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ABSTRACT: Although algebraic graph theory-based models have been widely
applied in physical modeling and molecular studies, they are typically
incompetent in the analysis and prediction of biomolecular properties,
confirming the common belief that “one cannot hear the shape of a drum”.
A new development in the century-old question about the spectrum−geometry
relationship is provided. Novel algebraic graph learning score (AGL-Score)
models are proposed to encode high-dimensional physical and biological
information into intrinsically low-dimensional representations. The proposed
AGL-Score models employ multiscale weighted colored subgraphs to describe
crucial molecular and biomolecular interactions in terms of graph invariants
derived from graph Laplacian, its pseudo-inverse, and adjacency matrices.
Additionally, AGL-Score models are integrated with an advanced machine
learning algorithm to predict biomolecular macroscopic properties from the
low-dimensional graph representation of biomolecular structures. The proposed AGL-Score models are extensively validated for
their scoring power, ranking power, docking power, and screening power via a number of benchmark datasets, namely CASF-
2007, CASF-2013, and CASF-2016. Numerical results indicate that the proposed AGL-Score models are able to outperform
other state-of-the-art scoring functions in protein−ligand binding scoring, ranking, docking, and screening. This study indicates
that machine learning methods are powerful tools for molecular docking and virtual screening. It also indicates that spectral
geometry or spectral graph theory has the ability to infer geometric properties.

1. INTRODUCTION

Graph theory is a prime subject of discrete mathematics that
considers graphs as mathematical structures for modeling
pairwise relations between vertices, nodes, or points. Such
pairwise relations define graph edges. There are many different
graph theories, such as geometric graph theory, algebraic graph
theory, and topological graph theory. Geometric graphs admit
geometric objects as graph nodes or vertices. Algebraic graph
theory, particularly spectral graph theory, studies the algebraic
connectivity via characteristic polynomial, eigenvalues, and
eigenvectors of matrices associated with graphs, such as an
adjacency matrix or a Laplacian matrix. Topological graph
theory concerns the embeddings and immersions of graphs and
the association of graphs with topological spaces, such as
abstract simplicial complexes. Mathematically, graphs are
useful tools in geometry and certain parts of topology such
as knot theory and algebraic topology.
Like topology, graph theory also emphasizes connectivity.

The geometric connectivity of a graph refers to pairwise
relations among graph nodes and is often analyzed on the basis
of the “topological index”,1,2 contact map,3,4 and graph
centrality.5−7 The algebraic connectivity of a graph refers to
the second-smallest eigenvalue of the Laplacian matrix of the
graph and is also known as the Fiedler value or Fiedler

eigenvalue, which has many applications, including the stability
analysis of dynamical systems.8 In contrast, topological
connectivity refers to the connectedness of the entire system
rather than pairwise ones as in the geometric graph theory.
Topological connectivity is an important property for
distinguishing topological spaces.
Over a century ago, Hermann Weyl investigated whether

geometric properties of a bounded domain could be
determined from the eigenvalues of the Laplace operator on
the domain. This question was phrased as “Can one hear the
shape of a drum?” by Mark Kac.9 An interesting question is:
Can eigenvalues describe protein−ligand binding?
Graph theory has been widely applied in physical, chemical,

biological, social, linguistic, computer, and information
sciences. Many practical problems can be represented and
analyzed by graphs. In chemistry and biology, a graph makes a
natural model for a molecule, where graph vertices represent
atoms and graph edges represent possible bonds. Graphs have
been widely used in chemical analysis10−12 and biomolecular
modeling,13 including normal-mode analysis (NMA)14−17 and
elastic network model (ENM),3,18−22 for modeling protein
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flexibility and long-time dynamics. Some of the most popular
ENMs are the Gaussian network model (GNM)3,19,23 and the
anisotropic network model (ANM).20 In these methods, the
diagonalization of the interaction Laplacian matrix is a required
procedure to analyze protein flexibility, which has the
computational complexity of N( )3 , with N being the number
of matrix elements. Graph theory has also been used to
represent the structures of molecules and biomolecules,
resulting in a popular approach for chemical data-
sets2,10,11,24−26 and biomolecular datasets3,27−32 in the past
few decades.
Graph theories, especially geometric graph theories, are

relatively intuitive and easy to use. Indeed, a great portion of
previous graph theory-based study in molecular and bio-
molecular systems was qualitative and descriptive. Despite the
intensive effort in the past, graph theory-based quantitative
methods are often not as competitive as other quantitative
approaches in the analysis and prediction of biomolecular
properties from massive and diverse datasets. For example,
graph-signature-based prediction of protein stability changes
upon mutation33 was not as accurate as some other
methods.34−36 Additionally, the average Pearson correlation
coefficients in protein B-factor predictions using spectral graph
theory-based GNM were less than 0.6 in all of three datasets.37

These situations may be attributed to the following reasons.
First, most graph theory-based models do not distinguish
different chemical element types in a molecule or biomolecule,
which leads to a severe loss of critical chemical and biological
information. Second, in many molecular graphs, edges are used
to represent covalent bonds, while non-covalent interactions
are often ignored, which under-represents the physical
interactions of many biomolecular datasets. Finally, many
graph-based models approximate the distance between a pair
of atoms by the number of covalent bonds between them,
which leads to a major error in describing their interaction
strength.
In the past few years, we have developed a number of graph

theory approaches to address the aforementioned problems.
For example, weighted graphs were proposed in terms of the
flexibility−rigidity index (FRI) to represent graph edges by
radial basis functions.38−41 Physically, we assume that protein
interactions, including those with its environment, fully
determine its structure at the equilibrium. Protein structure
and its environment, in turn, fully determine protein flexibility
and function. As a consequence, one does not need to invoke a
high-dimensional model that is subject to modeling errors to
analyze protein flexibility and function when the native
structure of the protein and its environment are known.
Mathematically, our approach assumes a complete graph while
it weights the importance of graph edges by scaling their
Euclidean distances in radial basis functions so that the nearest
neighbors in the sense of the Euclidean metric have the
strongest edges. Additionally, multiscale FRI is a multigraph
approach which is permitted to have multiple edges.40,42

Similar to persistent homology,43,44 this multi-edge technique
allows a given molecular graph to be analyzed in multiscale,
capturing the multiscale interactions in macromolecules.40

Graph coloring, or, more generally, graph labeling, is an
important graph theory technique allowing graph vertices or
edges to be treated differently. This method enables the
encoding of chemical and biological information into
molecular graphs.45,46 Subgraphs constructed from vertex-
labeled graphs and edge-labeled graphs give rise to powerful

graph representations of intermolecular and intramolecular
interactions, such as hydrogen bonds, electrostatics, van der
Waals interactions, hydrophilicity, hydrophobicity, etc.45,46

Our multiscale weighted colored graph is over 40% more
accurate than GNM in protein B-factor predictions.46

The importance of protein−ligand binding in living
organisms cannot be overstated. A wide variety of biological
processes, such transmitter-mediated signal transduction,
hormone- and growth-factor-regulated metabolic pathways,
and stimulus-initiated gene expression, enzyme production,
and cell secretion, are triggered by ligand−receptor agonist
binding. Therefore, the understanding of protein−ligand
interactions is a central issue in biochemistry, biophysics, and
molecular biology. It is commonly believed that protein−
ligand binding involves synergistic protein−ligand corporation,
molecular recognition, and conformational changes for both
protein and ligand.
Various scoring functions (SFs) have been developed for

understanding protein−ligand binding. Among them, physics-
based SFs uniquely offer mechanistic understanding and do
not depend on existing data. Empirical SFs use physical
submodels to fit existing data.47−49 Knowledge-based SFs take
advantage of available protein−ligand binding datasets and can
be used without further training.50−52 Finally, machine
learning-based SFs are data-driven, and their performance
strongly depends on the training set, in addition to their
descriptors and machine learning algorithms.53−58 On the
positive side, machine learning-based SFs can easily handle
large and diverse datasets, as well as nonlinear correlations in
the data. They often turn out as the winners for many standard
benchmarks36,45,53,57,58 and community-wide competitions.59

Notably, RF-Score was the first machine learning-based SF
that impressively outperformed other SFs in 2010.53 Since
then, there has been much skepticism about machine learning-
based SFs. For example, Gabel et al. have shown that RF-Score
is unable to enrich virtual screening hit lists in true actives
upon docking experiments of 10 reference DUD-E datasets.61

This comes as no surprise. All machine learning-based SFs are
data-driven methods and do not work without structural and/
or sequence similarity in training and prediction datasets, as
shown by Li and Yang.61 It can be hard to decide what training
set should be used, while Kramer et al. argued that leave-
cluster-out cross-validation is appropriate for SFs derived from
diverse protein datasets.62 Recently, Wang and Zhang have
generated their own training sets (unfortunately, these useful
training sets are not publicly available) to show that machine
learning models can do very well in docking and screening
tests.58 It is highly important to design common bench-
marks63−66 and/or blind grand challenges so that various SFs
can be assessed on an equal footing without bias and prejudice.
Recently, we have developed various machine learning-based

SFs using one of three types of descriptors, namely physics-
based descriptors which consist of electrostatics binding free
energies and atomic Coulombic and van der Waals
interactions,57 geometric graph theory-based descriptors,45

and algebraic topology-based descriptors.36 Geometric graph
theory and algebraic topology-based predictions of free
energies and their rankings (Kendall’s tau) were ranked 1st
for Set 1 (Stage 2) of D3R Grand Challenge 2 and for 10 of a
total of 26 contests in D3R Grand Challenge 3.59

Conceptually, our approaches are built upon the fundamental
hypothesis that the intrinsic physics of interest lies in low-
dimensional subspaces or manifolds embedded in a high-
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dimensional data space. While the hypothesis is quite well-
known in the manifold learning field, the major challenge is
how to encode crucial physical information contained in a
high-dimensional space into the desirable low-dimensional
representation of molecules, biomolecules, and their com-
plexes. Our multiscale weighted colored subgraphs address this
challenge. The major advantages of our multiscale weighted
colored subgraph approach are its low-dimensionality,
simplicity, and robustness. For example, the only required
data inputs for the binding affinity prediction are atomic names
and coordinates. Indeed, it bypasses complicated data
processing and parametrization. It does not need any
molecular mechanical (MM) force fields, namely, charges,
polarization assignments, bond lengths and angles, van der
Waals well depths, dielectric constants, surface tension,
electronegativity, etc. As such, it avoids errors associated
with the parametrization. In fact, our geometric graph theory
approach is also simpler than our algebraic topology approach
mathematically and computationally, while it performs as well
as our topological approach.67

The objective of the present work is to develop multiscale
weighted labeled algebraic subgraphs for representing protein−
ligand interactions. For a given protein−ligand complex, there
are many ways to construct corresponding algebraic (sub)-
graphs. The three most commonly used algebraic graphs are
the graph Laplacian matrix, its pseudo-inverse, and adjacency
matrices. The eigenvalues and eigenvectors computed from
these matrices can be used to describe molecules, biomole-
cules, and their interactions in many different ways. We
examine a few common approaches in this work. The resulting
method, called algebraic graph learning score (AGL-Score), is
critically assessed on its protein−ligand binding scoring power,
ranking power, docking power, and screening power with a
variety of benchmark datasets.

2. METHODS AND ALGORITHMS

2.1. Multiscale Weighted Labeled Geometric Sub-
graphs. We propose to develop systematical, scalable,
accurate graph theory descriptors of protein−ligand binding
interactions from massive and diverse datasets. However, the
proposed method can be applied to other problems such as the
predictions of toxicity, solubility, solvation, partition coef-
ficient, mutation-induced protein folding stability change, and
protein−nucleic acid interactions. In the present work, we
target pairwise non-covalent interactions in our subgraph
theory description. For a given dataset, we first perform a
statistical analysis to identify a set of commonly occurring
chemical element types, say = {H, C, N, O, S, P, F, Cl, Br,
...}. For a given molecule or biomolecule in the dataset, let us
denote

α α= { | ∈ ∈ = }j Nr r( , ) ; ; 1, 2, ...,j j j j
3

(1)

a subset of N atoms (i.e., subgraph vertices) that are members
of . Note that the ith atom is labeled both by its element type
αj and its position rj. The classification of atoms into chemical
element types is a graph coloring, which is important for
encoding different types of interactions and gives rise to a basis
for the collective coarse-grained description of the dataset. We
assume that all the pairwise non-covalent interactions between
element types k and ′k in a molecule or molecular complex
can be represented by fast-decay weight functions

η α α

σ

= {Φ || − || | = =

= || − || > + + }
′ ′

i j N r r

r r

r r

( ; ) , ;

, 1, 2, ..., ;

i j kk i k j k

i j i j (2)

where ||ri − rj|| is the Euclidean distance between the ith and
jth atoms, ri and rj are the atomic radii of ith and jth atoms,
respectively, and σ is the mean value of the standard deviations
of ri and rk in the dataset. The distance constraint (||ri − rj|| > ri
+ rj + σ) excludes covalent interactions. Here ηkk′ is a
characteristic distance between the atoms, and Φ is a subgraph
weight, chosen to have the following properties:39

ηΦ || − || = || − || →′r r r r( ; ) 1 as 0 andi j kk i j (3)

η

α α

Φ || − || = || − ||| → ∞

= =
′

′

r r r r( ; ) 0 as ,

,

i j kk i j

i k j k (4)

Although most radial basis functions can be used,
generalized exponential functions and generalized Lorentz
functions were shown to work very well for biomolecules.39

We, therefore, have a weighted colored subgraph G( , ). To
construct element-level collective molecular descriptors, we
propose the multiscale weighted colored subgraph rigidity
between kth element type k and k′th element type ′k :

∑ ∑ ∑η μ η η

α α σ

= = Φ || − ||

= = || − || > + +

′ ′ ′

′ r r

r r

r r

RI ( ) ( ) ( ; ),

, ;

G
kk

i
i
G

kk
i j

i j kk

i k j k i j i j (5)

where μi
G(ηkk′) is a geometric subgraph centrality for the ith

atom, which offers accurate protein B-factor predictions.46 The
physical interpretation of eq 5 is straightforwardthe
summation over μi

G(ηkk′) in eq 5 leads to the total interaction
strength for the selected pair of element types k and ′k ,
which provides the element-level coarse-grained description of
molecular level properties. The above formulation is a
generalization of the successful bipartite subgraph used in
our earlier predictions of protein−ligand binding affinities and
free energy ranking.45 For a bipartite subgraph, each of its
edges connects one atom in the protein and another atom in
the ligand. The graph coloring, i.e., element-specific
descriptions, and subgraph weight are designed to capture
hydrogen bonds, polarization, electrostatics, van der Waals
interactions, hydrophilicity, hydrophobicity, etc.
The different selections of characteristic distance ηkk′ give

rise to a multiscale description of intermolecular and
intramolecular interactions. By appropriate selections of
element combinations k and k′, the characteristic distance
ηkk′, and subgraph weight Φ, we systematically construct a
family of collective, scalable, multiscale graph-based molecular
and biomolecular descriptors. The proposed multiscale
weighted colored subgraph rigidity is simple and robustthe
only required data input is atomic names and coordinates.
Indeed, it bypasses complicated data processing, parametriza-
tion, and MM force fields, such as charges, high-order
polarizations, van der Waals well depths, dielectric constants,
surface tensions, and electronegativity, and their associated
errors in many physical models. Consequently, our graph
theory approaches are very fast.39 Our fast algorithm has the
computational complexity of N( ) and is able to predict B-
factors for α-carbons of an HIV virus capsid (313 236
residues) in less than 30 s on a single processor.39
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2.2. Multiscale Weighted Labeled Algebraic Sub-
graphs. Our earlier work has demonstrated how to construct
powerful geometric graph descriptors for analyzing and
predicting biomolecular datasets. Mathematically, it is
extremely interesting to understand whether there exist equally
powerful algebraic graph or spectral graph formulations.
Biologically, it is important to develop alternative graph tools
for describing molecules, biomolecules, and their interactions
since each method has its own advantages and potentials. For a
given subgraph, its matrix representations provide a straightfor-
ward description of the interaction between subgraph
elements, which can be easily expressed by matrices. Two of
the most important matrices are the Laplacian matrix and the
adjacency matrix.
2.2.1. Multiscale Weighted Labeled Laplacian Matrix. We

consider a subgraph Gkk′ for each pair of element types, k and

′k , and propose an element-level weighted labeled Laplacian
matrix L(ηkk′) with elements

∑

η

η α α

σ

=

− Φ || − || ≠ = =

|| − || > + +

− =

′

′ ′

L

i j

r r

L i j

r r

r r

( )

( ; ) if , ,

and ;

if

ij kk

i j kk i k j k

i j i j

j
ij

l

m

ooooooooo

n

ooooooooo (6)

Mathematically, our element-level weighted labeled Lap-
lacian matrix is symmetric, diagonally dominant and positive-
semidefinite, and thus all of its eigenvalues are nonnegative.
Since every row sum or column sum of L(ηkk′) is zero, the first
eigenvalue value is zero. There can be more than one zero
eigenvalue and the number of zero eigenvalues of the Laplacian
is the rank of the zero-dimensional topological invariant,
reflecting the number of the connected components in the
graph. The first non-zero eigenvalue of L(ηkk′) is the so-called
algebraic connectivity (or Fiedler value) of Gkk′. It is interesting
to note a certain connection between geometric graph
formulation and algebraic graph matrix:

η η=′ ′LRI ( ) Tr ( )G
kk kk

where Tr is the trace. Denote λj
L,j = 1,2,... and uj

L,j = 1,2,... the
eigenvalues and eigenvectors of L(ηkk′). We define an atomic
descriptor for the ith atom (ri,αi = k):

∑μ η λ= [ ]′
− u u( ) ( ) ( )i

L
kk

l
l
L

l
L

l
L

ii
1 T

(7)

where T is the transpose. We further propose element-level
weighted labeled Laplacian matrix-based molecular descriptors,

∑η μ η=′ ′RI ( ) ( )L
kk

i
i
L

kk
(8)

Note that μi
L(ηkk′) is a weight subgraph generalization of

GNM4 or a subgraph generalization of our earlier generalized
multiscale FRI.42 Therefore, μi

L(ηkk′) can be used to represent
atomic properties, such as protein B-factors. Additionally, we
can construct a set of element-level weighted labeled Laplacian
matrix-based molecular descriptors by the statistics of μi

L(ηkk′),
i.e., sum, mean, maximum, minimum, and standard deviation
of μi

L(ηkk′).
Alternatively, we can directly construct another set of

element-level weighted labeled Laplacian matrix-based molec-
ular descriptors by the statistics of nontrivial eigenvalues
{λj

L}j=2,3,.... In this case, the Fiedler value is included as the
minimum. The performances of these two sets of molecular
descriptors constructed from element-level weighted labeled
subgraph Laplacian matrix will be examined and compared.

2.2.2. Multiscale Weighted Labeled Adjacency Matrix.
The element-level weighted labeled adjacency matrix is equally
important and can be easily constructed for subgraph Gkk′ by

η

η α α

σ

=

− Φ || − || ≠ = =

|| − || > + +

=

′

′ ′

A

i j

r r

i j

r r

r r

( )

( ; ) if , ,

and ;

0 if

ij kk

i j kk i k j k

i j i j

l

m
oooooo

n
oooooo (9)

Mathematically, adjacency matrix A(ηkk′) is a symmetric non-
negative matrix and it contains the same amount of
information as the corresponding Laplacian matrix, although
its eigenvalues λj

A,j = 1,2,... and eigenvectors uj
A,j = 1,2,...

behave very differently from those of corresponding Laplacian
matrix. Figure 1 illustrates the Laplacian and adjacency
matrices for the weighted colored subgraph GNO in cellocidin
molecule (C4H4N2O2). The spectrum of the proposed
element-level weighted colored adjacency matrix is real. For
each eigenvalue, its opposite is also an eigenvalue. Therefore,
only positive eigenvalues will be used in our description. The
Perron−Frobenius theorem states that the greatest eigenvalue,
i.e., the spectral radius ρ(A), is bounded above by the maximal
diagonal element of the corresponding Laplacian matrix
mini∑jAij ≤ ρ(A) ≤ maxi∑jAij. The values of Laplacian matrix
elements depend on the scale parameter ηkk′ and have many
zeros at a characteristic scale parameter for hydrogen bonds or
van der Waals interactions. However, the characteristic scale
for electrostatic and hydrophobic interactions can be very
large.68 In such as case, spectral radius maxi∑jAij ≈ n − 1, with
n being the number of atoms in the subgraph Gkk′.
Assume that all eigenvalues and eigenvectors of Aij(ηkk′) are

given by {λj
A} and {uj

A}, respectively. In the present work, we

Figure 1. Illustration of weighted colored subgraph GNO (Left), its Laplacian matrix (Middle), and adjacency matrix (Right) for cellocidin molecule
(C4H4N2O2). Graph vertices, namely oxygen (i.e., atoms 1 and 4) and nitrogen (i.e., atoms 2 and 3), are labeled in red and blue colors, respectively.
Here, graph edges (i.e., Φij) are labeled by green-dashed lines which are not covalent bonds. Here, Φij are distance-weighted edges. Note that there
are nine other nontrivial subgraphs for this molecule (i.e., GCC, GCN, GCO, GCH, GNN, GNH, GOO, GOH,and GHH).
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use a set of statistical values, namely, the sum of all positive
eigenvalues, the mean of all positive eigenvalues, the largest
(i.e., the principal) and the smallest positive eigenvalues, and
the standard deviation of all positive eigenvalues as element-
level molecular descriptors of molecules, biomolecules, and
their interactions.
In principle, we can also construct atomic descriptors from

{λj
A} and {uj

A}. Let us define a square matrix Q whose columns
are n linearly independent eigenvectors of A: Q= [u1

Au2
A...un

A]
and a diagonal matrix Λ where each diagonal element Λii is the
eigenvalue associated with the ith column of Q. Then, a set of
atomic descriptors can be obtained as

∑μ η = [ Λ ]′
−Q Q( )i

A
kk

j
ij

1

(10)

However, the method given in eq 10 is not a computationally
efficient approach for describing atoms in molecules.
It might appear that the proposed algebraic graph theory-

based method depends on eigenvalue analysis, which is
normally very expensive. However, there are two facts that
make the proposed method computationally efficient. First,
only atoms in a small neighborhood of the protein−ligand
binding site are involved in matrix constructions. Additionally,
the element-specific selections further reduce the number of
atoms involved in each matrix construction. As a result, one
just needs to deal with many small matrices, rendering an
efficient spectral approach for protein−ligand binding affinity
analysis.
2.3. Graph Learning. To predict molecular and bio-

molecular properties, statistics of eigenvalues generated from
the proposed weighted labeled subgraph Laplacian matrix or
adjacency matrix will be combined with a machine learning
algorithm. We assume the dataset is labeled and the problem is
either a classification or a regression. From the machine
learning point of view, we employ a supervised learning
algorithm involving a training set and a test set. Denote i the
dataset from the ith molecule or molecular complex in the

training dataset and let ζG( ; )i be a function that maps the
geometric information into suitable graph representations with
a set of parameters ζ consisting of kernel parameters. To set up
a machine learning model, we cast the training into a
minimization problem,

∑ ζ θ
ζ θ ∈

y Gmin ( , ( ; ); )
i I

i i
, (11)

where is a scalar loss function to be minimized and yi is the
collection of labels in the training set. Here θ is the set of
machine learning parameters to be optimized and depends on
machine learning algorithms chosen. The loss function can
be chosen according to the nature of the problem, i.e.,
regression and classification. Many machine learning algo-
rithms, such as random forest, gradient boosting trees, artificial
neural networks, and convolutional neural networks, can be
employed in conjugation with the present graph descriptors.
However, as our goal in the present work is to examine the
descriptive power of the proposed algebraic graph features, let
us focus on a relatively simple while still powerful machine
learning algorithm, gradient boosting trees (GBTs). GBTs are
very robust against overfitting36 and their performance is quite
similar to that of random forest. Figure 2 illustrates the
proposed graph learning strategy.
Throughout this work, we choose GradientBoostingRegres-

sor module implemented in the scikit-learn v0.19.1 package
with parameters n_estimators = 10000, max_depth = 7,
min_samples_split = 3, learning_rate = 0.01, loss = ls,
subsample = 0.3, and max_features = sqrt. Changes in these
parameters do not significantly affect the prediction results.

3. DATASETS AND EVALUATION METRICS
3.1. Datasets. In this work, we validate our proposed

model against three commonly drug-discovery related bench-
mark datasets, namely, CASF-2007,63 CASF-2013,64 and
CASF-2016.66 These benchmarks are collected in the
PDBbind database and have been used to evaluate the general

Figure 2. Illustration of algebraic graph learning strategy using 1OS0 (first column). In the second column, element specific groups are, from top to
bottom, OC, NO, and CH, respectively. Their corresponding weighted labeled graph Laplacian and adjacency eigenvalues are shown in the third
column. The statistics of these eigenvalues (fourth column) are used in gradient boosting trees for training and prediction (last column).
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performance of a scoring function on a diverse set of protein−
ligand complexes. The statistical information on these datasets
is provided in Table 1. There is a wide variety of SFs in the

binding affinity prediction and in pose scoring. In general, one
can classify them into four groups:69 (a) force-field-based or
physical-based SFs, (b) empirical or linear regression-based
SFs, (c) potential of the mean force (PMF) or knowledge-
based SFs, and (d) machine learning-based SFs. The present
method falls into the last category.
Note that for docking power and screening power

assessments, additional data information is given for CASF-
200764 and CASF-201364,65 as described in the next section.
3.2. Evaluation Metrics. In this work, we assess the

general performance of the proposed model by four metrics,
namely, scoring power, ranking power, docking power, and
screening power.63,65 These metrics and their associated
datasets are briefly summarized below.
3.2.1. Scoring Power. This assessment validates a scoring

function’s ability to predict binding affinities that have a linear
correlation with experimental data. The evaluation metric used
in this task is the standard Pearson’s correlation coefficient
(Rp), given by

=
∑ − ̅ − ̅

∑ − ̅ ∑ − ̅
R

x x y y

x x y y

( )( )

( ) ( )

i i

i i

p 2 2
(12)

where xi and yi are, respectively, predicted binding affinity and
experimental data for the ith complex. Here x̅ and y̅ are the
average of all predicted values and experimental values in the
dataset, respectively. In this work, three datasets, CASF-2007,
CASF-2013, and CASF-2016, are employed to test AGL-
Score’s scoring power.
3.2.2. Ranking Power. This assessment validates a scoring

function’s ability to rank binding affinities of protein−ligand
complexes in each cluster.63,65 Both benchmarks CASF-2007
and CASF-2013 have 65 clusters of complexes, and each
cluster has three complexes formed by the same protein but
with different ligands. In the so-called high-level success
measurement, the binding affinities of three complexes in each
cluster are to be correctly ranked. While in the so-called low-
level success measurement, a SF only needs to pick the
structure with the highest binding affinity. The ranking power
is evaluated by the percentage of successful identifications in a
given benchmark.
In fact, the ranking power metric could be improved.

Currently, it only counts the correct order of binding affinities
of three native ligands for each target receptor in the core set.
Also, it may not reflect the realistic setting of a real virtual
screening process, in which a considerable number of ligands
can bind to the same target. Additionally, more robust
evaluation metrics, such as Kendall’s tau or Spearman
correlation coefficient, might be used.
3.2.3. Docking Power. This assessment validates a scoring

function’s ability to identify the “native” pose from docking

software generated poses.63 In the benchmark, a pose is
considered to be a native one if its root-mean-square deviation
with respect to the true binding pose is less than 2 Å. In CASF-
2007 benchmark, each ligand was given a total of 100 poses
generated from docking software packages, namely,
GOLD,70,71 Surflex,72,73 FLexX74 and LigandFit.75 In CASF-
2013, 100 poses for each ligand were generated from three
docking programs, namely, GOLD v5.1 (https://www.ccdc.
cam.ac.uk), Surflex-Dock provided in SYBYL v8.1 (https://
www.certara.com/), and MOE v2011 (https://www.
chemcomp.com/). Note that the RMSD values in CASF-
2007 were referred to as the standard RMSD algorithm.63

However, a method may fail to report correct RMSDs on
structures with a certain symmetry. Therefore, property-
matched RMSD (RMSDPM) values were provided in CASF-
2013.64,65 In both benchmarks, there can be more than one
“native” pose for each given ligand in the given dataset. Then if
a method can identify any one of these native poses, it will be
regarded as successful for the ligand. Docking power is
evaluated by the number of ligands whose “native” poses are
correctly identified.

3.2.4. Screening Power. This assessment validates a scoring
function’s ability to discriminate a target protein’s true binders
from decoy structures. There are a total of 65 different proteins
in benchmark CASF 2013. Each receptor has at least three true
binders. In fact, some of the 195 ligands in CASF 2013 dataset
might bind to more than one protein.64 Indeed, by searching
through the ChEMBL database, one can show that 12 proteins
have more than three true binders.64 Fortunately, for each
target protein, each of the 195 ligands is labeled as either a true
binder or a decoy in the CASF dataset. Furthermore, for each
target protein, the best true binder judged by the highest
experimental binding affinity is specified in the CASF dataset.
There are two kinds of screening power measurements. The

task of the first screening power measurement is to find out the
enrichment factor (EF) in x% top-ranked candidates:

=
‐x

EF
no. of true binders among % top ranked candidates

total no. of true binders of the given target protein

x%

(13)

Here, top-ranked candidates are defined as those SF-predicted
candidates that have high binding affinities. The average of all
EF values over 65 target proteins is used to assess the screening
power of a scoring function.
The task of the second screening power measurement is to

identify the best true binder. The success rate is given by the
percentage of the best binders of 65 receptors being found
among x% top-ranked candidates.

4. RESULTS AND DISCUSSION

Herein we assess the scoring power, ranking power, docking
power, and screening power of the proposed algebraic graph
learning (AGL) approach using aforementioned benchmark
datasets and evaluation metrics.

4.1. Model Parametrization. For the sake of convenience,
we use the notation β τΩAGL , , to indicate the algebraic graph
learning features generated by using interactive matrix type
with kernel type Ω and corresponding kernel parameters β and
τ. As such, = Adj, = Lap, and = Inv represent
adjacency matrix, Laplacian matrix, and pseudo inverse of

Table 1. Summary of PDBbind Datasets Used in the Present
Work

training set complexes test set complexes

CASF-2007 benchmark 1105 195
CASF-2013 benchmark 3516 195
CASF-2016 benchmark 3772 285
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Laplacian matrix, respectively. Here, Ω = E and Ω = L refer to
generalized exponential and generalized Lorentz kernels,
respectively. Additionally, β is the kernel order such that β =
κ if Ω = E, and β = ν if Ω = L. Finally, τ is used such that ηkk′ =
τ(rk̅ + rk̅′), where rk̅ and rk̅′ are the van der Waals radii of
element type k and element type k′, respectively.
We propose an AGL representation in which multiple

kernels are parametrized at different scale (η) values. In this
work, we consider at most two kernels. As a straightforward
notation extension, two kernels can be parametrized by

β τ β τΩ ΩAGL , , ; , ,1 1 1 2 2 2
1 2 .

4.2. Hyperparameter Optimization. As a rule of thumb,
the machine learning models achieve the best performance
when their essential parameters are properly optimized. To this
end, 5-fold cross-validation (CV) is carried out to tune the
kernel hyperparameters , Ω, β, and τ in the proposed model

β τΩAGL , , . For simplicity, we perform the kernel parameter
optimization on CASF-2007 benchmark’s training data (N =
1105), the smallest training set among three benchmarks.
Based on our previous work,42,45 a reasonable range of
hyperparameters is listed in Table 2. Specifically, the scale

factor τ and power parameters β = κ or ν are chosen in [0.5, 6]
with an increment of 0.5 so that our model can effectively
represent the interactions between protein and ligand in a

complex. In addition, high values of the power order such as β
∈ {10,15,20} are also taken into account to approximate the
ideal low-pass filter (ILF).42 There are 40 element interactive
pairs formed by the combinations of 4 commonly occurring
atom types in proteins, i.e., {C,N,O,S}, and 10 commonly
occurring atom types in ligands, i.e., {H,C,N,O,F,P,S,Cl,Br,I}.
For adjacency matrices, we consider only their positive
eigenvalues. (Note that Laplacian matrices are positive
semidefinite.) From the resulting set of eigenvalues or
corresponding atomic descriptors, one can compute nine
descriptive statistical values, namely the sum, minimum (i.e.,
the Fiedler value for Laplacian matrices or the half band gap
for adjacency matrices), maximum, mean, median, standard
deviation, and variance of all eigenvalues. Additionally, we also
utilize the number of eigenvalues and the sum of the second
power of eigenvalues. This gives rise to a total of 360 features.
For a given interaction matrix type and a given kernel

type Ω, we carry out five-fold cross validations on the training
data of CASF-2007 to search for the optimal parameters β and
τ based on the averaged Pearson correlation coefficient value
(Rp). Figure S1 in the supplement material reports the best
models with associated Rp in this experiment. The optimal
models are (AGLE,6,2.5

Adj , Rp = 0.748), (AGLE,10,3.5
Lap , Rp = 0.74),

(AGLE,1.5,4.5
Inv , Rp = 0.708), (AGLL,3.5,1.5

Adj , Rp = 0.749), (AGLL,15,3
Lap ,

Rp = 0.740), and (AGLL,3.5,4
Inv , Rp = 0.706). Among them,

AGLL,3.5,1.5
Adj is the best model and AGLL,3.5,4

Inv , Rp = 0.706 is the
worst one. This finding is no surprise. In fact, adjacency matrix
is the simplest one but still effectively captures all the
interactions between protein and ligand atoms. Since the
GNM-style matrix, i.e., = Inv, involves the Moore−Penrose
inverse, it likely admits errors from the numerical evaluation of
large eigenvalues.
It is reported in the literature that the multiscale information

can boost predictor’s performance.40,45 Thus, on top of the

Table 2. Ranges of Model Hyperparameters for Five-Fold
Cross-Validations

parameter domain

τ {0.5,1.0,...,6}
β {0.5,1.0,...,6}∪{10,15,20}

{Adj,Lap,Inv}

Figure 3. Performance comparison of different scoring functions on CASF-2007 benchmark: (a) scoring power measured by Pearson correlation
coefficient, (b) ranking power evaluated by the high-level success measurement, and (c) docking power in terms of the rate of successfully
identifying the “native” pose from 100 poses for each ligand. The proposed algebraic graph learning-based scoring function, AGL-Score, is plotted
in the red color. The results of other methods, taken from refs 36, 53, 58, 63, and 76−78, are in the blue color.
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optimal one-scale model, we impose another kernel with a
different parametrization. We also carry out a similar grid-
search procedure as we did for the single-scale model to
explore optimal parameters. Based on Figure S2, the best two-
kernel models are found at the following (AGLE,6,2.5;E,4,2

Adj , Rp =
0.75), (AGLE,10,3.5;E,5,1.5

Lap , Rp = 0.745), (AGLE,1.5,4.5;E,4.5,2
Inv , Rp =

0.714), (AGLL,3.5,1.5;L,15,0.5
Adj , Rp = 0.751), (AGLL,15,3;L,6,1

Lap , Rp =
0.745), and (AGLL,3.5,4;L,10,1

Inv , Rp = 0.715). It is clear that models
involving the adjacency matrix, i.e., AGLE,6,2.5;E,4,2

Adj and
AGLL,3.5,1.5;L,15,0.5

Adj , still outperform the rest. Finally, we form a
consensus model named AGL-Score that is defined by the
mean of the predicted values produced by those two
aforementioned AGL models.
4.3. Performance and Discussion. 4.3.1. Scoring Power.

First of all, we validate the scoring power of the proposed

AGL-Score using the CASF-2007 benchmark. We train two
AGL models, namely AGLE,6,2.5;E,4,2

Adj and AGLL,3.5,1.5;L,15,0.5
Adj on

the refined set (N = 1105) of the PDBbind v2007 excluding
the test set (N = 195) of CASF-2007 benchmark. For the
prediction task, we repeat each AGL model up to 50 times.
The average of all the predicted values is used as the predicted
binding affinity of the AGL model. It is noted that the energy
unit in the PDBbind database is pKd. For the kcal/mol unit
conversion, we multiply the predicted values by −1.3633.57 In
addition, we are interested in comparing the predictive power
of our AGL-Score with various state-of-the-art SFs introduced
in the literature.36,53,58,63,76−78 Figure 3a illustrates such a
comparison. Clearly, the proposed model is one of the most
accurate SFs in this benchmark with a Pearson correlation
coefficient value Rp = 0.830 and RMSE = 1.864 kcal/mol. The

Figure 4. Correlation between AGL-Score predictions and experimental data for various benchmarks. (a) CASF-2007: Pearson correlation
coefficient Rp = 0.83 and RMSE = 1.864 kcal/mol. (b) CASF-2013: Pearson correlation coefficient Rp = 0.792 and RMSE = 1.973 kcal/mol. (c)
CASF-2016: Pearson correlation coefficient Rp = 0.833 and RMSE = 1.733 kcal/mol.

Figure 5. Performance comparison of different scoring functions on CASF-2013 benchmark: (a) scoring power measured by Pearson correlation
coefficient, (b) ranking power evaluated by the high-level success measurement, and (c) the docking power in terms of the rate of successfully
identifying the “native” pose from 100 poses for each ligand. The proposed algebraic graph learning-based scoring function, AGL-Score, is plotted
in the red color. The results of other methods, taken from refs 58, 64, and 78−80, are in the blue color.
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runner-up is TNet-BP with reported Rp = 0.826.36 The
geometric graph approach has a slightly lower performance
with Rp = 0.825.45 This comparison confirms the scoring
power of the present model. Furthermore, the correlation
between our predicted values and the experimental data is
depicted in Figure 4a.
In the second benchmark, i.e., CASF-2013, its training data

(N = 3516) is compiled on the basis of the refined set of
PDBbind v2015 excluding its test set (N = 195). We carry out
a similar prediction procedure as of the previous one.
Interestingly, the proposed model is able to outperform the
state-of-the-art SFs adopted from refs 58, 64, and 78−80, as
seen in Figure 5b. Specifically, our AGL-Score attains Pearson
correlation coefficient value Rp = 0.792 and RMSE = 1.973
kcal/mol followed by EIC-Score model with Rp = 0.774.78 Our
previous geometric graph model achieves similar performance
to AGL-Score with Rp = 0.782.45 In addition, Figure 4b
provides a scatter plot to illustrate the correlation between our
predicted values and experimental results.
CASF-2016 is the last benchmark considered in this work. It

is also the latest CASF released by PDBbind database.66 We
train the AGL model on the basis of the refined set of
PDBbind v2016 excluding the benchmark’s test set. In this
experiment, both training data (N = 3772) and test data (N =
285) are slightly larger than their predecessor, CASF-2013.
The performance of a number of SFs has been reported for this
benchmark. Specially, KDEEP,

81 Pafnucy,82 and PLEC-nn80 SFs
make use of deep learning architectures. Also, numerous SF
models have been tested by the PDBbind team.66 We compare
the proposed AGL-Score to the aforementioned methods in
Figure 6. Note that, KDEEP, Pafnucy, PLEC-nn, and EIC-Score
all carry out the predictions on the original PDBbind v2016
core set with N = 290. Table S1 provides the discrepancy
information between the PDBbind v2016 core set and CASF-
2016 test set. Our AGL-Score is still superior to its
counterparts with Rp = 0.833 (0.835) and RMSE = 1.733
(1.732) kcal/mol for CASF-2016 test set (PDBbind v2016
core set). The second best approaches in the chart are KDEEP
and PLEC-nn both having Rp = 0.82. The features and
machine learning algorithms of these SFs are listed in Table 3.
Moreover, the algebraic graph model’s performance on this
benchmark is still superior to that of the earlier geometric
graph approach with Rp = 0.815.45 This result confirms the
accuracy and reliability of the AGL model for diversified

binding affinity datasets. Finally, the comparison between the
predicted affinities of AGL model and the experimental values
is depicted in Figure 4c.

4.3.2. Ranking Power. We use predicted binding affinities
on the scoring power task to validate the performance of our
proposed scoring function on the ranking power. Among two
models, namely generalized exponential kernel model
AGLE,6,2.5;E,4,2

Adj and generalized Lorentz kernel model
AGLL,3.5,1.5;L,15,0.5

Adj , the generalized exponential model produces
better results on both benchmarks (see Figures S3 and S4).
Thus, its results are used in Figures 3b and 5b. In CASF-2013,
AGL-Score achieved the best performance with the high-level
success measurement being 60%, followed by X-ScoreHM with
the success rate being 59%. In CASF-2007, the AGL-Score’s
rate for the high-level success measurement is 54%, which is
ranked the third, following X-Score::HSScore (success rate =
58%)64 and ΔvinaRF20 (success rate = 57%). One can see that
top ranking SFs for the scoring power also perform quite well
in the ranking power assessment. For example, in both CASF-
2007 and CASF-2013, our AGL-Score model is among the top
ranking SFs on both scoring power and ranking power. If the
machine learning models are excluded in the scoring tests, one
can conclude that ΔvinaRF20 and X-ScoreHM are good
performers on these assessments.

4.3.3. Docking Power. In order for our scoring function-
based machine learning method to be able to recognize the
“native” pose among the computer-generated 100 poses, there

Figure 6. Performance comparison of different scoring functions on CASF-2016. The Pearson correlation coefficients of other methods are taken
from refs 36, 66, 78, and 80−82. The proposed algebraic graph learning-based scoring function, AGL-Score, achieves Rp = 0.833 and RMSE = 1.733
kcal/mol. Note that scoring functions marked with * use PDBbind v2016 core set (N = 290).

Table 3. Description of Some Machine Learning-Based
Scoring Functions

name feature
machine learning

algorithm

TNet-BP37 algebraic topology convolution neural
network (CNN)

EIC-Score79 differential geometry GBT
RI-Score46 geometric graph random forest
AGL-Score algebraic graph GBT
PLEC-nn81 extended connectivity

fingerprint
neural networks

KDEEP
82 3D voxel representation CNN

Pafnucy83 3D voxel representation CNN
RF::VinaElem78 intermolecular contacts and

Autodock Vina features
random forest

ΔvinaRF2059 Autodock Vina and other
physical features

random forest
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is a need to create a training set which includes diverse
conformers. To this end, for each given target ligand binding to
a specific receptor, we use GOLD v5.6.371 to generate a set of
1000 training poses. The parameters of the GOLD software are
chosen as the following: autoscale = 1.5, early_termination = 0,
and gold_fitfunc_path = plp. For each of CASF-2007 and
CASF-2013, we have created a total of 365 000 training poses
for machine learning analysis. These pose structures and their
scores reported by GOLD are available at https://weilab.math.
msu.edu/AGL-Score.
For each target ligand, we retrain AGL-Score model on the

target-specifically generated 1000 poses and use docking
software’s scores as their labels. To reduce the calculation
time cost, we employ single exponential kernel AGL-Score
AGLE,6,2.5

Adj . Figures 3c and 5c reveal that our AGL-Score is the
top performer on the docking power test. Specifically, the
AGL-Score’s success rate in identifying the best pose as the
native pose is 84% on CASF-2007, followed by GOLD::ASP
(82%)64 and ΔvinaRF20 (80%).59 In CASF-2013, our AGL-
Score is still ranked at the first place with its success rate =
90%, followed by ΔvinaRF20 (87%)59 and Autodock Vina
(85%).59

Moreover, we are interested in examining the quality of the
training data generated by GOLD using ChemPLP score
(ChemPLP@GOLD) in term of the success rate of the best
pose. Specifically, ChemPLP@GOLD scores 67% and 82% on
the datasets generated for CASF-2007 and CASF-2013,
respectively. By employing such datasets, our AGL-Score
improves the success rates to 84% and 90% on CASF-2007 and
CASF-2013, respectively. These statistical results strongly
affirm that our AGL-Score is able to capture the real physical
interactions in protein−ligand binding complexes and

significantly improve the performance of existing docking
software.
To do well on both scoring power and docking power tests

is still a major challenge in the SF development.60,83,84 Most
reputable docking software packages might offer reliable
accuracy on pose predictions but perform poorly on binding
affinity predictions. For example, for CASF-2007, GOLD
software with ASP as a SF attains 82% in the success rate for
the docking power task. However, it performs unsatisfactorily
on the binding affinity prediction with Pearson correlation
coefficient (Rp) being 0.534. On the other hand, RF-IChem,60

a SF-based machine learning, achieves a more respectable Rp =
0.791 on the scoring power test. However, it fails desperately
on identifying the native pose task with the success rate being
less than 30%. Recently, another machine learning model
named ΔvinaRF20 was developed.58 It produces a great
performance on docking power task with the success rate
being 80%, while its Pearson correlation coefficient (Rp =
0.732) is also better than other traditional SFs. However, if one
includes machine learning SFs, ΔvinaRF20 is still quite behind
the best in the literature, i.e., TNet-BP (Rp = 0.826).37 Our
AGL-Score not only achieves significant accuracy in the
binding affinity prediction in various benchmarks (Rp = 0.83 in
CASF-2007) but also attains the top place in the docking
power assessment (success rate = 84% in CASF-2007). These
results again rigorously confirm that the proposed eigenvalue
features of multiscale weighted colored graphs have an ability
to accurately encode the physical and biological information of
protein−ligand complexes.

4.3.4. Screening Power. In this assessment, our AGL-Score
AGLE,6,2.5

Adj outperforms other SFs on both screening power
measurements, namely enrichment factor (EF) and success
rate at top 1% level on the CASF-2013 benchmark. Specifically,

Figure 7. Performance comparison of different scoring functions on the screening power for CASF-2013 benchmark evaluated by (a) enrichment
factor and (b) success rate at the top 1% level. The proposed algebraic graph learning-based scoring function, AGL-Score, is in the red color. The
results of Autodock Vina computed in the present work (Autodock Vina*) are in the green color. The results of other methods, taken from refs 58
and 64, are in the blue color.
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the AGL-Score obtains the enrichment factor of 25.6. The
methods at the second and third places are ΔvinaRF20 (EF =
20.9)59 and GlideScore-SP (EF = 19.5).65 On the success rate,
our model is also the top performer with the success rate being
68%. ΔvinaRF20 and GlideScore-SP are tied for the second
place with a success rate being 60%. Figure 7 depicts the
performance detail of various methods.
Since screening power assessment involves the identification

of true binders for each of 65 proteins, we need to retrain our
AGL-Score model. To this end, we collect a training set which
includes both poses and energy labels to set up an AGL-Score
model for each protein. Then, the poses of the 195 ligands are
generated with a docking procedure and their energies are
predicted by our AGL-Score model. The ligands with high
energies are regarded as predicted binders.
Here, we describe our procedure for the training dataset

selection and generation for the screening power test. The
training set for each target protein consists of all complex
structures and their energy labels from PDBbind v2015 refine
set, excluding the core (test) set complexes. Additionally, for a
given target protein, additional poses and their labels in the
training set are generated by using Autodock Vina.85 For a
given target protein, Autodock Vina is used to dock all the
ligands in the PDBbind v2015 refined set, carefully excluding
those in the core-set and true binders of the target protein.
Autodock Vina is parametrized as follows: exhaustiveness = 10,
num_modes = 10, and energy_range = 3. Note that the list of
true binders for each protein is listed in CASF 2013
benchmark. For each ligand, we keep the pose with the
highest energy for the training set. This procedure gives rise to
a few thousands of additional training poses and associated
energy labels for each target protein.
Also, to use Autodock Vina score as the energy label, we

convert kcal/mol to pKd unit by multiplying the Autodock
Vina score with a conversion factor −1.3633.57 Since those
ligands in the refined set that do not bind to the given target
protein are regarded as decoys,64,65 their binding energies
should not be larger than those of the true binders of the given
target protein. Therefore, if the decoy energy predicted by
Autodock Vina is higher than the lower bound of true binders’
energies in the refined set database, we relabel the decoy with
the lower bound of the true binders. The additional training
set, i.e., Autodock Vina generated poses and their energy labels,
can be downloaded via link https://weilab.math.msu.edu/
AGL-Score.
It is interesting to see that the performances of Autodock

Vina are much lower than that of our AGL-Score. Specifically,
EF of Autodock Vina’s training set is 14.7 while that of AGL-
Score is 25.6. In addition, the success rate at top 1% level of
Autodock Vina’s training set is 32% while AGL-Score gains
more than 100% improvement with a success rate of 68%.
These results illustrate the remarkable improvement of our
AGL-Score in the screening power in comparison to the well-
known docking software.
The screening power assessment is still a difficult task for

many machine learning-based SF models.84 This type of SFs
often performs well on scoring power test but works poorly on
the identification of the true binders among the decoys.
Particularly, the machine learning model RF@ML reported
in84 achieves a reasonable Rp = 0.704 on the scoring test for
CASF-2013. This result is better than that of ΔvinaRF20 (Rp =
0.686). However, RF@ML’s performance on the screening
task is not comparable to ΔvinaRF20 as well as top docking

SFs. Specifically, RF@ML attains EF at top 1% level as low as
2.15, and success rate at top 1% level as low as 6.45 in CASF-
2013. GlideScore-SP, by contrast, produces much higher EF
(19.5) and success rate (60%). By utilizing the superior
algebraic graph representation features and appropriate
training set, our AGL-Score is able to deliver top rankings in
both screening power assessments without sacrificing the
scoring accuracy.

5. CONCLUSION

Algebraic graph theories are commonly used in the study of
molecular and biomolecular systems. However, most algebraic
graph theory-based models are not as competitive as another
predictive models on the same tasks.33−36 Even for some
powerful methods on binding affinity predictions, they often
perform poorly on other tasks involving unphysical and
unreliable structures.66 Motivated by our previous work on
the multigraph approaches for B-factor predictions,46 we
propose a novel algebraic graph learning score (AGL-Score)
for dealing with drug design related problems. The proposed
AGL-Score model makes use of multiscale weight colored
subgraphs to encode the essential physical and biological
information, such as hydrogen bonds, electrostatics, van der
Waals interactions, hydrophilicity, and hydrophobicity in the
high-dimension space into the low-dimension representation of
molecular and biomolecular structures. The constructions of
three types of subgraphs are discussed in this work, namely
adjacency matrix, Laplacian matrix, and pseudo-inverse of
Laplacian matrix. The eigenvalues calculated from such
matrices are used as features to characterize the biological
and physical interactions of molecules and biomolecules.
In this work, we first investigate binding affinity datasets to

demonstrate the robustness, accuracy, and reliability of the
proposed model. To this end, three mainstream benchmark
tests on scoring power, ranking power, docking power, and
screening power assessments, namely CASF-2007,63 CASF-
2013,64,65 and CASF-2016,66 are utilized. The results of
benchmark tests reveal the superior performance of the
proposed AGL-Score over other state-of-the-art methods.
Additionally, we consider the ranking power, docking power
and screening power assessments proposed in the litera-
ture.63,64 Additional training sets are generated to retrain the
proposed AGL-Score for docking power and screening power
assessments. Extensive numerical experiments rigorously
confirm the top performance of the proposed AGL-Score
model on benchmark protein−ligand binding datasets,
containing both X-ray crystal and diverse decoy structures.
There has been widely spread scepticism or misunderstand-

ing of the ability of machine learning-based SFs for docking
and virtual screening.60 The present work shows that our
machine learning method is not only able to enrich virtual
screening but also able to significantly improve the perform-
ance of standard docking software packages, such as AutoDock
Vina.
In addition to the confirmed accuracy and reliability, another

major advantage of the present AGL-Score model is its
simplicity. Only raw structural inputs regarding atom types and
coordinates are used for free energy predictions. There is no
need for any molecular force field. Moreover, the present AGL-
Score model is robust without invoking complicated data pre-
processing and optimization procedures.
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