kcal/mol. The binding affinity
objective yΔG is set to be −12.02 kcal/mol, and the similarity
score to the reference molecule is targeted to ysim = 1.0.
Figure 3a depicts the loss function values computed at every

epoch; Figure 3b and c illustrate the LV-BP predicted binding

affinities and similarity scores, respectively. From these figures,
one can observe that our GNC produces new potential BACE1
inhibitors with desirable binding affinities in less than 3000
epochs.
Figure 4 shows a series of generated molecules over the

evolution from the seed to the reference molecule. The starting
point is the seed molecule, and its binding affinity and similarity
score to the referencemolecule are as low as−6.81 kcal/mol and
0.01, respectively. By receiving the feedback from the gradient
descent in the generator, the similarity score gradually rises to
1.0. The improvement to the binding affinity is even faster: while
a created molecule has a similarity score of 0.28, its LV-BP
predicted ΔG already reaches −11.30 kcal/mol; while the
similarity score is 0.90, the LV-BP predictedΔG is−12.00 kcal/
mol, which is essentially the same as the reference molecule’s
ΔG of −12.02 kcal/mol.
III.A.3. Reliability Test on the Designed BACE1 Inhibitors.

Using our GNC, we also generate millions of compounds
targeting a wide range of binding affinities and similarity scores.

Then the prediction reliability with these different ranges of
binding affinities and similarity scores is tested. Individually, the
similarity score objectives, ysim, vary from 0.50 to 0.95 with an
increment of 0.025; the binding affinity objectives, yΔG, receive
values from−9.6 kcal/mol to−13.1 kcal/mol with an increment
of −0.25 kcal/mol. Here we select −9.6 kcal/mol as the starting
point since this value is a widely accepted threshold to identify
active compounds; the end point ofΔG =−13.1 kcal/mol is the
highest binding affinity value in the BACE1 data set (see Figure
5).
The reliability test is based on reevaluating the LV-BP

predicted binding affinities by the 2DFP-BP. The reliability
criteria are the RMSE, active ratio, and RP between the LV-BP
and 2DFP-BP prediction. The heatmaps in Figure 6 show these
evaluation metric values corresponding to different similarity
score and binding affinity restraints. Few blank points are
present in each heatmap due to no available generation meeting
these specific restraints.
Figure 6a plots the RMSE metrics. It reveals the most reliable

region, i.e., having low RMSE, is ysim above 0.925, and the yΔG is
between −10.1 and −12.1 kcal/mol. This is expected since
machine learning models can render accurate predictions if
generated structures are highly similar to the training data (see
Figure 5). Besides, a large population of training samples have
ΔGs between −10.1 and −12.1 kcal/mol, leading to more
reliable predictions to molecules generated inside this range.
Outside this range, as both yΔG and ysim decrease, the RMSEs
between the LV-BP and 2DFP-BP predictions increase.
Specifically, if yΔG < −12.1 kcal/mol and ysim < 0.675, the
RMSEs are always over 3.2 kcal/mol.
Figure 6c depicts the RP’s between the LV-BP and 2DFP-BP

predictions with respect to yΔG and ysim. Similar to the manner of
the RMSE distribution, −12.1 kcal/mol ≤ yΔG ≤ 10.1 kcal/mol
and 0.9 ≤ ysim ≤ 0.95 lead to the RP values consistently higher
than 0.8.
The last component of our reliable analysis regards the loss

functionmagnitudes of our GNC generator plotted in Figure 6d.
In most cases, the loss function values are less than 0.05.
However, in some special situations, our network cannot
maintain the loss values lower than 0.15. At these points, we
cannot find any generated molecules subject to the multi-
property restraints simultaneously, which renders the blank
spots in the criteria plots in Figures 6a, b, and c.
In summary, to generate molecules with reliable predictions,

one should set the binding affinity objective yΔG in a region filled
with a large population of training data. Besides, the similarity
score restraint ysim should be high. However, in some
circumstances, the generated molecules that have high predicted
affinities should also be included in further consideration.

III.B. Designing Alternative Drug Candidates. In this
section, we utilize our GNC to produce alternative drug-like
molecules with high binding affinities to the existing drugs’
targets, which provides effective libraries for further improve-
ment or searching for cheaper drug alternatives. This work
discusses eight drugs and their targets with the information
regarding the names, ChEMBL IDs, energies, etc. summarized
in Table 1. All of these drugs were approved by the FDA in the
recent decade to treat critical diseases, especially a variety of
cancers. Notably, the drug Ribociclib has two different targets
(Cyclin-dependent kinase 4 and Cyclin-dependent kinase 6), so
Ribociclib has two sets of ΔGs and two sets of training
compounds.

Figure 3. Convergence of the loss function, the LV-BP predicted ΔG,
and the similarity score to the reference molecule during a molecule
generation course. In this example, the ΔGs of the seed molecule and
the reference molecule are −6.81 kcal/mol and −12.02 kcal/mol,
respectively. To force generated molecules evolving toward the
reference molecule, we set the similarity score objective and the ΔG
objective to be 1.00 and −12.02 kcal/mol, respectively.
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III.B.1. Single-Target Drug: Ceritinib. Statistics of the Drug
Ceritinib. The brand name of Ceritinib (ChEMBL ID:
CHEMBL2403108) is Zykadia. It was developed by Novartis
and approved by the FDA in April 2014 to treat different types of
nonsmall cell lung cancers. Ceritinib is extremely expensive, with
the monthly cost of Ceritinib-based treatment in the US being
approximately $11,428.
Ceritinib inhibits the ALK tyrosine kinase receptor (ALK,

CHEMBL ID: CHEMBL4247). The ChEMBL database
provides 1407 molecules with experimental binding affinity
labels to this target available. After going through the filter in our
model, 1203 molecules are left to train our generator and
predictor. Figure 7a depicts the ΔG distribution of this training

set; it unveils that hundreds of training samples have their
binding affinities close to or even higher than Ceritinib. The
similarity score distribution in Figure 7b indicates the training
set includes 355 samples with their similarity scores to Ceritinib
being over 0.3, with 56 samples with such scores over 0.6. These
promising analytical assessments enable our GNC to design
potential inhibitors to the target ALK.

Designing New Drug-like Molecules. Here we use Ceritinib
as the reference molecule to design alternative Ceritinib drugs.
Section III.A.3 suggests, to generate new molecules with
desirable properties, the binding affinity objectives should be
inside a region with plenty of training data, and the similarity
scores to the reference molecule ysim should be restrained to be

Figure 4. A series of generated molecules over the evolution from the seed to the reference molecule.
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high. However, high similarity scores could lead to quite limited
chemical space. Our solution to this drawback is, first, extend
similarity score restraint to a broader range, then reevaluate
generated compounds using the 2DFP-BP, and only pick the
ones with low discrepancies between the LV-BP and 2DFP-BP
predicted affinities.

Following this strategy, we set the similarity score restraints
varying from 0.3 to 0.9 with an increment of 0.025; this is
because more than 300 training samples have their similarity
scores over 0.3, which is supportive to generate compounds in
this similarity range. The binding affinities are aimed at the
interval from −10.5 kcal/mol to −12.25 kcal/mol with an

Figure 5. ExperimentalΔG distribution of the filtered BACE1 data set.

Figure 6. Reliability test to our GNC generator on the BACE1 data set. The prediction reliability with different binding affinity objectives (yΔG) and
similarity score objectives (ysim) is tested. The discrepancies between the LV-BP and the 2DFP-BP predictions are evaluated by different criteria: (a)
RMSE; (b) activate ratio; (c) Pearson correlation; (d) loss function value.

Figure 7. (a) ΔG distribution of the filtered training set to the target
ALK. The red bar indicates the interval containing theΔG of Ceritinib.
(b) Similarity score distribution of the other molecules in this set to
Ceritinib.
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increment of −0.25 kcal/mol; this binding affinity region covers
hundreds of training samples as well as the drug Ceritinib itself.
After reevaluating by the 2DFP-BP, any generated molecules
with the relative errors between the LV-BP and 2DFP-BP
predicted affinities over 5% are thrown away.
2DFP-BP Reevaluation. The details of the 2DFP-BP are

offered in section II.D.With Ceritinib as the reference, our GNC
model creates 1095 novel active drug-like molecules. Upon
eliminating the ones with high discrepancies in their LV-BP and
2DFP-BP predictions, 629 molecules are left. Figure 8 indicates,

for these 629 molecules, the correlation between the two
predictions is quite promising, with the RMSE = 0.28 kcal/mol,
Rp = 0.80, and active ratio = 0.95, respectively. This statistical
information endorses the drug-likeness potential of our AI-
generated molecules.
The LV-BP and 2DFP-BP predicted binding affinities of these

629 molecules are also averaged, and their distribution is shown
in Figure 9a. This figure reveals the preferred affinities of the
generated compounds is from−9.8 kcal/mol to−10.8 kcal/mol,
which is also the most popular affinity region of the training

samples. Figure 9b illustrates their similarity score distribution
to the reference drug Ceritinib.

Top 6 Drug Candidates. Ranked by the average predicted
binding affinities of these 629 molecules, we select the top six
drug candidates. Their 2D draws are plotted in Figure 10. The
relative errors between their LV-BP and 2DFP-BP predictions
are 1.3%, 3.1%, 0.1%, 4.0%, 3.5%, and 3.9%, respectively. It is
delighted to see that their average predicted affinities are much
higher than that of the reference drug Ceritinib. Moreover, these
candidates have similarity scores to the reference drug from 0.54
to 0.69. They are brand new and do not exist in the SciFinder
database. We also predict their toxicity in terms of LD50 using
our own GBDTmodel,39 log P values and synthetic accessibility
scores (SAS) using RDKit, and log S values by Alog PS 2.1,50 and
report them in Figure 10; these values are comparable to those of
the reference drug and in reasonable ranges.

Interaction and Pharmacophore Analysis.One can observe
from Figure 10, even though the similarity scores are only
between 0.56 and 0.69, these generated compounds share some
moieties with the reference drug Ceritinib. This designates these
common moieties to possibly involve critical interactions with
the binding site of the target.
To verify our generated compounds still contain critical

moieties to the binding, from experimental structures, we
investigate the drug−target interactions, as well as the common
pharmacophores among all the active compounds to the target.
Figure 11a shows the interaction details between the drug
Ceritinib and its target in the 3D crystal structure of their
complex (PDB ID 4MKC51). It reveals their interactions include
one hydrogen bond with one N atom in the pyrimidine of the
drug (marked by 1 in the Figure 11a) as the acceptor, one
hydrogen bond with one N atom in the chain of the drug
(marked by 2 in the Figure 11a) as the donor, another hydrogen
bond with one O atom in the drug as the acceptor, one
hydrophobic interaction between one benzene ring (marked by
3 in the Figure 11a), and the target, as well as other hydrophobic
interactions.
The common pharmacophore analysis in Figure 11b is

consistent with the interaction analysis. The N atom in the
pyrimidine of the drug (marked by 1 in Figure 11a and 11b) and
the N atom in the chain of the drug (marked by 2 in Figure 11a
and 11b) are critical pharmacophores; they play the roles of an
acceptor and a donor of hydrogen bonds, respectively. Another
pharmacophore is the benzene ring forming a hydrophobic
interaction with the target. The pharmacophore analysis also
reveals more potential interaction modes, such as the hydro-
phobic interaction between the Cl atom and target, and the
hydrogen bond with the other N atom in the chain of the drug as
its donor.
As illustrated in Figure 11b, all these critical pharmacophores

are retained in our top six generated compounds, which strongly
supports that these compounds are potential inhibitors to the
target.

III.B.2. Double-Target Drug: Ribociclib. Statistics of the
Drug Ribociclib.Here, we test the generative power of our GNC
on multitarget drugs. In this case study, the multiproperty
restraints consist of multiple binding affinity criteria and the
similarity score to a reference molecule. The drug we test here is
Ribociclib (ChEMBL ID: CHEMBL3545110, brand name:
Kisqali). It was developed by Novartis and Astex Pharmaceut-
icals and approved by the FDA in 2017 to treat certain kinds of
breast cancers. The monthly cost of Ribociclib treatment is
$10,950 in the US.

Figure 8. Correlation plot between the LV-BP and 2DFP-BP predicted
ΔGs of the generated molecules to the target ALK, the ones having high
relative errors between the two predictions (>5%) are already
eliminated.

Figure 9. Average predicted binding affinities to the target ALK of the
generated molecules and their similarity scores to the reference drug
Ceritinib. (a) Distribution of the averages of the LV-BP and 2DFP-BP
predicted ΔGs to the target ALK. (b) Similarity score distribution to
the reference drug Ceritinib.
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Ribociclib inhibits two different targets, namely the Cyclin-
dependent kinase 4 (CDK4, CHEMBL ID: CHEMBL331) and
Cyclin-dependent kinase 6 (CDK6, CHEMBL ID:
CHEMBL2508). In the ChEMBL database, 919 molecules
haveCDK4 binding data and 289molecules have CDK6 binding
data. After filtering, 918 and 289 molecules are retained,
respectively, providing a small training set to the CDK6. Figure

12a and b plot theΔG distributions of these two training sets. It
reveals, in both the CDK4 and CDK6 sets, hundreds of samples
have binding affinities close to or even higher than Ribociclib.
Figure 12c and d show the similarity score distributions to
Ribociclib of the two training sets. Both these sets include more
than 200 samples with similarity scores to the drug over 0.3, with
more than 60 samples with such scores over 0.6.

Figure 10. Drug Ceritinib and its top six generated molecules. The predicted ΔGs to the target ALK, similarity scores (Sim) to the drug, calculated
toxicity (Tox), log P, log S values, and synthetic accessibility scores (SASs) are also present.
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Multitask Predictor. Since the CDK6 training set is small, it is
challenging to train an accurate predictor for this target.
However, the two targets, CDK4 and CDK6, are similar due to
the calculation via SWISS-MODEL52 with the sequence identity
being 71.1%. Therefore, multitask deep learning can enhance
reliability.
In our multitask architecture, the binding affinity predictor in

our generator offers two outputs, each for one of the two targets,
so the predictor is trained by the two training sets
simultaneously. As a result, in a 5-fold crossing-validation test,

the multitask model significantly improves the performance on
the small data set.
As illustrated in Table 2, the target CDK4 with a 918-

molecule training set does not benefit so much from the
multitask. However, in the case of the target CDK6 only with a
289-molecule training set, the improvement is dramatic: the RP’s
rise from 0.524 to 0.811 by the LV-BP and from 0.485 to 0.779
by the 2FP-BP. These results demonstrate the efficiency of the
multitask architecture.

Generation of New Drug-like Molecules. To design
alternative Ribociclib drugs in broader chemical space, we set

Figure 11. Pharmacophore analysis to the ALK tyrosine kinase’s binding site. (a) Interaction plot between the drug Ceritinib and ALK tyrosine kinase
from the 3D experimental structure with the PDB ID 4MKC. (b) 3D alignments of the common pharmacophores obtained from all the active
compounds to the target ALK with the 3D experimental structure of the drug Ceritinib; the top six generated molecules are also aligned to it.

Figure 12. (a) ExperimentalΔG distribution of the training set to the target CDK4with the interval containing theΔG of the drug Ribociclib to CDK4
marked in red. (b) Experimental ΔG distribution of the CDK6 training set with the interval containing the ΔG of Ribociclib to CDK4 in red. (c)
Similarity score distribution of the other samples in the CDK4 training set to Ribociclib. (d) Similarity score distribution of the other samples in the
CDK6 set to Ribociclib.
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the similarity score restraints to Ribociclib from 0.30 to 0.90,
with an increment of 0.025. The binding affinities to the target
CDK4 are aimed at the interval between −10.80 kcal/mol and
−12.00 kcal/mol with an increment of −0.2 kcal/mol; this
interval covers the ΔGs of Ribociclib as well as many other
training samples. For the same reason, the objectives of the
binding affinities to the target CDK6 are set from −10.2 kcal/
mol to −11.0 kcal/mol with an increment of −0.2 kcal/mol.
Totally, following this scheme, we create 1080 novel molecules.
Reevaluation by 2DFP-BP. The predicted bind affinities of

these 1080 generated compounds are reevaluated by the 2DFP-
BP model incorporated with the multitask DNN. The
parameters of this architecture are introduced in section II.E.
After excluding the ones with high discrepancies between the
LV-BP and 2DFP-BP predictions, 271 molecules remain.
Figure 13 depicts the correlation plots between their LV-BP

and 2DFP-BP predicted ΔGs to the two targets. The
correlations of the ΔGs to both the two targets are promising.
Specifically, the ΔGs to the target CDK4 can achieve an RMSE
of 0.29 kcal/mol, an RP of 0.69, and an active ratio as high as
0.98; the ΔGs to the target CDK6 also have an RMSE of 0.27
kcal/mol, a RP of 0.65, and an active ratio of 0.78.
Their LV-BP and 2DFP-BP predicted binding affinities to the

two targets are also averaged, and the distributions are shown in
Figure 14a,b. Figure 14c illustrates their similarity score
distribution to the reference drug Ribociclib.
Top Six Drug Candidates. According to the average

predicted binding affinities of these 271 molecules, we select
the top six drug candidates. Figure 15 represents their 2D plots.
To the target CDK4, the relative errors between their LV-BP
and 2DFP-BP predictions are 4.6%, 3.0%, 3.2%, 0.2%, 1.6%, and
0.7%, respectively; to CDK6, the relative errors between the two

predictions are 1.7%, 1.2%, 3.7%, 3.4%, 4.8%, and 1.7%,
respectively. Most of them have better binding affinities than
the reference drug Ribociclib. For example, to CDK4, the
affinities of the first and fourth compounds are predicted to be
higher than that of Ribociclib, and the other three have similar
ones with Ribociclib; to CDK6, all the top six candidates have
better binding affinities. Moreover, their similarity scores to the
reference drug are between 0.65 and 0.75. They are not in the
SciFinder database, which means these six candidates are novel.
The toxicity (LD50), log P, log S values, and synthetic
accessibility scores (SASs) calculated by our model, RdKit,

Table 2. Rps of ΔG Predictions from the 5-Fold Cross-
Validation Tests on the Two Targets of the Drug Ribociclib
by the Single Task and Multitask Predictors

Target CDK4 Target CDK6

Single task Multitask Single task Multitask

LV-BP 0.791 0.804 0.524 0.811
2FP-BP 0.824 0.836 0.485 0.779

Figure 13.Correlations between the LV-BP and 2DFP-BP predictedΔGs of the generated molecules to the targets CDK4 and CDK6; the ones having
high relative errors between the two predictions (>5%) are already eliminated.

Figure 14. Average predicted ΔG to the targets CDK4 and CDK6 of
the generatedmolecules and their similarity scores to the reference drug
Ribociclib: (a, b) Distributions of the averages of the LV-BP and 2DFP-
BP predicted ΔGs to the two targets, respectively. (c) Similarity score
distribution to the reference drug Ribociclib.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c00599
J. Chem. Inf. Model. 2020, 60, 5682−5698

5692

https://pubs.acs.org/doi/10.1021/acs.jcim.0c00599?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00599?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00599?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00599?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00599?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00599?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00599?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00599?fig=fig14&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00599?ref=pdf


Figure 15.Drug Ribociclib and its top six generatedmolecules. The predictedΔGs to the targets CDK4 andCDK6, similarity scores (Sim) to the drug,
calculated toxicity (Tox), log P, log S values, and synthetic accessibility scores (SASs) are also reported.
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Figure 16. (a) Illustration of the interactions between the drug Ribociclib and the target CDK6 extracted from the experimental structure (PDB ID
5L2T). (b) 3D alignment of the common pharmacophores obtained from all the active compounds to the target CDK6 with the 3D experimental
structure of the drug Ribociclib; the top six generated molecules are also aligned to it.

Figure 17. Correlation plots between the LV-BP and 2DFP-BP predicted ΔGs of the generated molecules to the six drug targets; the ones with high
relative errors between the two predictions are already eliminated.
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and Alog PS are also shown in the figure; their toxicity, log P, log
S values, and SASs are comparable to those of the reference drug.
Interaction and Pharmacophore Analysis. Figure 16a

shows the interaction details between the drug Ribociclib and
the target CDK6 in the 3D crystal structure of their complex
(PDB ID 5L2T53). It indicates the main interactions are
hydrogen bonds and hydrophobic interactions. The pharmaco-
phore analysis in Figure 16b reveals that the critical
pharmacophores are the pyrrolopyrimidine, pyridine, and
cyclohexane, which can form hydrogen bonds and hydrophobic
interactions with the binding site.
Among the top six candidates, except the first one, the others

contain all these critical pharmacophores; the first one has most
of them. This suggests all the six compounds are potential
inhibitors to the targets.
III.B.3. Tests on the Other Single-Target Drugs. We also

apply our GNC to the rest six drugs listed in Table 1 and design
novel drug candidates. The similarity score restraints are from
0.30 to 0.90, with an increment of 0.025. The ΔG objective
ranges are chosen to contain theΔGs of the drugs as well as lots
of other training samples. We also only collect the generated
molecules with the relative errors between the LV-BP and
2DFP-BP predicted ΔGs below 5%.
Figure 17 indicates, since the ones with high discrepancies

between the two predictions are eliminated, our generated
compounds to all these six drug targets have promising
correlations.
Now, we focus on whether highly active drug candidates are

created or not. This relies on the binding affinity and similarity
score distributions of the training sets. Figure 18 provides the
sizes and the ΔG distributions of these six target-specified
training sets. The red bars indicate the intervals containing the
ΔGs of the reference drugs. Figure 19 plots their similarity score
distributions.
Figure 18a shows that the training set of the drug

Acalabrutinib contains 1459 compounds. Among them, more
than 400 compounds have higher binding affinities than that of
the drug, which is beneficial to generate compounds more
potent than the drug. Also, Figure 19a reveals that, in the training
set, over 500 molecules have the similarity scores to the drug
over 0.3, which is quite helpful to generate novel compounds
with similarity scores also in this range. These promising
statistical information helps to explain why our GNC can create
as many as 879 new compounds for this drug target with high
confidence, and 17 of them have higher or similar binding
affinities with that of Acalabrutinib; the bestΔG is−11.90 kcal/
mol (see Figures S1 and S3).
As revealed by 18b, the training set of the drug Idelalisib is

larger than that of Acalabrutinib, and over 500 molecules in this
set have higher binding affinities than that of Idelalisib. As a
result, 73 of the 794 generated compounds are more potent than
Idelalisib, with the bestΔG being −11.27 kcal/mol (see Figures
S1 and S4).
Figure 18c exhibits that the data set of Macimorelin is quite

small. However, the correlation of the generated molecules is
still satisfactory, and 13 generated molecules have similar ΔGs
with that of the drug (see Figure S1). This is because its training
set contains 205 compounds with higher binding affinities than
that of the drug, and also 182 compounds with the similarity
scores to the drug over 0.3.
Figure 18d and e depict the data sets of the drugs Dabrafenib

and Enzalutamide. The affinity values of these two drugs are
close to the upper boundaries of their training sets’ affinity

domains. In other words, few molecules in their training sets are
more active than the drugs. Since the interpolation nature of
machine learning models tends to provide reliable predictions
inside the populated range, it is tough to generate compounds
more potent than these drugs. Although their training set sizes
and similarity scores are favorable, the numbers of generated
compounds with better binding affinities than that of the drugs
are only 2 and 4, respectively (see Figures S1, S6, and S7).
We perform our last experiment on the drug Panobinostat.

Panobinostat is an extreme example: as illustrated in Figure 18f,
its binding affinity is the highest in its training set. Therefore,
although our GNC model generates 319 molecules, the top
active one among them only reaches a ΔG of −11.56 kcal/mol,
which is far less potent than the drug itself (ΔG = −12.46 kcal/
mol).
In the Supporting Information, Figures S3 to S8 provide the

top six generated alternative compounds for the drugs
Acalabrutinib, Idelalisib, Macimorelin, Dabrafenib, Enzaluta-
mide, and Panobinostat, as well as their predicted ΔGs.

IV. DISCUSSIONS
With the availability of deep learning technologies, an increasing
number of in silico molecule generation models have been
proposed. These models can be classified into three categories:
randomized output, controlled output, and optimized output.54

Figure 18. Sizes and experimental ΔG distributions of the training sets
to the six drug targets. The red bars indicate the intervals containing the
ΔGs of the six reference drugs.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c00599
J. Chem. Inf. Model. 2020, 60, 5682−5698

5695

http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c00599/suppl_file/ci0c00599_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c00599/suppl_file/ci0c00599_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c00599/suppl_file/ci0c00599_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c00599/suppl_file/ci0c00599_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c00599/suppl_file/ci0c00599_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c00599/suppl_file/ci0c00599_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00599?fig=fig18&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00599?fig=fig18&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00599?fig=fig18&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00599?fig=fig18&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00599?ref=pdf


One of the challenges is how to generate new molecules with
desired chemical properties, especially drug-like molecules.
Another challenge is how to improve the utility of in silico
molecule generation without direct experimental validations. To
address these challenges, we propose a new GNC to generate
drug-like molecules based on multiproperty optimizations via
gradient descent.
IV.A. Essential Circumstances for Reliable and Desired

Molecule Generation. Based on our experiments, there are
two essential circumstances to generate molecules with reliable
and desired predicted chemical properties:

1. An objective property value should always be in a region
with many training samples. Based on the nature of
machine learning methods, the predictor can be built with
high accuracy at an objective value with many training
samples around it. It can be seen from Section III.A.3 that
when a binding affinity objective is in the middle of the
training set’s distribution, the latent space generator can
always generate novel molecules with reliable predictions
confirmed by the 2DFP-BP. However, when an objective
is close to or even at the edge of the training-set
distribution, one may still generate many novel
compounds, but the predictions to them are quite risky,
such as high discrepancies between the LV-BP and 2DFP-
BP predictions.

2. Generated compounds should have some high similarity
scores to some existing molecules in the training set. If
some molecules (not necessarily reference molecules) in
the training set are similar to generated compounds, then
the predictions are reliable and can be verified by the
2DFP-BP.

IV.B. Necessity of Both Similarity and Property Value
Restraints. The two points above also explain why both
similarity score and property value restraints should be included
in our generator.
The goal of property restraint is twofold. First, it restricts

property values to desired ones. Additionally, it can be used to
achieve high reliability. As discussed above, if the property value
is limited to a populated region of the training-set distribution,
the resulting generated molecules will most likely have reliable
predictions.
Similarity restraint is also to ensure prediction accuracy. High

similarity scores to existing molecules make predictions more
accurate and reliable. Moreover, in a regular drug discovery
procedure for a given target, one typically starts from some lead
compounds or even current drugs and then carries out lead
optimizations to make candidates more “drug-like”, e.g., higher
activity and lower side effects.2 Therefore, similarly, in a drug-
specified generative model, the similarity to a reference
compound or drug must be controlled to guarantee that new
drug-like compounds still bind to the target. For example, with
similarity restraint, generated molecules share pharmacophores
with the reference drug.

IV.C. Multiple Property Restraints. Drug design is
sophisticated. To develop a drug, plenty of properties must be
carefully studied, such as binding affinity, toxicity, partition
coefficient (log P), aqueous solubility (log S), and off-target
effect. The failure in any one of these properties can prevent drug
candidates from the market. In other words, drug design is a
multiproperty optimization process.
Technically, our generator can handle this multiproperty

optimization. In our framework, the restraint to each property is
realized by one term in the loss function. Therefore, multi-
property optimization can be satisfied simultaneously in our
GNC. In this work, multiple property restraints are tested on one
drug with two targets (Ribociclib). In fact, the generated new
candidates have ideal binding affinities to the two targets
simultaneously; this means our model can work on the multiple
property restraints. Multiple properties can also be specified as
toxicity, log P, log S, etc. To avoid side effects, one can also
control drug candidates to have a high binding affinity to one
target but low binding affinities to other targets.

V. CONCLUSION

The search for alternative drugs is important for improving the
quality of existing drugs and making new drugs cheaply available
to low-income people. In this work, we develop a new generative
network complex (GNC) for automated generation of drug-like
molecules based on the multiproperty optimization via gradient
descent in the latent space. In this new GNC, multiple chemical
properties, particularly binding affinity and similarity score, are
optimized to generate new molecules with desired chemical and
drug properties. To ensure the prediction reliability of these new
compounds, we reevaluate them by independent 2D-fingerprint
based predictors. Molecules without consistent predictions from
the latent-vector model and the 2D-fingerprint model are not
accepted. After the consistent check, hundreds of potential drug

Figure 19. Similarity score distributions of the other molecules to the
six reference drugs in their training sets.
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candidates are reported. Performed on a supercomputer, the
generation process from one seed to a large number of new
molecules takes less than 10 min. Therefore, our GNC is an
efficient new paradigm for discovering new drug candidates. To
demonstrate the utility of the present GNC, we first test its
reliability on the BACE1 target and then further apply this
model to generate thousands of new alternative drug candidates
for a few market existing drugs, namely, Ceritinib, Ribociclib,
Acalabrutinib, Idelalisib, Dabrafenib, Macimorelin, Enzaluta-
mide, and Panobinostat.
We also discuss the keys to generating drug-like candidates

with reliable predictions. First, an objective property value
should be in a populated region of the training-set distribution.
Second, generatedmolecules need to have good similarity scores
to some existing compounds in the training set.
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