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Abstract

This work introduces a number of algebraic topology approaches, including multi-compo-

nent persistent homology, multi-level persistent homology, and electrostatic persistence for

the representation, characterization, and description of small molecules and biomolecular

complexes. In contrast to the conventional persistent homology, multi-component persistent

homology retains critical chemical and biological information during the topological simplifi-

cation of biomolecular geometric complexity. Multi-level persistent homology enables a

tailored topological description of inter- and/or intra-molecular interactions of interest. Elec-

trostatic persistence incorporates partial charge information into topological invariants.

These topological methods are paired with Wasserstein distance to characterize similarities

between molecules and are further integrated with a variety of machine learning algorithms,

including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks,

to manifest their descriptive and predictive powers for protein-ligand binding analysis and

virtual screening of small molecules. Extensive numerical experiments involving 4,414 pro-

tein-ligand complexes from the PDBBind database and 128,374 ligand-target and decoy-

target pairs in the DUD database are performed to test respectively the scoring power and

the discriminatory power of the proposed topological learning strategies. It is demonstrated

that the present topological learning outperforms other existing methods in protein-ligand

binding affinity prediction and ligand-decoy discrimination.

Author summary

Conventional persistent homology neglects chemical and biological information during

the topological abstraction and thus has limited representational power for complex

chemical and biological systems. In terms of methodological development, we introduce

advanced persistent homology approaches for the characterization of small molecular
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structures which can capture subtle structural difference. We also introduce electrostatic

persistent homology to embed physics in topological invariants. These approaches enci-

pher physics, chemistry and biology, such as hydrogen bonds, electrostatics, van der

Waals interactions, hydrophobicity and hydrophilicity, into topological fingerprints

which, although cannot literally recast into physical interpretations, are ideally suitable for

machine learning, particularly deep learning, rendering topological learning algorithms.

In terms of applications, we construct a structure-based virtual screening model which

outperforms other existing methods. This competitive model on the DUD database is

derived by assessing the performance of a comprehensive collection of topological

approaches proposed in this work and introduced in our earlier work, on the PDBBind

database. The topological features constructed in this work can readily be applied to other

biomolecular problems where the characterization of proteins or small molecules is

needed.

This is a PLOS Computational BiologyMethods paper.

Introduction

Arguably, machine learning has become one of the most important developments in data sci-

ence and artificial intelligence. With its ability to extract features of various levels hierar-

chically, deep convolutional neural networks (CNNs) have made breakthroughs in image

processing, video, audio, and computer vision [1, 2], whereas recurrent neural networks have

found success in analyzing sequential data, such as text and speech [3–6]. Deep learning algo-

rithms are able to automatically extract high-level features and discover intricate patterns in

large data sets. In general, one of the major advantages of machine learning algorithms is their

ability to deal with large and diverse data sets and uncover complicated relationships.

Recently, machine learning has become an indispensable tool in biomolecular data analysis

and structural bioinformatics. Almost every computational problem in molecular biophysics

and biology, such as the predictions of solvation free energy, solubility, partition coefficient,

protein-ligand binding affinities, mutation induced protein stability change, molecular multi-

polar electrostatics, virtual screening, etc., has machine learning based approaches that are

either parallel or complementary to their physics based counterparts. The success of deep

learning has fueled the rapid growth in several areas of biological science [3, 5, 6], including

bioactivity of small-molecule drugs [7–10] and genetics [11, 12], where large data sets are

available.

A key component of a learning machine based on biomolecular structures is featurization,

that is translating the 3D structures of biomolecules to features. While the degrees of freedom

of the original biomolecular structures are large and vary among different molecules, it is

almost inevitable that information loss happens with dimension reduction during featuriza-

tion. Besides the choice of learning models, the performance of a predictor heavily depends on

how the features are extracted. Although deep learning has been known to be powerful for the

automatic extraction of features from original inputs such as images, deep learning based mod-

els directly taking biomolecules as inputs are not as competitive as the state-of-art machine
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learning models with carefully designed features, due to the intrinsic complexity of biomole-

cules [13].

Biomolecules can be characterized by geometric features, electrostatic features, high-level

(residue and global level) features, and amino-acid sequence features based on physical, chemi-

cal, and biological understandings [14]. Geometric features, such as coordinates, distances,

angles, surface areas [15–17] and curvatures [18–21], are important descriptors of biomole-

cules [22–24]. However, geometric features often involve too much structural detail and are

frequently computationally intractable for large biomolecular data sets. Electrostatic features

include atomic partial charges, Coulomb potentials, atomic electrostatic solvation energies,

and polarizable multipolar electrostatics [25]. These descriptors become essential for highly

charged biomolecular systems, such as nucleic acid polymers and some protein-ligand com-

plexes. High-level features refer to pKa values of ionizable groups and neighborhood amino

acid compositions, such as the involvement of hydrophobic, polar, positively charged, nega-

tively charged, and special case residues. Sequence features consist of secondary structures,

position-specific scoring matrix (PSSM), and co-evolution information. Sequence features and

annotations provide a rich resource for bioinformatics analysis of biomolecular systems.

Topology offers a new unconventional representation of biomolecules. Topology can describe

biomolecules in a variety of ways [26]. Some of the most powerful topological features are

obtained from multi-component persistent homology or element specific persistent homology

(ESPH) [14, 27]. Recently, we carried out a comprehensive comparison of the performance of

geometric features, electrostatic features, high-level features, sequence features and topological

features, for the prediction of mutation induced protein folding free energy changes of four

mutation data sets [14]. Surprisingly, topological features outperform all the other features

[14].

Unlike geometry, topology is well known for its power of simplification to geometric com-

plexity [28–35]. The global description generated by classical topology is based on the concept

of neighborhood and connectedness. If a space can be continuously deformed to another, they

are considered to have the same topological features. In this sense, topology can not distin-

guish between a folded protein and its unfolded form if only covalent bonds are considered.

Such property prevents the use of classical topology for the characterization of biomolecular

structures. Instead of using topology to describe a single configuration of connectivity, persis-

tent homology scans over a sequence of configurations induced by a filtration parameter and

renders a sequence of topological invariants, which partially captures part of geometric fea-

tures. Persistent homology has been applied to biomolecular systems in our earlier works [26].

In mathematics, persistent homology is a relatively new branch of algebraic topology [29,

36]. When dealing with proteins and small molecules, it is conventional to consider atoms as

point clouds. For a given point cloud data set, one type of persistent homology turns each

point into a sphere with their radii systematically increasing. The corresponding topological

invariants and their persistence over the varying radius values can be computed. Therefore,

this method embeds multiscale geometric information in topological invariants to achieve an

interplay between geometry and topology. Consequently, persistent homology captures topo-

logical structures continuously over a range of spatial scales. It is called persistent homology

because at each given radius, topological invariants, i.e., Betti numbers, are practically calcu-

lated by means of homology groups. In the past decade, much theoretical formulation [37–46]

and many computational algorithms [47–52] have been developed. One-dimensional (1D)

topological invariants generated from persistent homology is often visualized by persistence

barcodes [53, 54] and persistence diagrams [55]. In recent years, multidimensional persistence

has attracted much attention [43, 56] in hope that it can better characterize the data shape

when there are multiple measurements of interest.
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Persistent homology has been applied to various fields, including image/signal analysis [57–

62], chaotic dynamics verification [63, 64], sensor networks [65], complex networks [66, 67],

data analysis [68–72], shape recognition [73–75], and computational biology [76–79]. Com-

pared with traditional computational topology [80–82] and/or computational homology, per-

sistent homology inherently adds an additional dimension, i.e., the filtration parameter. The

filtration parameter can be used to embed important geometric or quantitative information

into topological invariants. As such, the importance of retaining geometric information in

topological analysis has been recognized [83], and persistent homology has been advocated as

a new approach for handling big and high dimensional data sets [54, 68, 84–86]. Recently, we

have introduced persistent homology for mathematical modeling and/or prediction of nano-

particles, protein unfolding, and other aspects of biomolecules [26, 87]. We proposed the

molecular topological fingerprint (TF) to reveal topology-function relationships in protein fold-

ing and protein flexibility [26]. We established some of the first quantitative topological analy-

ses in our persistent homology based predictions of the curvature energy of fullerene isomers

[87, 88]. We have also shown correlation between persistence barcodes and energies computed

with physical models during molecular dynamics experiments [26]. Moreover, we have intro-

duced the first differential geometry based persistent homology that utilizes partial differential

equations (PDEs) in filtration [88]. Most recently, we have developed a topological representa-

tion to address additional measurements of interest, by stacking the persistent homology out-

puts from a sequence of frames in molecular dynamics or a sequence of different resolutions

[89, 90]. We have also introduced one of the first uses of topological fingerprints for resolving

ill-posed inverse problems in cryo-EM structure determination [91]. In 2015, we constructed

one of the first integrations of topology and machine-learning and applied it to protein classifi-

cation involving tens of thousands of proteins and hundreds of tasks [92]. We also developed

persistent-homology based software for the automatic detection of protein cavities and bind-

ing pockets [93].

Despite much success, it was found that persistent homology has a limited characterization

power for proteins and protein complexes, when applied directly to biomolecules [92]. Essen-

tially, biomolecules are not only complex in their geometric constitution, but also intricate in

biological constitution. In fact, the biological constitution is essential to biomolecular structure

and function. Persistent homology that is designed to reduce the geometric complexity of a

biomolecule neglects biological information. To overcome this difficulty, we have introduced

multi-component persistent homology or element specific persistent homology (ESPH) to rec-

ognize the chemical constitution during the topological simplification of biomolecular geo-

metric complexity [14, 27, 94]. In ESPH, the atoms of a specific set of element types in a

biomolecule are selected so that specific chemical information, such as hydrophobicity or

hydrophilicity, is emphasized in each selection. Our ESPH is not only able to outperform other

geometric and electrostatic representations in large and diverse data sets, but is also able to

shed light on the molecular mechanism of protein-ligand binding, such as the relative impor-

tance of hydrogen bond, hydrophilicity and hydrophobicity at various spatial ranges [27].

The objective of the present work is to further explore the representability and reduction

power of multi-component persistent homology for biomolecules and small molecules. To this

end, we take a combinatorial approach to scan a variety of element combinations and examine

the characterization power of these components. Additionally, we also propose a multi-level

persistence to study the topological properties of non-covalent bond interactions. This

approach enables us to devise persistent homology to describe the interactions of interest

between atoms that are connected by weak non-covalent bonds and delivers richer representa-

tion especially for small molecules. Moreover, realizing that electrostatics are of paramount

importance in biomolecules and to enhance the power of our topological representation, we

Representability of algebraic topology for biomolecules

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005929 January 8, 2018 4 / 44

https://doi.org/10.1371/journal.pcbi.1005929


introduce electrostatic persistence, which embeds charge information in topological invari-

ants, as a new class of features in multi-component persistent homology. The aforementioned

approaches can be realized via the modification of the distance matrix with a more abstract set-

ting, for example, Vietoris-Rips complex. The complexity reduction is guaranteed in the 1D

topological representation of 3D biomolecular structures. Obviously, the multi-component

persistent homology representation of biomolecule leads to a higher machine learning

dimensionality compared to the original single component persistent homology for a biomole-

cule. Therefore, it is subject to overfitting or overlearning problem in machine learning theory.

Fortunately, gradient boosting trees (GBT) method is relatively insensitive to redundant high

dimensional topological features [14]. Finally, since the components can be arranged as a new

dimension ordered by their feature importance, multi-component persistent homology bar-

codes are naturally a two-dimensional (2D) representation of biomolecules. Such a 2D repre-

sentation can be easily used as image-like input data in a deep CNN architecture, with

different topological dimensions, i.e., 0, 1, and 2, being treated as channels. Such a topological

deep learning approach addresses the nonlinear interactions among important element com-

binations while keeping the information from less important ones. Barcode space metrics,

such as bottleneck distance and more generally, Wasserstein distance [95, 96], offer a direct

description of similarity between molecules and can be readily used with nearest neighbor

regression or kernel based methods. The performance of Wasserstein distance for protein-

ligand binding affinity predictions is examined in this work.

After assessing the new method’s ability to represent small molecules and protein-com-

pound complexes, the derived model is used for virtual screening. Virtual screening computa-

tionally screens a collection of small molecules to identify those who can potentially bind to

the protein target. There are mainly two types of virtual screening which are ligand-based and

structure-based. Ligand-based approaches depend on a measurement of similarity among

small molecules using either 2D or 3D structural information of small molecules. Structure-

based approaches attempt to dock the small molecule candidate to the protein target and

determine if the candidate is a potential ligand based on the top docking poses. The perfor-

mance of structure-based virtual screening methods heavily depends on the quality of the

docking method and the accuracy of the post-docking scoring method. Our effort focuses on

the development of a topology based method for the latter part. It has been shown that using

machine learning or deep learning based methods to rescore the docking poses can signifi-

cantly boost the performance [97, 98]. For the models such as ensemble of trees and classical

neural networks, carefully constructed features are needed. For example, a neural network

based method NNScore uses a collection of derived features such as the count of hydrogen

bonds and electrostatics of close contacts to describe the protein-compound complex [97].

Another class of deep learning based methods feed lower level features to deep neural networks

and relies on the neural networks to automatically extract higher-level features. For example,

DeepVS first computes features on each atom involved in the docking interface and feed this

information to a deep neural network starting with convolution layers to hierarchically extract

higher-level features [98].

The rest of this manuscript is organized as follows. Section Methods is devoted to introduc-

ing methods and algorithms. We present multi-component persistent homology, multi-level

interactive persistent homology, vectorized persistent homology representation and electro-

static persistence. These formulations are crucial for the representability of persistent homol-

ogy for biomolecules. Machine learning algorithms associated with the present topological

data analysis are briefly discussed. Results are presented in Section Results. We first consider

the characterization of small molecules. More precisely, the cross-validation of protein-ligand

binding affinities prediction via solely ligand topological fingerprints is studied. We illustrate
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the excellent representability of our multi-component persistent homology by a comparison

with a method using physics based descriptors. Additionally, we investigate the representa-

tional power of the proposed topological method on a few benchmark protein-ligand binding

affinity data sets, namely, PDBBind v2007, PDBBind v2013, PDBBind v2015 and PDBBind

v2016 [99]. These data sets contain thousands of protein-ligand complexes and have been

extensively studied in the literature. Results indicate that multi-component persistent homol-

ogy offers one of most powerful representations of protein-ligand binding systems. The afore-

mentioned study of the characterization of small molecules and protein-ligand complexes

leads to an optimal selection of features and models to be used for virtual screening. Finally, we

consider the directory of useful decoys (DUD) database to examine the representability of our

multi-component persistent homology for virtual screening to distinguish actives from non-

actives. The DUD data set used in this work has a total of 128,374 ligand-target and decoy-tar-

get pairs containing 3961 active ligand-target pairs, and involves 40 protein targets from six

families. A large number of state-of-the-art virtual screening methods have been applied to this

data set. We demonstrate that the present multi-component persistent homology outperforms

other methods with reported results on this benchmark. This paper ends with a conclusion.

Results

Rational drug design and discovery have rapidly evolved into some of the most important and

exciting research fields in medicine and biology. These approaches potentially have a profound

impact on human health. The ultimate goal is to determine and predict whether a given drug

candidate will bind to a target so as to activate or inhibit its function, which results in a thera-

peutic benefit to the patient. Virtual screening is an important process in rational drug design

and discovery which aims to identify actives of a given target from a library of small molecules.

There are mainly two types of screening techniques, ligand-based and structure-based.

Ligand-based approaches depend on the similarity among small molecule candidates. Struc-

ture-based approaches try to dock a candidate molecule to the target protein and judge the

candidate with the modeled binding affinity based on docking poses. Various molecular dock-

ing software packages have been developed for these purposes. Molecular docking involves

both pose generation and binding affinity scoring. Currently, pose generation is quite robust

while scoring power is still limited. Therefore, knowledge-based rescoring methods using

machine learning or deep learning approaches can improve scoring accuracy [97, 98, 100]. We

also apply our topological learning method as a rescoring machine to rerank the candidates

based on docking poses generated by docking software.

This section explores the representational power of the proposed persistent homology

methods for the prediction of protein-ligand binding affinities and the discrimination of

actives and non-actives for protein targets. To this end, we use the present method to investi-

gate three types of problems. First, we develop topological learning models for ligand based

protein-ligand binding affinity predictions. This problem is designed to examine the repre-

sentability of the proposed topological methods for small molecules. Then, we develop topo-

logical learning models for protein-ligand complex based binding affinity prediction. This

problem enables us to understand the capability of the proposed topological learning methods

for dealing with protein-ligand complexes. Finally, we examine the structure-based classifica-

tion of active ligands and decoys which are highly possible to be non-actives, i.e., structure-

based virtual screening (VS). The optimal selection of features and methods are determined by

studying the first two applications and this finding leads to the main application studied in this

work, the topological structure-based virtual screening. Computational algorithms used in this

study are illustrated in Fig 1.
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Ligand based protein-ligand binding affinity prediction

In this section, we address the representation of small molecules by element specific persistent

homology, especially the proposed multi-level persistent homology designed for small

molecules.

Data set. To assess the representational ability of the present persistent homology algo-

rithms on small molecules, we use a high quality data set of 1322 protein-ligand complexes

with binding affinity data involving 7 protein clusters introduced earlier (denoted as S1322)

[101]. It is a subset of the PDBBind v2015 refined set and its detail is given in the Supplemen-

tary material 1 of Ref. [101]. We consider a ligand based approach to predict the binding

affinities of protein-ligand complexes in various protein clusters. As such, only the ligand

information is used in our topological analysis. The ligand structures are taken from PDBBind

database without modification. Numbers of ligands in protein clusters range from 94 to 333.

Models and performance. Two models, i.e., TopBP-KNN(Ligand) and TopBP-ML

(Ligand), are constructed. TopBP-KNN(Ligand) is used to directly assess the representation

power of persistent homology for small molecules and TopBP-ML(Ligand) is the final practical

model. The results are shown in Table 1. All the gradient boosting trees models take the setup

described in Section Methods/Machine learning algorithms/Gradient boosting trees.
In TopBP-ML(Ligand), we process the geometry, the shape, and the covalent bond infor-

mation of the small molecules using alpha complex, and the non-covalent intramolecular

interactions using multi-level persistent homology with Rips complex. The features used are

Fig 1. An illustration of the topology based machine learning algorithms used in scoring and virtual screening.

https://doi.org/10.1371/journal.pcbi.1005929.g001

Table 1. Pearson correlation coefficients (RMSE in kcal/mol) of ligand based topological model on the S1322 dataset.

Methods CL 1 (333) CL 2 (264) CL 3 (219) CL 4 (156) CL 5 (134) CL 6 (122) CL 7 (94) Average

TopBP-KNN(Ligand) 0.698(1.66) 0.817(1.28) 0.620(1.68) 0.645(1.41) 0.756(1.68) 0.658(1.68) 0.739(1.31) 0.705(1.49)

TopBP-ML(Ligand) (5-fold) 0.713(1.60) 0.843(1.15) 0.693(1.51) 0.670(1.35) 0.831(1.34) 0.698(1.56) 0.737(1.26) 0.741(1.40)

FFT-BP (5-fold) [101] (1.93) (1.32) (2.01) (1.61) (2.02) (2.06) (1.71) (1.81)

The numbers in the first row show the number of entries in each protein cluster. The performance is reported as Pearson correlation coefficient (root mean squared

error in kcal/mol). The median performance of 20 random 5-fold cross validation results is reported for TopBP-ML(Ligand). The results reported for TopBP-KNN

(Ligand) are obtained by leave-one-out validation within each protein cluster with k = 3 for the KNN model.

https://doi.org/10.1371/journal.pcbi.1005929.t001
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A-B012-E-S-GBT and R-B012-M1-S-GBT as described in Section Discussion/Ligand based pro-
tein-ligand binding affinity prediction. Gradient boosting trees method is used.

In TopBP-KNN(Ligand), we represent the small molecules with a collection of barcodes

from element specific persistent homology calculations. Wasserstein distance with p = 2 is

applied to measure similarities between two barcodes. The similarity between each pair of

small molecules is then measured by taking the average of the Wasserstein distances between

all considered barcodes. K-nearest-neighbor (KNN) regression is then applied to the measured

similarity. In detail, the 6 barcodes considered are, R-B0-E-KNN, R-B1-E-KNN,

R-B2-E-KNN, R-B0-M1-KNN, R-B1-M1-KNN, and R-B2-M1-KNN as described in Section
Discussion/Ligand based protein-ligand binding affinity prediction. Leave-one-out validation

within each protein cluster with k = 3 is used for this model.

In Table 1, FFT-BP 5-fold cross validation results were obtained based on multiple additive

regression trees and a set of physical descriptors, including geometry, charge, electrostatic

interactions, and van der Waals interactions for S1322 set [101]. Since multiple additive regres-

sion trees is also an implementation of the GBT used in the present work, it is appropriate to

compare the FFT-BP results with the GBT results in this work to assess representation power

of topological features. It is interesting to note that judging by RMSE, both sets of current

topological descriptors have more predictive power than the physical descriptors built on pro-

tein-ligand complexes constructed in our earlier work [101]. These physical descriptors were

constructed from sophisticated surface areas, molecular volumes, van der Waals interactions,

charges computed by quantum mechanics, and Poisson-Boltzmann theory based electrostatics

[101]. The success of topological descriptors implies the existence of an alternative and poten-

tially more powerful description of the complex biomolecular world.

Complex based protein-ligand binding affinity prediction

In this section, we develop topological representations of protein-ligand complexes.

Data sets. The PDBBind database provides a comprehensive collection of structures of

protein-ligand complexes and their binding affinity data [99, 102]. The original experimental

data in Protein Data Bank (PDB) [103] are selected to PDBBind database based on certain

quality requirements and are curated for applications. As shown in Table 2, this database is

expanding on a yearly basis. It has become a common resource for benchmarking computa-

tional methods and algorithms for protein-ligand binding analysis and drug design. Popular

data sets include version 2007 (v2007), v2013, and v2015. Among them, v2013 core set and

v2015 core set are identical. A large number of scoring functions has been tested on these data

sets. The latest version, v2016, has an enlarged core set, which contains 290 protein-ligand

complexes from 58 protein families. Therefore, this test set should be relatively easier than

v2015 core set, whose 195 complexes involve 65 protein families. The core sets are constructed

by choosing 3 samples with median, maximum, and minimum binding affinity from each

Table 2. Description of the PDBBind datasets.

Version Refined set Training set Core set (test set) Protein families

v2007 1300 1105 195 65

v2013 2959 2764 195 65

v2015 3706 3511 195 65

v2016 4057 3767 290 58

Number of complexes or number of protein families in PDBBind data sets used in the present binding affinity prediction. Here training sets are set to the corresponding

refined sets, excluding the complexes in the corresponding test sets (i.e., core sets). Protein families refer to those in the corresponding core sets.

https://doi.org/10.1371/journal.pcbi.1005929.t002
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protein family for v2007, v2013, and v2015 sets. The core set for v2016 was constructed simi-

larly but with 5 samples from each protein family.

Model and performance. Two models TopBP-ML(Complex) and TopBP-DL(Complex)

are introduced. The results are shown in Table 3. All the gradient boosting trees models take

the setup described in Section Methods/Machine learning algorithms/Gradient boosting trees.
In TopBP-ML(Complex), alpha complex is used to describe the arrangement of carbon and

heavy atom networks, while Rips complex with different distance matrices is used to describe

the protein-ligand interactions from the perspective of interaction distances and strength of

electrostatics interactions. In detail, the features used are R-B0-I-C, R-B0-CI-S, A-B12-E-S as

described in Section Discussion/Complex based protein-ligand binding affinity prediction, and

those used in TopBP-ML(Ligand).

With the idea that a sequence of element combinations ordered by their importance in gra-

dient boosting trees models can make an extra dimension of the description, we build a 2D

convolutional neural network with one spatial dimension and one dimension of element com-

bination. We combine this 2D CNN with a 1D CNN with the pairwise interaction inputs. For

the construction of 2D input, the reader is referred to Section Feature generation from topologi-
cal invariants. The 1D image-like inputs consist of two parts both generated by the counts in

bins method described in Section Feature generation from topological invariants. For the 0th

dimensional barcodes from interactive persistent homology of the 36 pairs of atom types

({C,N,O,S} from protein and {C,N,O,S,P,F,Cl,Br,I} from ligand), the interval [0, 50] Å is

divided into equal length subintervals of length 0.25 Å. For the 0th dimensional barcodes from

interactive persistent homology for electrostatics of the 50 pairs of atom types ({C,N,O,S,H}

from protein and {C,N,O,S,P,F,Cl,Br,I,H} from ligand), the parameter interval of [0, 1] is

divided into equal length subintervals of length 0.01. These two 1D image-like features have

Table 3. Pearson correlation coefficients (RMSE in kcal/mol) of different protein-ligand complex based approaches on PDBBind datasets.

Core set predictions

Methods v2007 v2013 v2015 v2016 Average

TopBP(Complex) 0.827 (1.93) 0.808 (1.95) 0.812 (1.92) 0.861 (1.65) 0.827 (1.86)

TopBP-ML(Complex) 0.818 (2.01) 0.804 (2.00) 0.797 (1.99) 0.848 (1.74) 0.817 (1.94)

TopBP-DL(Complex) 0.806 (1.95) 0.781 (1.98) 0.799 (1.91) 0.848 (1.64) 0.809 (1.87)

RF::VinaElema 0.803 (1.94) [104] 0.752 (2.03) [105] - - -

RI-Score [106] b 0.803 (1.99)c - 0.762 (2.05)c 0.815 (1.85) -

Refined set 5-fold cross validations

Methods v2007 v2013 v2015 v2016 Average

TopBP-ML(Complex) 0.752 (1.95) 0.768 (1.75) 0.781 (1.71) 0.785 (1.71) 0.771 (1.78)

RI-Score [106] d - - - 0.747 (1.83) -

Pearson correlation coefficients with RMSE (kcal/mol) in parentheses for predictions by different methods are listed. For the tests on core sets, the models are trained

with the corresponding refined set minus the core set. Five-fold cross validation is done on refined sets. Results of TopBP-ML(Complex) are the medians of 50 repeated

runs. For TopBP-DL(Complex), 100 independent models are generated at first. A consensus model is built by randomly choosing 50 models out of the 100, and this

process is repeated 1000 times with the median reported. TopBP(Complex) is a consensus model combining TopBP-ML(Complex) and TopBP-DL(Complex). Each

time, 50 single deep learning models are randomly selected to form TopBP-DL(Complex) and a TopBP-ML(Complex) model is randomly selected. The average of the

two is taken as the output for TopBP(Complex). This process is repeated 1000 times with the median reported.
a The authors did not specify the number of repeated experiments and whether the reported performance is the best or the median of the experiments.
b The medians of Pearson correlation coefficient among the repeated experiments are listed.
c Only the best RMSEs among the repeated experiments are reported.
d The median results are reported.

https://doi.org/10.1371/journal.pcbi.1005929.t003
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sizes 200 × 36 and 100 × 50. The network architecture is given in Section Methods/Machine
learning algorithms/Deep convolutional neural networks.

The final model TopBP(Complex) takes the average of TopBP-ML(Complex) and

TopBP-DL(Complex) with the assumption that the errors made by the two approaches are

only partially correlated and thus averaging over them may cancel part of the errors. As a

result, TopBP(Complex) delivers the best prediction performance on all four testing sets.

Structure-based virtual screening

In this section, we examine the performance of the proposed method for the main application

in this paper, which is structure-based virtual screening which involves protein-compound

complexes obtained by attempting to dock the candidates to the target proteins. The dataset is

much larger than the two applications on protein-ligand binding affinity prediction which

makes parameter tuning very time consuming. Therefore, the best performing procedures in

ligand-based binding affinity prediction and protein-ligand-complex-based binding affinity

prediction are applied in this virtual screening application.

DUD data set. The directory of useful decoys (DUD) [107, 108] is used to benchmark our

topological approach for virtual screening. The DUD data set contains 40 protein targets from

six classes, i.e., nuclear hormone receptors, kinases, serine proteases, metalloenzymes, folate

enzymes, and other enzymes. A total of 3,961 active ligand-target pairs were identified from lit-

erature. The number of ligands for each target ranges from tens to hundreds. At most 36

decoys were constructed for each ligand, from the ZINC database of commercially available

compounds [109]. At the first step, the ZINC database of 3.5 million compounds was reduced

to a database of 1.5 million compounds with similarity less than 0.9 to the ligands. The similar-

ity was measured by Tanimoto coefficient on CACTVS type 2 fingerprints. The decoys were

selected so that they possess similar physical properties to the ligands but have dissimilar

molecular topology (topology in the sense of chemistry, not mathematical topology). A total of

32 physical properties were used including molecular weight, partition coefficient, and num-

ber of hydrogen bonding groups. This results in a total of 128,374 compound-target pairs. A

discrepancy between calculated partial charges for the ligand and decoy sets was reported for

the original release 2 of DUD datasets, which makes it trivial for virtual screening methods to

distinguish between the two categories using those charges [110]. In this work, we use the data

with recalculated Gasteiger charges for both ligand and decoy sets given by Armstrong et al.
[110] in AutoDock Vina and our electrostatic persistence.

Data processing. In structure-based virtual screening, the possible complex structures of

the target protein and the small molecule candidate are required. For the DUD dataset, the

structures of the 40 protein targets, the ligands, and the decoys are given, and we generate the

protein-compound complexes by using docking software. To this end, we first add missing

atoms to the proteins by using the profix utility in Jackal software package [111]. The receptors

and ligands or decoys are prepared using the scripts prepare_receptor4.py and prepare_li-

gand4.py provided by the AutoDockTools module in MGLTools package (version 1.5.6)

[112]. The bounding box of the binding site is defined as a cube with edge size equal to 27 Å,

centered at the geometric center of the crystal ligand. AutoDock Vina (version 1.1.2) [113] is

used to dock the ligands or decoys to the receptors. The option exhaustiveness is set to 16 and

all the other parameters are set to their default values. In each docking experiment, the pose

having the lowest binding free energy reported by AutoDock Vina, is used by the reranking

models.

Evaluation. Two measurements, the enrichment factor (EF) and the area under the

receiver operating characteristic curve (AUC), are used to evaluate each method’s ability of
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discriminating actives from decoys. The AUC is defined as

AUC ¼ 1 �
1

Na

XNa

i¼1

Ni
d

Nd
; ð1Þ

where Na is the number of active ligands, Nd is the total number of decoys, and Ni
d is the num-

ber of decoys that are higher ranked than the ith ligand [98]. An AUC value of 0.5 is the

expected value of a random selection, whereas a perfect prediction results in an AUC of 1. The

EF at x% denoted by EFx% evaluates the quality of the set of top x% ranked compounds, by

comparing the percentage of actives in the top x% ranked compounds to the percentage of

actives in the entire compound set. It is defined as

EFx% ¼
Nx%
a

Nx%
�
N
Na
; ð2Þ

where Nx%
a is the number of active ligands in the top x% ranked compounds, Nx% is the num-

ber of top x% ranked compounds, N is the total number of compounds, and Na is the total

number of active ligands.

To evaluate the performance of various methods on the DUD data set, the entries associated

with one protein target are used as the test set in the experiment on this protein target [98].

For the selection of the training set of a given protein target, we follow a procedure given in

the literature [107], where the entries associated to the rest of the proteins, excluding those

that are within the same class of the testing protein and those that have reported positive cross-

enrichment with the testing protein, are taken as the training set. The 40 proteins are split into

6 classes [100]. A detailed list of proteins that are excluded from the training set of each protein

is given in Table F in S1 Text.

Topology based machine learning models. Our topology based machine learning model,

called TopVS-ML, relies on manually constructed features and utilizes ensemble of trees meth-

ods. For the complex with the small molecules (i.e., ligands and decoys) docked to the receptor,

features R-B0-I-BP, R-B0-CI-S, and A-B12-E-S are used (see Section Discussion/Complex based
protein-ligand binding affinity prediction), whereas features R-B012-M1-S and A-B012-E-S (see

Section Discussion/Ligand based protein-ligand binding affinity prediction) are used for the

small molecules. The gradient boosting trees method, random forest method, and extra trees

method are employed as voters. The averaged probabilities output by the three methods are

used for the classifier to decide the class of the testing samples. The modules GradientBoosting-
Classifier, RandomForestClassifier, and ExtraTreesClassifier in the scikit-learn package [114]

(version 0.17.1) are used. The parameters for the three modules are listed in Table 4.

TopVS-ML achieves a performance of AUC = 0.83, EF2% = 8.6, EF20% = 3.4. These values are

the median values of 10 repeated experiments. Table G in S1 Text lists the result of each single

experiment confirming that the performance is consistent across each repeated run.

Table 4. Parameters used in machine learning.

Method Parameters

GBT n = 2000, s = 0.5, cw = 100:1, lr = 0.01, mf = sqrt

RF n = 2000, cw = balanced_subsample

ET n = 2000, cw = balanced_subsample

The parameters used for the ensemble of trees methods while the other parameters are set to default. GBT: gradient

boosting trees. RF: random forest. ET: extra trees. n: n_estimators. s: subsample. cw: class_weight. lr: learning_rate.

mf: max_feature.

https://doi.org/10.1371/journal.pcbi.1005929.t004
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Topology based deep learning model. Our topology based deep learning model, called

TopVS-DL, relies on 1D image-like inputs for protein-compound complexes and manually

constructed features for the compounds. The 2D representation used in binding affinity prob-

lem is not used here due to the intractable data size. The manually constructed features for the

compounds are R-B012-M1-S and A-B012-E-S as described in Section Discussion/Ligand based
protein-ligand binding affinity prediction. The 1D image-like inputs consisted of three parts are

all generated by the counts in bins method described in Section Feature generation from topo-
logical invariants. (1) For the 0th dimensional barcodes from interactive persistent homology

of the 36 pairs of atom types ({C, N, O, S} from protein and {C, N, O, S, P, F, Cl, Br, I} from

ligand), the interval [0, 25] Å is divided into equal length subintervals of length 0.25 Å. The

barcodes used here are identical to the barcodes in feature R-B0-I-BP. This results in a 1D

image-like feature with size 100 × 36. (2) For the 0th dimensional barcodes from interactive

persistent homology for electrostatics of the 50 pairs of atom types ({C, N, O, S, H} from pro-

tein and {C, N, O, S, P, F, Cl, Br, I, H} from ligand), the parameter interval of [0, 1] is divided

into equal length subintervals of length 0.01. The barcodes used are identical to the barcodes

in feature R-B0-CI-S. This results in a 1D image-like feature with size 100 × 50. (3) Alpha com-

plex based persistent homology is applied to all carbon atoms and all heavy atoms. The compu-

tation is done on the complex as well as only the protein with a cutoff distance of 12 Å from

the ligands. The interval [0, 12] Å is divided into equal length subintervals of length 0.125 Å.

Counts in bins method is applied to the 0th, 1st, and 2nd dimensional barcodes. The features

are generated for persistent homology computation of the complex and the protein. The fea-

tures for the complex and the difference between the features for complex and protein are

finally used. This results in a 1D image-like feature of size 96 × 32. The detailed network archi-

tecture is listed in Section Methods/Machine learning algorithms/Deep convolutional neural net-
works. A consensus model is constructed by taking the average over 25 single models trained

independently. TopVS-DL achieves a performance of AUC = 0.81, EF2% = 9.1, EF20% = 3.2.

The final model. Same as the idea of taking the average output of different ensemble of

trees models as the final output in TopVS-ML, we add TopVS-DL as another voter to

TopVS-ML to construct a final model, called TopVS. Such consensus approach takes the aver-

age over different models with the hope that different models make partially uncorrelated

errors which are possible to cancel out when averaged. The performance on each of 40 protein

targets is reported in Table 5. We have also generated virtual screening results of AutoDock

Vina (ADV) based on the computed binding free energy by ADV and compared them with

those of the present TopVS in terms of enrichment factors and the areas under the receiver

operating characteristic curve (AUC). A comparison of average AUC with those from a large

number of methods is given in Table 6.

Discussion

Ligand based protein-ligand binding affinity prediction

We conduct several experiments on ligand based protein-ligand binding affinity prediction in

this section which leads to the final models. To examine the strength and weakness of different

sets of features and models, we first show a statistics fact of the S1322 data set of 7 protein clus-

ters in Fig 2. The details of the S1322 data set is given in Section Results/Ligand based protein-
ligand binding affinity prediction. All the gradient boosting trees models take the setup

described in Section Methods/Machine learning algorithms/Gradient boosting trees.
Feature vectors for gradient boosting trees. In this test, Rips complex based and alpha

complex based persistent homology computations up to 2nd dimension are performed for a

variety of atom collections with different element types using the Euclidean metric and multi-
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Table 5. Performance on each protein in DUD dataset.

Target ADV TopVS

EF2% EF20% AUC EF2% EF20% AUC

ACE 4.1 1.4 0.42 5.1 3.1 0.81

AChE 4.7 2.8 0.67 1.4 1.9 0.65

ADA 0.0 0.4 0.49 7.8 4.5 0.90

ALR2 2.0 2.7 0.74 4.9 1.5 0.68

AmpC 2.4 0.2 0.34 0.0 1.0 0.58

AR 17.0 3.8 0.81 20.1 4.2 0.90

CDK2 9.0 2.4 0.64 7.6 4.1 0.88

COMT 13.1 1.4 0.56 17.4 2.9 0.73

COX1 9.9 2.8 0.76 11.8 3.6 0.86

COX2 20.7 3.9 0.86 23.3 4.9 0.97

DHFR 6.4 2.8 0.82 12.6 4.7 0.96

EGFr 3.4 1.6 0.63 16.4 4.8 0.95

ERagonist 17.8 3.3 0.84 10.0 2.8 0.81

ERantagonist 10.2 2.3 0.70 1.3 2.8 0.83

FGFr1 0.4 0.8 0.44 15.1 4.8 0.95

FXa 1.0 1.3 0.63 2.1 4.4 0.89

GART 0.0 1.9 0.75 2.6 0.7 0.48

GPB 0.0 0.9 0.48 1.4 1.5 0.66

GR 5.7 1.2 0.57 1.3 3.4 0.84

HIVPR 5.6 2.6 0.74 8.9 4.4 0.91

HIVRT 8.2 1.9 0.64 11.7 4.0 0.88

HMGR 0.0 0.9 0.53 14.4 5.0 0.96

HSP90 0.0 0.9 0.64 9.6 4.5 0.93

InhA 13.4 1.9 0.56 22.7 4.5 0.95

MR 16.7 4.0 0.82 0.0 4.3 0.87

NA 0.0 0.3 0.37 1.5 3.8 0.87

P38 MAP 1.4 1.7 0.59 18.4 4.5 0.94

PARP 4.2 2.7 0.71 0.0 1.7 0.71

PDE5 8.0 1.9 0.61 6.9 3.4 0.86

PDGFrb 3.5 0.5 0.32 26.5 4.9 0.97

PNP 0.0 0.7 0.59 7.9 4.3 0.89

PPARg 17.7 3.4 0.82 0.6 1.8 0.72

PR 1.9 1.1 0.52 9.4 4.1 0.91

RXRa 28.2 4.8 0.95 12.8 3.2 0.83

SAHH 10.4 3.0 0.80 4.5 3.9 0.84

SRC 5.6 2.3 0.71 24.6 4.9 0.98

thrombin 8.3 2.6 0.72 4.1 2.4 0.79

TK 0.0 0.9 0.56 6.9 2.5 0.65

trypsin 3.1 1.9 0.58 0.0 2.0 0.78

VEGFr2 10.2 2.2 0.63 24.9 4.7 0.96

Average 6.9 2.0 0.64 9.5 3.5 0.84

The median results of 10 repeated runs with different random seeds (for the TopVS-ML part) are reported. The best AUC in each row is marked in bold. The left block

of AutoDock Vina (ADV) results are acquired from the ADV runs with the binding free energy reported by ADV.

https://doi.org/10.1371/journal.pcbi.1005929.t005
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level distance defined in Eq (3). Two types of features are generated and are denoted by FC,

which is a combination of FCb , FCd , and FCp , and FS, which is a combination of FSb , F
S
d , and FSp . The

construction of features FC and FS are described in Section Feature generation from topological
invariants. For sets of the 0th dimensional bars, only FCd and FSd are computed. In each protein

cluster, 10-fold or 5-fold cross validation is repeated 20 times for each subset of feature vectors

depending on selected element type. The median Pearson correlation coefficients and the

root-mean-square error (RMSE) in kcal/mol are reported. For Rips complex, both level 0 com-

putation with distance matrix M and level 1 computation with distance matrix eM1 as defined

in Eq (4) are performed. A comparison of these results is shown in S1 Text Table B. The results

corresponding to alpha complex are shown in S1 Text Table A. The average performance for

alpha complex and Rips complex has a Pearson correlation coefficient of 0.987.

Barcode space metrics for k-nearest neighbor regression. The barcodes generated using

Rips complex with distance matrices M and eM1 are collected and the distance between each

pair of barcodes are measured using the Wasserstein metric d2. Leave-one-out prediction for

every sample is performed with k-nearest neighbor regression with k = 3 within each protein

cluster based on the Wasserstein metric. The results are shown in S1 Text Table C. The

Table 6. AUC comparison of different methods on DUD dataset.

Method AUC Ref.

TopVS 0.84

DeepVS-ADV 0.81 [98]

ICMa 0.79 [115]

NNScore1-ADVb 0.78 [97]

Glide SPa 0.77 [116]

DDFA-ALL 0.77 [100]

DDFA-RL 0.76 [100]

NNScore2-ADVb 0.76 [97]

DDFA-ADV 0.75 [100]

DeepVS-Dock 0.74 [98]

DDFA-AD4 0.74 [100]

Glide HTVSb 0.73 [97]

Surflexa 0.72 [116]

Glide HTVS 0.72 [116]

ICM 0.71 [115]

RAW-ALL 0.70 [100]

AutoDock Vinab 0.70 [97]

Surflex 0.66 [116]

Rosetta Ligand 0.65 [100]

AutoDock Vina 0.64 [100]

ICM 0.63 [116]

FlexX 0.61 [116]

Autodock4.2 0.60 [100]

PhDOCK 0.59 [116]

Dock4.0 0.55 [116]

aTuned by expert knowledge.
bDetermined using a different data set of decoys.

https://doi.org/10.1371/journal.pcbi.1005929.t006
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performance of the best performing and the worst performing protein clusters is shown in Fig

3. The better the performance, the closer the lines are to the semicircle.

The experiments done for this section are summarized in Table 7.

Performance of multi-component persistent homology. It can be noticed from Table 8

that topological features generated from barcode statistics typically outperform those created

from counts in bins. R-B012-E-S-GBT and R-B012-M1-S-GBT perform similarly in the major-

ity of the protein clusters whilst R-B012-M1-S-GBT which is based on eM1 significantly

Fig 2. Statistics of ligands in 7 protein clusters in S1322 dataset. The average numbers of heavy atoms of a ligand in

each protein cluster are shown in red and the standard deviations of number of heavy atoms across each protein

cluster are shown in blue. The number of ligands in each cluster is given in parentheses.

https://doi.org/10.1371/journal.pcbi.1005929.g002

Fig 3. An illustration of similarities between ligands measured by their barcode space Wasserstein distances. Ligands are ordered according to their binding

affinities and are represented as dots on the semicircle. Specifically, a sample of binding free energy x is plotted at the angle θ = π(Emax − x)/(Emax − Emin) where Emin
and Emax are the lowest and the highest energy in the dataset. Each dot is connected with two nearest neighbors based on their barcode space Wasserstein distances. An

optimal prediction would be achieved if lines stay close to the semicircle. The majority of the connections stay near the boundary to the upper half sphere

demonstrating that barcode space metric based Wasserstein distance measurement reflects the similarity in function, i.e., the binding affinity in this case. The protein

clusters with the best and the worst performance are shown. Left: Protein cluster 2. Right: Protein cluster 3.

https://doi.org/10.1371/journal.pcbi.1005929.g003
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outperforms R-B012-E-S-GBT which is based on Euclidean distance in protein cluster 3 and 6.

To assess in what circumstances does the multi-level persistent homology improve the original

persistent homology characterization of small molecules, we analyze the statistics of the size of

ligands in Fig 2. It turns out that protein cluster 3 has the smallest average number of heavy

atoms and protein cluster 6 has the smallest standard deviation of the number of heavy atoms.

This observation partially answers the question that in the cases where the small molecules are

relatively simple and are relatively of similar size, multi-level persistent homology is able to

enrich the characterization of the small molecules which further improves the robustness of

the model. Such enrichment or improvement over the original persistent homology approach

is mainly realized in higher dimensional barcodes, i.e. the 1st and 2nd dimensions. In Table 8,

the results with ID through 7 to 12 confirm that the 0th dimensional features from computa-

tion with eM1 are inferior to the results with Euclidean distance whilst the 1st and 2nd dimen-

sional features based on eM1 outperforms the best result with Euclidean distance in most cases.

It is interesting to note that although Wasserstein metric based KNN methods are not as

accurate as GBT approaches, the consensus result obtained by averaging over various predic-

tions with Wasserstein metric on different sets of barcodes is quite accurate.

Robustness of topological learning models. Certain elements such as Br are very rare in

the data sets studied in this work. Considering only the elements of high occurrence will not

hurt the performance on the validations performed. However, omitting the low occurrence

elements will sacrifice the capability of the model to handle new data in which such elements

play an important role. Therefore, we decide to keep the rare elements that result in a large

Table 7. Experiments for ligand-based protein-ligand binding affinity prediction of 7 protein clusters and 1322

protein-ligand complexes.

Experiment Description

A-B012-E-C-GBT The barcodes are generated using alpha complex on different sets of atoms based on different

element combinations. The features are constructed using the 0th, 1st, and 2nd dimensional

barcodes following the counts in binsmethod with bins equally dividing the interval [0, 5].

Here 32 different element combinations are considered, including {C, N, O, S, CN, CO, CS,

NO, NS, OS, CNO, CNS, COS, NOS, CNOS, CNOSPFClBrI, H, CH, NH, OH, SH, CNH,

COH, CSH, NOH, NSH, OSH, CNOH, CNSH, COSH, NOSH, CNOSH, CNOSPFClBrIH}.

Gradient boosting trees (GBT) with the structured feature matrix are used for this

computation.

A-B012-E-S-GBT The barcodes same as those used in A-B012-E-C-GBT are used. Instead of counts in bins, the

Barcode statistics method is used to generate features.

A-B012-E-SS-GBT The barcodes same as those used in A-B012-E-C-GBT are used. The persistence diagram slice
and statistics method is used to generate features. A uniform set of bins by dividing the interval

[0, 5] into 10 equal length bins is used to slice birth, death, and persistence values.

R-B012-E-S-GBT Barcodes are generated using Rips complex with Euclidean distances. The features are

generated following the barcode statistics method. Here 36 element combinations are

considered, i.e., {C, N, O, S, CN, CO, CS, NO, NS, OS, CNO, CNS, COS, NOS, CNOS,

CNOSPFClBrI, H, CH, NH, OH, SH, CNH, COH, CSH, NOH, NSH, OSH, CNOH, CNSH,

COSH, NOSH, CNOSH, CNOSPFClBrIH, CCl, CClH, CBr, CBrH}.

R-B012-M1-S-GBT The result is obtained with the same setup as R-B012-E-S-GBT except that the first level

enrichment distance matrix eM1 is used instead of Euclidean distance.

R-Bn-E-KNN The nth dimensional barcodes from Rips complex computation with Euclidean distance are

used. K-nearest neighbor (KNN) regression is performed with Wasserstein metric d2. The

leave-one-out validation is performed individually with each element combination and the

average prediction of these element combinations is taken as the output result. The element

combinations considered are {CNOS, CNOSPFClBrI, NOH, CNO, CNOSPFClBrIH}. These

combinations are selected based on their performance in the gradient boosting trees

experiments.

R-Bn-M1-KNN The result is obtained with the same setup as R-Bn-E-KNN except that the distance matrix eMn

is used instead of Euclidean distance.

https://doi.org/10.1371/journal.pcbi.1005929.t007
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number of features and redundancy in features. For example, the element combinations CBrH

and CH will probably deliver the same performance for most of the samples in the data sets

studied in this work. To test whether this redundancy causes degenerated results of the model,

the features of one element combination is added to the model at a step and the model is vali-

dated with an accumulation of the added features at each step. The performance of the model

is measured with Pearson correlation coefficient and is plotted against number of element

combinations involved in Fig 4. For most cases in Fig 4, the model is robust against the inclu-

sion of more element combinations.

Complex based protein-ligand binding affinity prediction

Having demonstrated the representational power of the present topological learning method

for characterizing small molecules, we further examine the method on the task of characteriz-

ing protein-ligand complex. Biologically, we consider the same task, i.e., the prediction of

protein-ligand binding affinity, with a different approach that is based on the structural

information of the protein-ligand complexes. Only gradient boosting trees and deep convolu-

tional neural network algorithms are used in this section. All the gradient boosting trees

models take the setup described in Section Methods/Machine learning algorithms/Gradient
boosting trees.

In the present topological learning study, we use four versions of PDBBind core sets as our

test sets. For each test set, the corresponding refined set, excluding the core set, is used as the

training set.

Table 8. Performance of different approaches on the S1322 dataset.

ID Experiments CL 1 (333) CL 2 (264) CL 3 (219) CL 4 (156) CL 5 (134) CL 6 (122) CL 7 (94) Average

1 A-B012-E-C-GBT 0.695(1.63) 0.836(1.18) 0.690(1.52) 0.642(1.38) 0.840(1.30) 0.647(1.65) 0.730(1.27) 0.726(1.42)

2 A-B012-E-S-GBT 0.695(1.63) 0.845(1.14) 0.678(1.54) 0.692(1.31) 0.828(1.35) 0.702(1.54) 0.739(1.25) 0.740(1.39)

3 A-B012-E-SS-GBT 0.704(1.62) 0.846(1.15) 0.681(1.53) 0.668(1.35) 0.834(1.34) 0.715(1.53) 0.741(1.25) 0.741(1.40)

4 R-B012-E-S-GBT 0.712(1.60) 0.837(1.17) 0.659(1.57) 0.683(1.32) 0.808(1.41) 0.635(1.67) 0.757(1.22) 0.727(1.42)

5 R-B012-M1-S-GBT 0.716(1.59) 0.836(1.17) 0.706(1.48) 0.672(1.34) 0.822(1.37) 0.708(1.53) 0.746(1.24) 0.744(1.39)

6 2+5 0.714(1.59) 0.848(1.13) 0.699(1.50) 0.692(1.31) 0.831(1.34) 0.717(1.52) 0.747(1.24) 0.750(1.38)

7 R-B0-E-KNN 0.648(1.73) 0.761(1.39) 0.544(1.76) 0.616(1.42) 0.700(1.70) 0.487(1.89) 0.641(1.43) 0.628(1.62)

8 R-B1-E-KNN 0.547(1.91) 0.684(1.55) 0.444(1.88) 0.536(1.52) 0.535(2.01) 0.634(1.67) 0.649(1.42) 0.576(1.71)

9 R-B2-E-KNN 0.474(2.01) 0.494(1.87) 0.202(2.14) 0.298(1.79) 0.126(2.49) 0.331(2.09) 0.609(1.47) 0.362(1.98)

10 R-B0-M1-KNN 0.581(1.85) 0.771(1.35) 0.516(1.80) 0.601(1.44) 0.672(1.76) 0.485(1.90) 0.644(1.43) 0.610(1.65)

11 R-B1-M1-KNN 0.663(1.70) 0.784(1.33) 0.652(1.59) 0.555(1.50) 0.786(1.49) 0.610(1.71) 0.731(1.30) 0.683(1.52)

12 R-B2-M1-KNN 0.675(1.67) 0.803(1.28) 0.577(1.72) 0.531(1.52) 0.655(1.81) 0.617(1.72) 0.648(1.42) 0.644(1.59)

13 Cons(7+8+9+10+11+12) 0.698(1.66) 0.817(1.28) 0.620(1.68) 0.645(1.41) 0.756(1.68) 0.658(1.68) 0.739(1.31) 0.705(1.49)

14 2+5 (5-fold) 0.713(1.60) 0.843(1.15) 0.693(1.51) 0.670(1.35) 0.831(1.34) 0.698(1.56) 0.737(1.26) 0.741(1.40)

Pearson correlation coefficients with RMSE (kcal/mol) in parentheses for binding affinity predictions on 7 protein clusters (CL) in S1322. On the title row, the numbers

in parentheses denote the numbers of ligands in the cluster. The median results of 20 repeated runs are reported for the ensemble of trees based methods to account for

randomness in the algorithm. For experimental labels, the first letter indicates the complex definition used, ‘A’ for alpha complex and ‘R’ for Rips complex. The second

part starting with ‘B’ followed by the integers indicates the dimension of barcode used. The third part indicates the distance function used, ‘E’ for Euclidean and ‘M1’ for

eM1. For row 1 through 5, the forth part shows the way of feature construction, ‘C’ for counts in bins and ‘S’ for barcode statistics. The last part indicates the regression

technique used, ‘GBT’ for gradient boosting trees and ‘KNN’ for k-nearest neighbors. The detailed descriptions of the experiments are given in Table 7. Row 6 is the

results using features of both row 2 and row 5. Row 13 is the consensus results by taking the average of the predictions by row 7 through row 12. Except for specified, all

results are obtained from 10-fold cross validations.

https://doi.org/10.1371/journal.pcbi.1005929.t008
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Groups of topological features and their performance in association with GBT. The

experiments of protein-ligand-complex-based protein-ligand binding affinity prediction for

the PDBBind datasets are summarized in Table 9.

Robustness of GBT algorithm against redundant element combination features and

potential overfitting. It is intuitive that combinations of more than 2 element types are able

to enrich the representation especially in the case of higher dimensional barcodes. However,

the consideration of combination of more element types rapidly increases the dimension of

feature space. In the high dimensional feature space, it is almost inevitable that there exists

nonessential and redundant features. Additionally, the importance of a feature varies across

different problems and data sets. Therefore, it is preferable to keep all the potentially important

features in a general model which is expected to cover a wide range of situations. To test the

robustness of the model against unimportant features, we select a total of 128 element combi-

nations (i.e., all possible paired choices of one item from {C, N, O, CN, CO, NO, CNO, CNOS}

in protein and another item from {C, N, O, S, CN, CO, CS, NO, NS, OS, CNO, CNS, COS,

NOS, CNOS, CNOSPFClBrI} in ligand). The 0th, 1st, and 2nd dimensional barcodes are com-

puted for all combinations using alpha complex with Euclidean distance. Features are gener-

ated following the barcode statistics method.

A general model with all the features is generated in the first place. The element combina-

tions are then sorted according to their importance scores in the general model. Starting from

the most important element combination, one element combination is added to the feature

vector each time and then the resulting feature vector is passed to the machine learning train-

ing and testing procedure. The order of adding element combinations is based on their impor-

tance scores and thus that a less important feature is added each step.

Fig 4. Plot of performance against number of element combinations used. The topological learning model

performance against the number of element combinations involved in feature construction for 7 protein clusters in

S1322. The horizontal axis corresponds to the number of element combinations used for the features. From left to

right, one extra element combination is added at a step. The features are then used in gradient boosting trees method

to test if the model is robust against redundant information. The results related to alpha complex are marked in red

and Rips complex in blue. The median Pearson correlation coefficient between predicted and experimental results is

reported of 10-fold cross-validation within each protein cluster repeated 20 times are reported.

https://doi.org/10.1371/journal.pcbi.1005929.g004
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Fig 5 depicts the changes of Pearson correlation coefficient and RMSE (kcal/mol) with

respect to the increase of element combinations in predicting four PDBBind core sets. In all

cases, the inclusion of top combinations can readily deliver very good models. The behavior of

the present method in PDBBind v2007 is quite different from that in other data sets. The per-

formance of the present method improves almost monotonically as the element combination

increases. However, in other three cases, the improvement is unsteady. Nevertheless, the per-

formance fluctuates within a small range, which indicates that the present method is reason-

ably stable against the increase in element combinations. From a different perspective, the

increase in element combinations might lead to overfitting in machine learning. Since the

model parameters are fixed before the experiments, it shows that GBT algorithms are not very

sensitive to redundant features and are robust against overfitting.

Usefulness of more than 2 element types for interactive 0th dimensional barcodes.

While using element combinations with more than 2 element types with higher dimensional

barcodes enriches characterization of geometry, it remains to assess whether interactive 0th

dimensional characterization will benefit from element combinations with more element

types. As an example, we denote interactive 0th dimensional barcodes for carbon and nitrogen

atoms from protein and oxygen atoms from ligand by BCN−O, barcodes for carbon atoms from

protein and oxygen atoms from ligand by BC−O, and barcodes for nitrogen atoms from protein

and oxygen atoms from ligand by BN−O. In the case of persistent homology barcode represen-

tation, BCN−O is not strictly the union of BC−O and BN−O. However BCN−O might be redundant

to BC−O and BN−O. To address this concern, we test features from interactive 0th dimensional

barcodes with the 36 element combinations (i.e., {C, N, O, S} for protein and {C, N, O, S, P, F,

Cl, Br, I} for ligand) and features for the 160 selected element combinations (i.e., {C, N, O, S,

CN, CO, NO, CNO} for protein and {C, N, O, S, P, F, Cl, Br, I, CN, CO, CS, NO, NS, OS,

CNO, CNS, COS, NOS, CNOS} for ligand), which are listed as feature group 2 and feature

group 1 in Table 10. In all the four cases, the features of the 36 combinations (feature group 2)

slightly outperforms or performs as well as the features of the 160 combinations (feature group

Table 9. Experiments for protein-ligand-complex-based protein-ligand binding affinity prediction for the

PDBBind datasets.

Experiment Description

R-B0-I-C 0th dimensional barcodes from Rips complex computation with interactive distance matrix based on

Euclidean distance are used. Features are generated following counts in bins method with bins {[0,

2.5), [2.5, 3), [3, 3.5), [3.5, 4.5), [4.5, 6), [6, 12]}. Element combinations used are all possible paired

choices of one item from {C, N, O, S, CN, CO, NO, CNO} in protein and another item from {C, N, O,

S, P, F, Cl, Br, I, CN, CO, CS, NO, NS, OS, CNO, CNS, COS, NOS, CNOS} in ligand, which result in

a total of 160 combinations.

R-B0-I-BP The persistent homology computation and feature generation is the same as R-B0-I-C. However, the

element combinations used are all possible paired choices of one item from {C, N, O, S} in protein

and another item from {C, N, O, S, P, F, Cl, Br, I} in ligand, which result in a total of 36 element

combinations.

R-B0-CI-C 0th dimensional barcodes from Rips complex computation with interactive distance matrix based on

the electrostatics correlation function defined in Eq (10) with the parameter c = 100. The features are

generated following counts in binsmethod with bins {(0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.4], (0.4, 0.5],

(0.5, 0.6], (0.6, 0.7], (0.7, 0.8], (0.8, 0.9], (0.9, 1.0)}. The element combinations used are all possible

paired choices of one item from {C, N, O, S, H} in protein and another item from {C, N, O, S, P, F,

Cl, Br, I, H} in ligand, which result in a total of 50 element combinations.

R-B0-CI-B-S The barcodes and element combinations are the same as those of R-B0-CI-B-C. The features are

generated following the barcode statistics method.

A-B12-E-S 1st and 2nd dimensional barcodes from alpha complex computation with Euclidean distance are

used. The element combinations considered are all heavy atoms and all carbon atoms. Features are

generated following the barcode statistics method.

https://doi.org/10.1371/journal.pcbi.1005929.t009
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1) suggesting that element combinations with more than 2 element types are redundant to

all the combinations with 2 element types in the case of interactive 0th dimensional

characterization.

Importance of atomic charge in electrostatic persistence. In element specific persistent

homology, atoms of different element types are characterized separately, which offers a rough

and implicit description of the electrostatics of the system. However, such implicit treatment

of electrostatics may lose important information because atoms behave differently at different

oxidation states. Therefore, we explicitly embed atomic charges in interactive 0th dimensional

barcodes as described in Eq (10). The resulting topological features are given in feature group

4 in Table 10. It can be seen from Table 10 that the combination of feature group 4 and the

Euclidean distance based interactive 0th dimensional barcodes (listed as feature group 6 and

7) generally outperforms the results obtained with only Euclidean distance based features. This

observation suggests that electrostatics play an important role and should be taken care of

explicitly for the protein-ligand binding problem. Additionally, the inclusion of physical inter-

actions in topological invariants opens a promising new direction in topological analysis.

Relevance of elements that are rare with respect to the data sets. Since the majority of

the samples in both training and testing sets only contain atoms of element types, C, N, O, and

H, the performance of the model on the samples with rare occurring elements with respect to

Fig 5. Feature robustness tests on PDBBind datasets. The performance of the topological learning model against the

number of included element combinations for predicting on PDBBind core sets and training on PDBBind refined sets

minus the core sets. The 1st and 2nd dimensional barcodes computed with alpha complex is used. Features are

generated following barcode statisticsmethod. Element combinations are all possible paired choices of one item from

{C, N, O, CN, CO, NO, CNO, CNOS} in protein and another item from {C, N, O, S, CN, CO, CS, NO, NS, OS, CNO,

CNS, COS, NOS, CNOS, CNOSPFClBrI} in ligand, which result in 128 element combinations. The horizontal straight

lines represents the performance of the 2D representation with deep convolutional neural network (row 10 in Table 10).

The blue and red colors correspond to Pearson correlation coefficient and RMSE (kcal/mol) respectively. Each

experiment is done by training on refined set minus the core set with the median result of 20 repeated runs reported.

https://doi.org/10.1371/journal.pcbi.1005929.g005
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data sets is hardly reflected by the overall performance statistics. For simplicity, we refer to

such rarely occurring elements with respect to data sets simply by rarely occurring elements in

the discussion follows. To assess the aspects of the model that potentially affect the perfor-

mance on the samples containing rarely occurring elements, we picked the samples containing

each rarely occurring element from the original testing set as a new testing set. Three experi-

ments are carried out to address two questions: “Are the training samples containing the same

rarely occurring element crucial?” and “Are features addressing the rarely occurring element

important?”. A short answer is yes to both according to the results shown in Fig 6. Specifically,

for each rarely occurring element, the exclusion of samples containing this element in training

set and the exclusion of features addressing this element will both cause degenerated results. It

is also shown that the exclusion of samples of the rarely occurring element leads to much

worse results. Since both modifications of the model deliver worse results, we conclude that

including the samples in the training set with similar compositions to the test sample is crucial

to the success of the model on this specific test sample. Even the inclusion of features of more

element types or element combinations does not deliver better results in the general testing

sets, such features should still be kept in the model in case that a sample with a similar element

composition comes in as a test sample.

2D persistence for topological deep convolutional neural networks. Deep learning is

potentially more powerful than many other machine learning algorithms when the data size is

sufficiently large. In the present work, it is natural to construct a 2D topological representation

by incorporating the element combination as an additional dimension, resulting in 16 chan-

nels as defined in Section Feature generation from topological invariants. Here 128 element

combinations (i.e., all possible paired choices of one item from {C, N, O, CN, CO, NO, CNO,

CNOS} in protein and another item from {C, N, O, S, CN, CO, CS, NO, NS, OS, CNO, CNS,

COS, NOS, CNOS, CNOSPFClBrI} in ligand) are used for 2D analysis. The advantage of intro-

ducing this extra dimension with convolutional neural networks is to prevent unimportant

Table 10. Performance of different protein-ligand complex based approaches on the PDBBind datasets.

ID Experiments v2007 v2013 v2015 v2016 Average

1 R-B0-I-C 0.799 (2.01) 0.741 (2.14) 0.750 (2.11) 0.813 (1.82) 0.776 (2.02)

2 R-B0-I-BP 0.816 (1.94) 0.741 (2.13) 0.750 (2.10) 0.825 (1.78) 0.783 (1.99)

3 R-B0-CI-C 0.791 (2.05) 0.759 (2.10) 0.738 (2.13) 0.801 (1.87) 0.772 (2.04)

4 R-B0-CI-S 0.773 (2.10) 0.762 (2.12) 0.749 (2.13) 0.810 (1.86) 0.774 (2.05)

5 A-B12-E-S 0.736 (2.25) 0.709 (2.26) 0.695 (2.27) 0.752 (2.02) 0.723 (2.20)

6 1+4 0.815 (1.95) 0.780 (2.04) 0.774 (2.04) 0.833 (1.76) 0.801 (1.95)

7 2+4 0.806 (1.99) 0.787 (2.04) 0.770 (2.06) 0.834 (1.77) 0.799 (1.97)

8 1+4+5 0.810 (1.98) 0.792 (2.02) 0.786 (2.02) 0.831 (1.76) 0.805 (1.95)

9 2+4+5 0.802 (2.01) 0.796 (2.02) 0.782 (2.04) 0.822 (1.79) 0.801 (1.97)

10 2D-CNN-Alpha 0.787 (2.02) 0.781 (1.98) 0.785 (1.95) 0.837 (1.68) 0.798 (1.91)

11 1D2D-CNN 0.806 (1.95) 0.781 (1.98) 0.799 (1.91) 0.848 (1.64) 0.809 (1.87)

Pearson correlation coefficients with RMSE (kcal/mol) in parentheses for predictions by various groups of features on the four PDBBind core sets. The training sets are

the PDBBind refined sets minus the core sets of the same version year. Results of ensemble of trees based methods (rows 1 through 9) are themedian values of 50

repeated runs to account for randomness in the algorithm. For the deep learning based methods (row 10 and 11), 100 independent models are generated in the first

place. A consensus model is built by randomly choosing 50 models out of the 100, and the this process is repeated 1000 times with the median reported. The first letter

indicates the definition of complex, ‘A’ for alpha complex and ‘R’ for Rips complex. The second part indicates the dimension of barcodes used. The third part indicates

the distance function used, ‘I’ for bM ij defined in Eq (5), ‘CI’ for the one defined in Eq (10), and ‘E’ for Euclidean. The last part shows the way of feature construction, ‘C’

for counts in bins, ‘S’ for barcode statistics, and ‘BP’ for only pair of two single elements. The results reported in row 6 through 9 are obtained by combining the features

of the rows with the corresponding numbers.

https://doi.org/10.1371/journal.pcbi.1005929.t010
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features from interacting with important ones at the lower levels of the model whilst generally

unimportant features are still kept in the model in case that they are essential to specific prob-

lems or a certain portion of the data set. Fig 7 illustrates the mean value and the standard devi-

ation of the PDBBind v2016 refined set. The existence of significant standard deviations for

relatively unimportant element combinations indicates that these features might still contrib-

ute to the overall prediction.

As shown in Fig 5, for all the data sets except the PDBBind v2007 set, the 2D topological

deep learning with convolutional neural networks performs significantly better. The inferior

performance of convolutional neural networks in v2007 might be a result of the small data

size. Note that v2007 training set has 1105 protein-ligand complexes, whereas other training

sets have more than 2700 complexes. Consequently, topological deep convolutional neural net-

works are able to outperform the topological GBT algorithm in predicting v2013, v2015 and

v2016 core sets. Indeed, topological deep convolutional neural networks have advantages in

dealing with large data sets.

Structure-based virtual screening

In our final model TopVS reported in Table 6, we use topological descriptors of both protein-

compound interactions and only the compounds (i.e., ligands and decoys) and take a consen-

sus model on top of several ensemble of trees models and a deep learning model. We have

also tested the behavior of our topological learning model TopVS-ML using either one of the

Fig 6. Assessment of performance of the model on samples with elements that are rare in the data sets. For the

four data sets PDBBind v2007, v2013, v2015, and v2016 [99], and for each element, the testing set is the subset of the

original core sets with only ligands that contain atoms of the particular element type. The features used are features

with ID = 7 in Table 10. The reported RMSE is the average taken over the four data sets. Experiment 1: Training set is

the original training set and all the features are used. Experiment 2: Training set is the original training set and only

features that do not involve the particular element are used. Experiment 3: Training set is the original training set

excluding the samples that contain atoms of the particular element type and all features are used. For most of the

elements, experiment 1 achieves the best result and experiment 3 yields the worst performance.

https://doi.org/10.1371/journal.pcbi.1005929.g006
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aforementioned descriptions. The tests are done with TopVS-ML because that TopVS-DL is

much more time consuming. When only topological descriptor of small molecules are used,

which falls into the category of ligand-based virtual screening, an AUC of 0.81 is achieved. For

the topological learning model using only the descriptions of protein-ligand interactions, an

AUC of 0.77 is achieved. An AUC of 0.83 is obtained with a model combining both sets of

descriptors which is better than each individual performance, suggesting that the two groups

of descriptors are complementary to each other and are both important for achieving satisfac-

tory results. The marginal improvement made by protein-compound complexes maybe due to

the various docking quality. Similar situation was encountered by a deep learning method

[98]. For the targets with high quality results by Autodock Vina (AUC of ADV > 0.8), the

ligand-based features achieve an AUC of 0.81 and the complex-based features achieve an AUC

of 0.86. On the other hand, for the targets with low quality results by Autodock Vina (AUC of

ADV < 0.5), the ligand-based features achieve an AUC of 0.82 and the complex-based features

achieve an AUC of 0.74. The results of these cases are listed in S1 Text, Tables H and I. This

observation suggests that the performance of features describing the interactions and the

geometry of protein-compounds complexes highly depends on the quality of docking results.

Our model with small molecular descriptors delivers an AUC of 0.81, which is comparably

well to the other top performing methods. The performance of this model is also competitive

in the regime of protein-ligand binding affinity prediction based on experimentally solved

complex structures as is shown in Section Discussion/Ligand based protein-ligand binding affin-
ity prediction. These results suggest that topology based small molecule characterization pro-

posed in this work is potentially useful in other applications involving small molecules, such as

predictions of toxicity, solubility and partition coefficient of small molecules.

Fig 7. Heat map plot of the 16 channels. The mean value (left image) and the standard deviation (right image) of each digit over the PDBBind v2016 refined set are

shown. The top 8 maps are for protein-ligand complex and the other 8 maps are for the difference between protein-ligand complex and protein only. For each map, the

vertical axis is the element combinations ordered according to their importance and the horizontal axis is the dimension of spatial scales.

https://doi.org/10.1371/journal.pcbi.1005929.g007
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Conclusion

Persistent homology is a relatively new branch of algebraic topology and is one of the main

tools in topological data analysis. The topological simplification of biomolecular systems was a

major motivation of the earlier persistent homology development [29, 36]. Persistent homol-

ogy has been applied to computational biology [76, 77, 77–79], including our efforts [26, 87–

91, 93]. However, the predictive power of primitive persistent homology was limited in early

topological learning applications [92]. To address this challenge, we have recently introduced

element specific persistent homology to retain chemical and biological information during

the topological abstraction of biomolecules [14, 27, 94]. The resulting topological learning

approach offers competitive predictions of protein-ligand binding affinity and mutation

induced protein stability changes. However, persistent homology based approaches for small

molecules have not been developed and its representability and predictive powers for the inter-

action of small molecules with macromolecules have not been extensively studied.

The present work further introduces multi-component persistent homology, multi-level

persistent homology and electrostatic persistence for chemical and biological characterization,

analysis and modeling. Multi-component persistent homology takes a combinatorial approach

to create possible element specific topological representations. Multi-level persistent homology

allows tailored topological descriptions of any desirable interaction in biomolecules which is

especially useful for small molecules. Electrostatic persistence incorporates partial charges that

are essential to biomolecules into topological invariants. These approaches are implemented

via the appropriate construction of the distance matrix for filtration. The representation power

and reduction power of multi-component persistent homology, multi-level persistent homol-

ogy and electrostatic persistence are validated by two databases, namely PDBBind [99] and

DUD [107, 108]. PDBBind involves more than 4,000 high quality protein-ligand complexes

and DUD contains 128,374 compound-target pairs. Two classes of problems are used to test

the proposed topological methods, including the prediction of protein-ligand binding affinities

and the discrimination of active ligands from decoys (virtual screening). In both problems, we

examine the representability of proposed topological learning methods on small molecules,

which are somewhat more difficult to describe by persistent homology due to their chemical

diversity, variability and sensitivity. Additionally, these methods are tested on their ability to

handle the full protein-ligand complexes. Advanced machine learning methods, including

Wasserstein metric based k-nearest neighbors (KNNs), gradient boosting trees (GBT), random

forest (RF), extra trees (ET) and deep convolutional neural networks (CNN) are utilized in the

present work to facilitate the proposed topological methods, rendering advanced topological

learning algorithms for quantitative and qualitative biomolecular predictions. The thorough

examination of the method on the prediction of binding affinity for experimentally solved pro-

tein-ligand complexes leads to a structure-based virtual screening method, TopVS, which out-

performs other methods. The feature sets introduced in this work for small molecules and

protein-ligand complexes can be extended to other applications such as 3D-structure based

prediction of toxicity, solubility, and partition coefficient for small molecules and complex

structure based prediction of protein-nucleic acid binding and protein-protein binding

affinities.

Methods

Persistent homology

The concept of persistent homology is built on the mathematical concept of homology, which

associates a sequence of algebraic objects, such as abelian groups, to topological spaces. For
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discrete data such as atomic coordinates in biomolecules, algebraic groups can be defined via

simplicial complexes, which are constructed from simplices, generalizations of the geometric

notion of nodes, edges, triangles and tetrahedrons to arbitrarily high dimensions. Homology

characterizes the topological connectivity of geometric objects in terms of topological invari-

ants, i.e., Betti numbers, which are used to distinguish topological spaces by counting k-dimen-

sional holes. Betti-0, Betti-1 and Betti-2, respectively, represent independent components,

rings and cavities in a physical sense. In persistent homology, the generators in the homology

groups are tracked along with a filtration parameter, such as the radius of a ball or the level

set of a hypersurface function, that continuously varies over a range of values. Therefore, per-

sistent homology is induced by the filtration. For a given biomolecule, the change and the per-

sistence of topological invariants over the filtration offer a unique characterization. These

concepts are very briefly discussed below. For more detailed theory and algorithms, the inter-

ested readers are referred to a book on computational topology [117].

Simplicial complex. A (geometric) k-simplex denoted σk is the convex hull of k + 1 affinely

independent points inRk. The convex hull of each nonempty subset of the k + 1 points forms a

subsimplex and is regarded as a face of σk. The points are also called vertices of σk.
A set of simplices K is a simplicial complex if all faces of any simplex in K are also in K and

the intersection of any pair of simplices in K is either empty or a common face of the two

simplices.

Homology. A k-chain of a simplicial complex K denoted by ck is a formal sum of k-simpli-
ces in K. Here, we take the Z2 field for the coefficients of the formal sum. Under the addition

operation of Z2, a group of k-chains is called a chain group and denoted Ck(K) which has the

basis as the set of k-simplices in K.

A boundary operator denoted by @k: Ck(K)! Ck−1(K) maps a k-chain which is a linear com-

bination of k-simplices to the same linear combination of the boundaries of the k-simplices.
With a k-simplex σk = [v0, . . ., vk] where vi are the vertices of σk, the boundary operator is

defined as @ks
k ¼

Xk

i¼0

sk� 1
i , where sk� 1

i is a (k-1)-simplex which is a face of σk with the ith vertex

being absent. Since we are working with the Z2 coefficients, we omit the orientations of the

simplices.

A k-cycle is a k-chain whose image under the boundary operator @k is the empty set. The collec-

tion of all the k-cycles forms a group denoted Zk(K) which is the kernel of @k: Ck(K)! Ck−1(K).

The image of @k+1: Ck+1(K)! Ck(K) is called the boundary group and is denoted by Bk(K).

Bk(K) is a subgroup of Zk(K) following the property of the boundary operator that @k � @k+1 = 0.

The kth homology group is the quotient group defined asHk(K) = Zk(K)/Bk(K). Its ranks are

the Betti numbers of K and its generators (equivalence classes) are also of interest.

The kth Betti number βk is defined and often computed as rankHk(K) = rankZk(K) −
rankBk(K). Intuitively, Betti numbers count the number of k-dimensional holes that can not be

continuously deformed to each other. Analogous to the continuous case, in simplicial topol-

ogy, two cycles (elements of Zk(K)) that defer by the boundary of a chain (an element of Bk(K))

are considered to be able to deform continuously to each other and are thus representing the

same element inHk(K).

Persistent homology. A filtration of a simplicial complex K is a nested sequence of sub-

complexes of K such that⌀ = K0� K1� . . .� Km = K. Each Ki is itself a simplicial complex.

We are interested in tracking the birth and death of homology generators along filtration.

Given a simplicial complex K with its filtration, the p-persistent kth homology group of Ki is

defined asHp
kðKiÞ ¼ ZkðKiÞ=ðBkðKiþpÞ \ ZkðKiÞÞ. Intuitively, this records the homology classes

of Ki that are persistent at least until Ki+p. Persistent homology allows us to not only compute
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n-dimensional holes at a specific setup, but also compute the parameter values corresponding

to the birth and death of the n-dimensional holes along the filtration.

A generator (equivalence class) inHk(Ki) which does not exist inHk(Ki−1) orHk(Kj) and

lasts untilHk(Kj−1), under the mappings along the sequence of homology groups induced by

inclusion maps along the sequence of simplicial complexes, is associated with the interval

[xi, xj), where xi and xj are the filtration levels associated to Ki and Kj. A collection of these

intervals tracks the appearing and disappearing of homology generators along the filtration

process. Such collections of intervals can be visualized by stacking horizontal line segments

(barcodes) or by plotting in a plane (persistence diagrams). The collection of intervals associ-

ated to the kth homology group is called the kth dimensional barcodes.

Simplicial complexes and filtration. Given a finite set of points X and a non-negative

scale parameter r, the Vietoris-Rips complex and alpha complex are constructed as follows.

With a predefined distance function d(�, �) in X, a subset X0 of X forms a simplex if

d(xi, xj)� r for all xi, xj 2 X0. The collection of all such simplices is the Vietoris-Rips complex

of the finite metric space X with scale parameter r denoted by Rips(X, r). It is obvious that

Rips(X, r)� Rips(X, r0) for r� r0.
With Alpha(X, r) being the alpha complex of X with the scale parameter r and given the

Delaunay triangulation induced by the Voronoi diagram of X, a simplex in the Delaunay

triangulation belongs to Alpha(X, r) if all its 1-faces (1-simplex as subset of the simplex) have

length no greater than 2r. Similar to Rips complex, alpha complex also has the property that

Alpha(X, r)� Alpha(X, r0) for r� r0.

Biological considerations

The development of persistent homology was motivated by its potential in the dimensional-

ity reduction, abstraction and simplification of biomolcular complexity [36]. In the early

applications of persistent homology to biomolecules, emphasis was given on major or global

features (long-persistent features) to derive descriptive tools. For example, persistent homol-

ogy was used to identify the tunnel in a Gramicidin A channel [36] and to study membrane

fusion [118]. For the predictive modeling of biomolecules, features of a wide range of scales

might all be important to the target quantity [26]. At the global scale, the biomolecular con-

formation should be captured. At the intermediate scale, the smaller intra-domain cavities

need to be identified. At the most local scale, the important substructures should be

addressed, such as the pyrrolidine in the side chain of proline. These features of different

scales can be reflected by barcodes with different centers and persistences. Therefore, appli-

cations in biomolecules can make a more exhaustive use of persistent homology [26, 87],

compared to some other applications where only global features matter while most local fea-

tures are mapped to noise. Earlier use of persistent homology was focused on qualitative

analysis. Only recently had persistent homology been devised as a quantitative tool [26, 87].

While the aforementioned applications are descriptive and regression based analysis, we

have also applied persistent homology to predictive modeling of biomolecules [92]. How-

ever, biomolecules are both structurally and biologically complex. Their geometric and bio-

logical complexities include covalent bonds, non-covalent interactions, effects of chirality,

cis and trans distinctions, multi-leveled protein structures, and protein-ligand and protein-

nucleic acid complexes. Covering a large range of spatial scales is not enough for a powerful

model. The biological details should also be explored. We address the underlying biology

and physics by modifying the distance function and selecting various sets of atoms according

to element types, to describe different interactions. Some biological considerations are dis-

cussed in this section.
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Covalent bonds. Covalent bonds are formed via shared electron pairs or bonding pairs.

The lengths and the number of covalent bonds can be easily detected from 0th dimensional

barcodes. For macromolecules, the same type of covalent bonds have very similar bond lengths

and thus 0th dimensional barcode patterns.

Non-covalent interactions. Non-covalent interactions play a critical role in maintaining

the 3D structure of biomolecules and mediating chemical and biological processes, such as sol-

vation, binding, protein-DNA specification, molecular self-assembly, etc. Physically, non-

covalent interactions are due to electrostatic, van der Waals forces, hydrogen bonds, π-effects,

hydrophobic effects, etc. The ability to characterize non-covalent interactions is an essential

task in any methodological development. The 1st and 2nd dimensional barcodes are suitable

for the characterization of the arrangement of such interactions in a larger scale. Additionally,

we propose multi-level persistence and electrostatic persistence to reveal local and pairwise

non-covalent interactions via 0th dimensional barcodes as well.

Chirality, cis effect and trans effect. Chirality, cis and trans effects are geometric prop-

erties of many molecules. Among them, chirality is a symmetry property such that a chiral

molecule cannot be superposed on its mirror image. Cis and trans effects are due to molecu-

lar steric and electronic effects. Chirality, cis and trans effects often play a role in molecular

kinetics, activity and catalysis, and thus their characterization is an important issue in devel-

oping topological methods. These effects should be reflected from barcodes of various

dimensions.

Multi-leveled protein structures. Protein structures are typically described in terms of

primary, secondary, tertiary and quaternary levels. The protein primary structure is the linear

sequence of amino acids in the polypeptide chain. Protein secondary structure refers to the

local 3D structure of protein segments containing mainly α-helix and β-sheets, which are

highly regular and can be easily detected by distinct Frenet-Serret frames. A tertiary structure

refers to the 3D structure of a single polypeptide chain. Its formation involves various non-

covalent and covalent interactions including salt bridges, hydrophobic effects, and often disul-

fide bonds. A quaternary structure refers to the aggregation of two or more individual folded

protein subunits into a 3D multi-subunit complex. Protein structures are further complicated

by its functional domains, motifs, and particular folds. The protein structural diversity and

complexity result in the challenge and opportunity for methodological developments. Various

persistent homology techniques, including multi-component, multi-level, multi-dimensional

[119], multi-resolution [90], electrostatic, and interactive [27] persistent homologies have

been designed either in our earlier work or in this paper for protein structural diversity and

complexity.

Protein-ligand, protein-protein, and protein-nucleic acid complexes. Topological char-

acterization of proteins is further complicated by protein interactions or binding with ligands

(drugs), other proteins, DNA and/or RNA molecules. Although a normal protein involves

only carbon (C), hydrogen (H), nitrogen (N), oxygen (O) and sulfur (S) atoms, its protein-

ligand complexes bring a variety of other elements into the play, including, phosphorus (P),

fluorine (F), chlorine (Cl), Bromine (Br), iodine (I), and many important biometals, such as

calcium (Ca), potassium (K) sodium (Na), iron (Fe), copper (Cu), cobalt (Co), zinc (Zn), man-

ganese (Mn), chromium (Cr), vanadium (V), tin (Sn), and molybdenum (Mo). Each biological

element has important biological functions and its presence in biomolecules should be treated

uniformly as a set of points in the point cloud data. The interaction of protein and nucleic

acids can be very intricate. Qualitatively, multiscale and multi-resolution persistent homology

demonstrates interesting features in 3D DNA structures [89]. Typically, 3D RNA structures

are more flexible and difficult to extract topological patterns. Interactive persistent homology,

element specific persistent homology and binned representation for persistent homology
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outputs were designed to deal with interactions between protein-ligand, protein-protein, and

protein-nucleic acid complexes [14, 27, 94]. These approaches worked well in protein-muta-

tion site interactions [14]. Additionally, multi-level persistent homology and electrostatic per-

sistence proposed in this work are useful tools to describe some other specific interactions.

Element specific persistent homology

One important issue is how to protect chemical and biological information during the topolog-

ical simplification. As mentioned earlier, one should not treat different types of atoms as

homogeneous points in a point cloud data. To this end, element specific persistent homology

or multi-component persistent homology has been proposed to retain biological information

in topological analysis [14, 27, 94]. The element selection is similar to a predefined vertex color

configuration for graphs.

When all atoms are passed to persistent homology algorithms, the information extracted

mainly reflects the overall geometric arrangement of a biomoelcule at different spatial scales.

By passing only atoms of certain element types or of certain roles to the persistent homology

analysis, different types of interactions or geometric arrangements can be revealed. In protein-

ligand binding modeling, the selection of all carbon atoms characterizes the hydrophobic

interaction network whilst the selection of all nitrogen and/or oxygen atoms characterizes

hydrophilic network and the network of potential hydrogen bonds. In the protein structural

analysis, computation on all atoms can identify geometric voids inside the protein which may

suggest structural instability and computation on only Cα atoms reveals the overall structure of

amino acid backbones. In addition, combination of various selections of atoms based on ele-

ment types provides very detailed description of the biomolecular system and the hidden rela-

tionships from the structure to function can then be learned by machine learning algorithms.

This may lead to the discovery of important interactions not realized as a prior. This can be

realized by passing the set of atoms of the selected element types to the persistent homology

computation. This concept is used with the various definitions of distance matrix discussed as

follows.

Distance matrix induced persistent homology

Biomolecular systems are not only complex in geometry, but also in chemistry and biology. To

effectively describe complex biomolecular systems, it is necessary to modify the filtration pro-

cess. There are three commonly used filtrations, namely, radius filtration, distance matrix fil-

tration, and density filtration, for biomolecules [26, 90]. A distance matrix defined with

smoothed cutoff functions was proposed in our earlier work to deal with interactions within a

spatial scale of interest in biomolecules [26]. In the present work, we introduce more distance

matrices to enhance the representational power of persistent homology and to cover some

important interactions that were not covered in our earlier works. The distance matrices can

be used with a more abstract construction of simplicial complexes, such as Vietoris-Rips

complex.

Multi-level persistent homology. Small molecules such as ligands in protein-ligand com-

plexes usually contain fewer atoms than large biomolecules such as proteins. Bonded atoms

stay closer than non-bonded ones in most cases. As a result, the collection of 0th dimensional

bars will mostly provide the information about the length of covalent bonds and the higher

dimension barcodes will most likely be very sparse. It is difficult to capture non covalent bond

interactions among atoms especially hydrogen bonds and van der Waals pairwise interactions

in 0th dimensional barcodes. In order to describe non covalent interactions, we propose

multi-level persistent homology, by simply modifying the distance matrix, similar to the idea
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of modifying distance matrix to emphasize on the interactions between protein and ligand

[27]. Given the original distance matrix M = (dij) with 1� i, j� N, the modified distance

matrix is defined as

eMij ¼

d1; if atoms i and j are bonded;

Mij; otherwise;

8
<

:
ð3Þ

where d1 is a large number which is set to be greater than the upper limit of the filtration

value chosen by a persistent homology algorithm. Note that this matrix may fail to satisfy tri-

angle inequality whilst still satisfies the construction principle of Rips complex.

The present multi-level persistent homology is able to describe any selected interactions of

interest and delivers two benefits in characterizing biomolecules. Firstly, the pairwise non-

covalent interactions can be reflected by the 0th dimensional barcodes. Secondly, such treat-

ment generates more higher dimensional barcodes and the small structural fluctuation among

different conformations of the same molecule can be captured. The persistent barcode repre-

sentation of the molecule can be significantly enriched to better distinguish between different

molecular structures and isomers. As an illustration, we take the ligand from the protein-

ligand complex with PDB code “1BCD” which only has 10 atoms. A different conformation of

the ligand is generated by using the Frog2 web server [120]. The persistent barcodes generated

using Rips complex with the distance matrices M are identical and only have 0th dimensional

bars due to the simple structure. In this case, the 0th dimensional bars only reflect the length

of each bond and therefore fail to distinguish the two slightly different conformations of the

same molecule. However, when the modified distance matrices eM are employed, the barcode

representation is significantly enriched and is able to capture the tiny structural perturbation

between the conformations. An illustration of the outcome from the modified distance matrix

eM is shown in Fig 8. A general nth level persistence characterization of molecules can be

Fig 8. Multi-level persistent homology on simple small molecules. Illustration of representation ability of eM in

reflecting structural perturbations among conformations of the same molecule. Left: The structural alignment of two

conformations of the ligand in protein-ligand complex (PDB:1BCD). Right: The persistence diagram showing the 1st

and 2nd dimensional results generated using Rips complex with eM for two conformations. It is worth noticing that the

barcodes generated using Rips complex with M are identical for the two conformations.

https://doi.org/10.1371/journal.pcbi.1005929.g008
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obtained with the distance matrix eMn as,

eMn
ij ¼

d1;Dði; jÞ � n

Mij; otherwise;

8
<

:
ð4Þ

where D(i, j) is the smallest number of bonds to travel from atom i to atom j and d1 is some

number greater than the upper limit of the filtration value.

Interactive persistent homology. In protein-ligand binding analysis and analysis involv-

ing interactions, we are interested in the change of topological invariants induced by interac-

tions that are caused by binding or other processes. Similar to the idea of multi-level persistent

homology, we can design a distance matrix to focus on the interactions of interest. For a set of

atoms, A = A1 [ A2 with A1 \ A2 = ; where only interactions between atoms from A1 and

atoms from A2 are of interest [27]. The interactive distance matrix bM is defined as

bMij ¼
Mij; if ai 2 A1; aj 2 A2 or ai 2 A2; aj 2 A1;

d1; otherwise;

(

ð5Þ

where M is the original distance matrix induced from Euclidean metrics or other correlation

function based distances, ai and aj are atoms i and j, and d1 is a number greater than the

upper limit of the filtration value. In applications, A1 and A2 can be respectively a set of atoms

of the protein and a set of atoms of the ligand in a protein-ligand complex. In this case, the

characterization of interactions between ligand and protein is an important task. In the model-

ing of point mutation induced protein stability changes, A1 could be the set of atoms at the

mutation site and A2 could be the set of atoms of surrounding residues close to the mutation

site. Similar treatment can be used for protein-protein and protein-nucleic acid interactions.

Correlation function based persistent homology. For biomolecules, the interaction

strength between pair of atoms usually does not align linearly to their Euclidean distances. For

example, van der Waals interaction is often described by the Lennard-Jones potential. There-

fore, kernel function filtration can be used to emphasize certain geometric scales. Correlation

function based filtration matrix was introduced in our earlier work [26]:

�Mij ¼ 1 � Fðdij; ZijÞ; ð6Þ

where F(dij, ηij) is a radial basis function and ηij is a scale parameter. This filtration can be

incorporated in the element specific persistent homology

�Mij ¼

d1; if atom i or atom j 2 U ;

1 � Fðdij; ZijÞ; otherwise:

8
<

:
ð7Þ

Additionally, one can simultaneously use two or more correlation functions characterized by

different scales to generate a multiscale representation of biomolecules [106].

Flexibility and rigidity index based filtration matrix. One form of the correlation func-

tion based filtration matrix is constructed by flexibility and rigidity index. In this case, the

Lorentz function is used in Eq (7)

Fðdij; Zij; nÞ ¼
1

1þ
dij
Zij

 !n ; ð8Þ

where dij is the Euclidean distance between point i and point j and ηij is a parameter
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controlling the scale and is related to radius of two atoms. When distance matrices based on

such correlation functions are used, patterns at different spatial scales can be addressed sepa-

rately by altering the scale parameter ηij. Note that the rigidity index is given by [121]

mi ¼
X

j

Fðdij; Zij; nÞ: ð9Þ

This expression is closely related to the rigidity density based volumetric filtration [90].

Electrostatic persistence. Electrostatic effects are some of the most important effects in

biomolecular structure, function, and dynamics. The embedding of electrostatics in topologi-

cal invariants is of particular interest and can be very useful in describing highly charged bio-

molecules such as nucleic acids and their complexes. We introduce electrostatics interaction

induced distance functions in Eq (10) to address the electrostatic interactions among charged

atoms. The abstract distance between two charged particles are rescaled according to their

charges and their geometric distance, and is modeled as

Fðdij; qi; qj; cÞ ¼
1

1þ exp ð� cqiqj=dijÞ
; ð10Þ

where dij is the distance between the two atoms, qi and qj are the partial charges of the two

atoms, and c is a nonzero tunable parameter. c is set to a positive number if opposite-sign

charge interactions are to be addressed and is set to a negative number if same-sign charge

interactions are of interest. The form of the function is adopted from sigmoid function which

is widely used as an activation function in artificial neural networks. Such function regularizes

the input signal to the [0, 1] interval. Other functions can be similarly used. This formulation

can be extended to systems with dipole or higher order multipole approximations to electron

density. The weak interactions due to long distances or neutral charges result in correlation

values close to 0.5. When c> 0, the repulsive interaction and attractive interaction deliver the

correlation values in (0.5, 1) and (0, 0.5) respectively. The distances induced by F(dij, qi, qj; c)
are used to characterize electrostatic effects. The parameter c is rather physical but chosen to

effectively spread the computed values over the (0, 1) interval so that the results can be used by

machine learning methods. Another simple choice of charge correlation functions is

Fðdij; Zij; qi; qjÞ ¼ qiqj exp ð� dij=ZijÞ:

However, this choice will lead to a different filtration domain. Additionally, a charge density

can be constructed

mcðrÞ ¼
X

j

qj exp ð� k r � rj k =ZjÞ; ð11Þ

where r is a position vector, kr − r jk is the Euclidean distance between r and jth atom position

r j and ηj is a scale parameter. Eq (11) can be used for electrostatic filtration as well. In this

case, the filtration parameter can be the charge density value and cubical complex based filtra-

tion can be used.

Multi-component persistent homology. Multicomponent persistent homology refers to

the construction of multiple persistent homology components from a given object to describe

its properties. Obviously, element specific persistent homology leads to multi-component

persistent homology. Nevertheless, in element specific persistent homology, the emphasis is

given to the appropriate selection of important elements for describing certain biological prop-

erties or functions. For example, in biological context, electronegative atoms are selected for

describing hydrogen bond interactions, polar atoms are selected for describing hydrophilic
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interactions, and carbon atoms are selected for describing hydrophobic interactions. Note that

in chemical context, an atom may have many sharply different chemical and physical proper-

ties, depending on its oxidation states. Whereas, in multicomponent persistent homology, the

emphasis is placed on the systematic generation of topological invariants from different com-

binatorial possibilities and the construction of 2D or high-dimensional persistent maps for

deep convolutional neural networks.

Feature generation from topological invariants

Barcode representation of topological invariants offers a visualization of persistent homology

analysis. In machine learning analysis, we convert the barcode representation of topological

invariants into structured feature arrays for machine learning. To this end, we introduce two

methods, i.e., counts in bins, barcode statistics, and persistence diagram slice and statistics, to

generate feature vectors from sets of barcodes. These methods are discussed below. Python

code is given in S1 Code for the generation of features used in the final models in the Results

section.

Counts in bins. For a given set of atoms A, we denote its barcodes as B = {Iα}α 2 A and rep-

resent each bar by an interval Iα = [bα, dα], where bα and dα are respectively the birth and death

positions on the filtration axis. The length of each bar, or the persistence of topological invari-

ant is given by pα = dα − bα. To locate the position of all bars and persistences, we further split

the set of barcodes on the filtration axis into a predefined collection of N bins Bin ¼ fBinig
N
i¼1

with Bini = [li, ri], where li and ri are the left and the right positions of the ith bin. We generate

features by counting the numbers of births, deaths, and persistences in each bin, which leads

to three counting feature vectors, namely, counts of birth FCb , death FCd , and persistence FCp ,

FCb;iðBÞ ¼k f½ba; da� 2 Bjli � ba � rig k; 1 � i � N;

FCd;iðBÞ ¼k f½ba; da� 2 Bjli � da � rig k; 1 � i � N;

FCp;iðBÞ ¼k f½ba; da� 2 Bjba � ri or li � dag k; 1 � i � N;

ð12Þ

where k � k is the cardinality of a set. Note that the above discussion should be applied to three

topological dimensions, i.e., barcodes of the 0th dimension (B0), 1st dimension (B1) and 2nd

dimension (B2). In general, this approach enables the description of bond lengths, including

the length of non-covalent interactions, in biomolecules and was referred to as binned persis-

tent homology in our earlier work [14, 27, 94].

Barcode statistics. Another method of feature vector generation from a set of barcodes

is to extract important statistics of barcode collections such as maximum values and standard

deviations. Given a set of bars B = {[bα, dα]}α2A, we define sets of Birth = {bα}α2A, Death =

{dα}α2A, and Persistence = {dα − bα}α2A. Three statistic feature vectors FSb , F
S
d , and FSp can then

be generated in the sense of the statistics of the collection of barcodes. For example, FSb consists

of avg(Birth), std(Birth), max(Birth), min(Birth), sum(Birth), and cnt(Birth), where avg(�) is

the average value of a set of numbers, std(�) is the standard deviation of a set of numbers, max

(�) and min(�) are maximum and minimum values in a set of numbers, sum(�) is the summa-

tion of elements in a set of numbers, and cnt(�) is the count of elements in a set. The generation

of FSd is the same by examining the set Death. FSp contains the same information with two extra

terms, the birth and death values of the longest bar. Statistics feature vectors are collected from

barcodes of three topological dimensions, i.e., the 0th, 1st, and 2nd dimensions.

Persistence diagram slice and statistics. A more thorough description of sets of barcodes

is to first divide the sets into subsets and extract features analogously to the barcode statistics
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method. As shown in Fig 9, a persistence diagram can be divided into slices in different direc-

tions. The barcodes that fall in each slice form a subset. Each subset is described in terms of

feature vector by using the barcode statistics method. When the persistence diagram is sliced

horizontally, members in each subset have similar death values and the barcode statistics fea-

ture vector is generated for the set of birth values. Similarly, members in each subset have simi-

lar birth values if the persistence diagram is sliced vertically, and the barcode statistics feature

vector is generated for the set of death values. The barcode statistics feature vectors are gener-

ate for both set of birth values and set of death values if the persistence diagram is sliced diago-

nally, where members in each subset have similar persistence. This type of feature vector

generation describes the set of barcodes in more detail but will produce longer feature vectors.

2D representation. The construction of multi-dimensional persistence is an interesting

topic in persistent homology. In general, it is believed that multi-dimensional persistence has

better representational power for complex systems described by multiple parameters [43].

Although multidimensional persistence is hard to compute, one can compute persistence for

one parameter while fixing the rest of the parameters to a sequence of fixed values. In the case

where there are two parameters, a bifiltration can be done by taking turns to fix one parameter

to a sequence of fixed values while computing persistence for the other parameter. For exam-

ple, one can take a sequence of resolutions and compute persistence for distance with each

fixed resolution. The sequence of outputs can be stacked to form a multidimensional represen-

tation [119].

Computing persistence multiple times and stacking the results is especially useful when the

parameters that are not chosen to be the filtration parameter are naturally discrete with under-

lying orders. For example, the multi-component or element specific persistent homology will

result in many persistent homology computations over different selections of atoms. These

results can be ordered by the percentage of atoms used of the whole molecule or by their

importance scores in classical machine learning methods. Also, multiple underlying dimen-

sions exist in the element specific persistent homology characterization of molecules. This

property enables 2D or 3D topological representation of molecules. Based on the observation

that the performance of the predictor degenerates when too many element combinations are

used, we order the element combinations according to their individual performance on the

task using methods of ensemble of trees. Combining the dimension of spatial scale and dimen-

sion of element combinations, a 2D topological representation is obtained. Such representa-

tion is expected to work better in the case of complex geometry such as protein-ligand

complexes. With E ¼ fEjg
NE
j¼1

denoting the collection of element combinations ordered by

their individual importance scores on the task and Bk(Ei) being the kth dimensional barcodes

Fig 9. Illustration of dividing set of barcodes into subsets. The barcodes are plotted as persistence diagrams with the

horizontal axis being birth and the vertical axis being death. From left to right, the subsets are generated according to

the slicing of death, birth, and persistence values.

https://doi.org/10.1371/journal.pcbi.1005929.g009

Representability of algebraic topology for biomolecules

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005929 January 8, 2018 33 / 44

https://doi.org/10.1371/journal.pcbi.1005929.g009
https://doi.org/10.1371/journal.pcbi.1005929


obtained with atoms of element combination Ej, eight 2D representations are defined as

fFCd;iðB
0ðEjÞÞ; FCp;iðB

0ðEjÞÞ; FCb;iðB
1ðEjÞÞ; FCd;iðB

1ðEjÞÞ;

FCp;iðB
1ðEjÞÞ; FCb;iðB

2ðEjÞÞ; FCd;iðB
2ðEjÞÞ; FCp;iðB

2ðEjÞÞg
j¼1;���;NE
i¼1;���;N ; ð13Þ

where FC
g;i with γ = b, d, p is the barcode counting rule defined in Eq (13). For 0th dimensional,

since all bars start from zero, there is no need for FCb;iðB
0ðEjÞÞ. These eight 2D representations

are regarded as eight channels of a 2D topological image. In protein-ligand binding analysis,

2D topological features are generated for the barcodes of a protein-ligand complex and for the

differences between barcodes of the protein-ligand complex and those of the protein. There-

fore, we have a total of 16 channels in a 2D image for the protein-ligand complex. This

16-channel image can be fed into the training or the prediction of convolutional neural

networks.

In the characterization of protein-ligand complexes using alpha complexes, 2D features are

generated from the alpha complex based on persistent homology computations of protein and

protein-ligand complex. A total of 128 element combinations are considered. The [0, 12]Å
interval is divided into 120 equal length bins, which defines the resolution of topological

images. Therefore, the input feature for each sample is a 120×128×16 tensor. Fig 10 illustrates

16 channels of sample 1wkm in PDBBind database. These images are directly used in deep

convolutional neural networks for training and prediction.

Fig 10. The 2D topological maps of the 16 channels of sample 1wkm. The top 8 maps are for protein-ligand

complex and the other 8 maps are for the difference between protein-ligand complex and protein only. For each map,

the horizontal axis is the dimension of spatial scale and the vertical axis is element combinations ordered by their

importance.

https://doi.org/10.1371/journal.pcbi.1005929.g010
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When there are fewer element combinations considered which can hardly form another

axis, the axis of element combinations can be added into the original channels to form 1D rep-

resentations that can be used in 1D CNN.

Machine learning algorithms

Three machine learning algorithms, including k-nearest neighbors (KNN) regression, gradient

boosting trees and deep convolutional neural networks, are integrated with our topological

representations to construct topological learning algorithms.

K-nearest neighbors algorithm via barcode space metrics. One of the simplest machine

learning algorithms is k-nearest neighbors (KNN) for classification or for regression. In KNN

regression, for a given object, its property values is obtained by the average or the weighted

average of the values of its k nearest neighbors induced by a given metric of similarity. Then,

the problem becomes how to construct a metric on the dataset.

In the present work, instead of computing similarities from constructed feature vectors, the

similarity between biomolecules can simply be derived from distances between barcodes gen-

erated from different biomolecules. Popular barcode space metrics include the bottleneck dis-

tance [122] and more generally, the Wasserstein metrics [95, 96]. The definition of the two

metrics is summarized as follows.

Given two bars I1 = [b1, d1] and I2 = [b2, d2] regarded as ordered pairs inR2, the l1 distance

between the two bars is defined as Δ(I1, I2) = max(|b2 − b1|, |d2 − d1|). For a single bar I = [b, d],

λ(I) is defined as λ(I) = (d − b)/2 which helps reflect the difference between the existence of the

bar itself and the void. For two finite barcodes B1 ¼ fI1
a
g

a2A and B2 ¼ fI2
b
g

b2B and a bijection θ
from A0 � A to B0 � B, the penalty of θ is defined as

PðyÞ ¼ maxðmax
a2A0
ðDðI1

a
; I2

yðaÞ
ÞÞ; max

a2A� A0
ðlðI1

a
ÞÞ; max

b2B� B0
ðlðI2

b
ÞÞÞ: ð14Þ

Intuitively, a bijection θ is penalized for linking two bars with large difference and for ignoring

long bars from either set. The bottleneck distance is defined as d1ðB1;B2Þ ¼ min
y
PðyÞ, where

the minimum is taken over all possible bijections from subsets of A to subsets of B.

The Wasserstein metric, a Lp generalized analog to the bottleneck distance can be defined

with the penalty [96]

PpðyÞ ¼
X

a2A0
DðI1

a
; I2

yðaÞ
Þ
p
þ
X

a2A� A0
lðI1

a
Þ
p
þ
X

b2B� B0
lðI2

b
Þ
p

ð15Þ

and the corresponding distance dpðB1;B2Þ ¼ ðmin
y
PpðyÞÞ

1
p. It approaches the bottleneck dis-

tance by setting p goes to infinity. In this work, we choose p = 2.

Wasserstein metric measures the closeness of barcodes generated from different biomole-

cules. It will be interesting to consider other distances for metric spaces, such as Hausdorff dis-

tance, Gromov-Hausdorff distance [123], and Yau-Hausdorff distance [124] for biomolecular

analysis. However, an exhaustive study of this issue is beyond the scope of the present work.

The barcode space metrics can be directly used to assess the representation power of various

persistent homology methods on biomolecules without being affected by the choice of

machine learning models and hyperparameters. We show in the section of results that the bar-

code space metrics induced similarity measurement is significantly correlated to molecule

functions.
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Fig 11. The network architecture of TopBP-DL. The structured layers are shown in boxes/rectangles with sharp

corners for 2D/1D image-like content and the unstructured layers are shown in rectangles. The numbers in convolution

layers mean the number of filters and filter size from left to right. The dense layers are drawn with number of neurons

and activation function. The pooling size of the pooling layers and dropout rate of the dropout layers are listed. The

layers that are repeated n times are marked with “×n” sign on the right side of the layer.

https://doi.org/10.1371/journal.pcbi.1005929.g011
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Fig 12. The network architecture of TopVS-DL. The 1D image-like layers are shown in sharp-corner rectangles. The numbers in convolution layers mean

the number of filters and filter size from left to right. The pooling size of the pooling layers and dropout rate of the dropout layers are listed. The layers that

are repeated n times are marked with “×n” sign on the right side of the layer.

https://doi.org/10.1371/journal.pcbi.1005929.g012
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Wasserstein metric measures from biomolecules can also be directly implemented in a ker-

nel based method such as nonlinear support vector machine algorithm for classification and

regression tasks. However, this aspect is not explored in the present work.

Gradient boosting trees. Gradient boosting trees is an ensemble method which ensem-

bles individual decision trees to achieve the capability of learning complex feature target maps

and can effectively prevent overfitting by using shrinkage technique. The gradient boosting

trees method is realized using the GradientBoostingRegressor module in scikit-learn software

package [114] (version 0.17.1). A set of parameters found to be efficient in our previous study

on the protein-ligand binding affinity prediction [27] is used uniformly unless specified. The

parameters used are n_estimators = 20000,max_depth = 8, learning_rate = 0.005, loss = ‘ls’, sub-
sample = 0.7, max_features = ‘sqrt’.

Deep convolutional neural networks. The deep convolutional neural networks in this

work are implemented using Keras [125] (version 1.1.2) with Theano backend [126] (version

0.8.2).

For TopBP-DL(Complex), a widely used convolutional neural network architecture is

employed beginning with convolution layers followed by dense layers. Due to the limited com-

putation resources, parameter optimization is not performed, while most parameters are

adopted from our earlier work [94]. Reasonable parameters are assigned manually. The

detailed architecture is shown in Fig 11. The Adam optimizer with learning rate 0.0001 is used.

The loss function is the mean squared error function. The network is trained with a batch size

of 16 and 150 epochs. The training data is shuffled for each epoch.

The network architecture of TopVS-DL is shown in Fig 12. The Adam optimizer with

learning rate set to 0.0001 is used. The loss function is binary cross-entropy. The network is

trained with a batch size of 1024 and 10 epochs. The training data is shuffled for each epoch.

The batch size is larger than that used in TopBP-DL due to the much larger training set in this

problem. Because of the same reason, the training process converges to a small loss very fast

with only a few training steps.
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