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In this paper, we numerically investigate phase synchronization between two coupled essentially different
chaotic oscillators in drive-response configuration. It is shown that phase synchronization can be observed
between two coupled systems despite the difference and the large frequency detuning between them. Moreover,
the relation between phase synchronization and generalized synchronization is compared with that in coupled
parametrically different systems. In the systems studied, it is found that phase synchronization occurs after
generalized synchronization in coupled essentially different chaotic systems.
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I. INTRODUCTION

Chaos synchronization has been extensively studied since
the pioneer work by Pecora and Carroll in 1990 �1�. So far,
various types of synchronization in chaotic systems have
been classified �2,3�, such as complete synchronization �CS�,
generalized synchronization �GS�, lag synchronization �LS�,
and phase synchronization �PS�. Among them, PS refers to
the condition where the phases between two chaotic oscilla-
tors are locked, or the weaker condition where the mean
frequencies between two chaotic oscillators are locked. This
interesting synchronization phenomenon was first reported
by Rosenblum et al. �4,5�. They found that a suitable defini-
tion of phase ��t� can be introduced for certain chaotic sys-
tems, such as the Rössler system and the Lorenz system. Due
to the fluctuation in the amplitude of the chaotic oscillators,
the defined phase is generally diffusive and the phase diffu-
sion can be characterized by

����t� − ���t���2� = 2D�t , �1�

where �¯� denotes ensemble average and a very small D�

indicates a well-defined phase �2,5�. It has been shown that
when the parameter mismatch between the coupled chaotic
oscillators is small, phase locking between two oscillators
can be achieved while their amplitudes may remain chaotic
and be uncorrelated. In such autonomous chaotic flow sys-
tems, the defined phase variable corresponds to the null
Lyapunov exponent �LE� of the system, which generally be-
comes negative when PS occurs �4�. Apart from the theoret-
ical studies, experimentally PS has already been demon-
strated in various fields, such as electrical circuits �6–8�,
lasers �9,10�, fluids �11�, and biological systems �12,13�.
These important works reveal that PS is the key to under-
stand the dynamics of many chaotic systems. The finding and
investigation of PS in coupled chaotic systems have greatly
enriched the field of traditional synchronization of periodic
oscillators.

So far, the research on PS in chaotic systems mainly con-
centrates on the following three domains. In the first domain,
the chaotic oscillator entrained by the external periodic force
is investigated �5,6,8,14�. In the second domain, PS between

two coupled chaotic oscillators with different natural fre-
quencies �4,7,16–19� is studied. In the third domain, PS in
the array of coupled chaotic oscillators has been investigated
�15�. For PS in coupled chaotic oscillators, most of the the-
oretical works �4,16–21� deal with two chaotic systems with
parameter mismatch, i.e., coupled parametrically different
systems.

We notice that PS extensively exists between essentially
different chaotic systems in nature, for example, the synchro-
nization between cardiac and respiratory system �22�, bio-
logical clocks synchronized by day and night rhythm, and
ecological systems entrained by seasonal cycles, just to name
a few. Also, there are experiments where PS between
coupled essentially different chaotic systems are reported
�7,9�. By essentially different chaotic systems we refer to
systems with different dynamical equations. In our opinion,
PS between these essentially different chaotic systems with
characteristic internal time scales is very interesting and im-
portant. However, the existing studies on PS in chaotic sys-
tems almost all concentrate on coupled parametrically cha-
otic oscillators. Motivated by this, in the present paper we
aim at investigating PS between coupled essentially different
chaotic systems. We believe that for certain coupled essen-
tially different chaotic oscillators, PS may be achieved pro-
vided phases can be well defined in such systems. Neverthe-
less, due to the physical difference, it can be expected that
PS between two essentially different chaotic oscillators may
exhibit different features from that in coupled parametrically
different systems. In addition, the transition between PS and
GS in coupled essentially different chaotic systems deserves
further comparison with the previous results �4,16–18�. To
this end, three physically different chaotic oscillators have
been considered in the present work, including a nonlinear
electric circuit system, the Rössler system and the Lorenz
system. Our results show that PS can be achieved even when
there is large difference between the natural frequencies of
the coupled oscillators. We further analyze the relation be-
tween PS and GS by computing the conditional Lyapunov
exponents �CLEs�. Finally, the relation between PS and GS
in essentially different systems is compared with that in para-
metrically different systems. We emphasize that the unidirec-
tional coupling, i.e., the drive-response configuration, is con-
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sidered in the present work, which is different from Ref. �23�
where special mutual phase coupling is used.

This paper is organized as follows. In Sec. II, we present
the results of PS between the electric circuit oscillator and
the Rössler oscillator. Their attractors have similar topologi-
cal structures. In Sec. III, PS between the Rössler oscillator
and the Lorenz oscillator is investigated. These two attractors
have different topological structures. At the end of this paper,
there is the conclusion followed by some discussion.

II. PS BETWEEN THE ELECTRIC CIRCUIT SYSTEM AND
THE RÖSSLER SYSTEM

It has been shown that for many chaotic systems, a phase
can be suitably defined �5�. The typical examples are those
attractors which behave like smeared limit cycles in phase
space. Usually, the rotation center is one of the unstable fixed
points of the system. As the first attempt to study PS between
coupled essentially different systems, we couple two such
chaotic oscillators in our model. The drive system is a non-
linear electric circuit �24� whose dynamical equations are

ẋ1 = y1,

ẏ1 = z1,

ż1 = �x1�1 − x1� − y1 − �z1, �2�

with �=1 and �=0.5. The Rössler oscillator

ẋ2 = − ��y2 + z2� ,

ẏ2 = ��x2 + ay2� − ��y2 − y1� ,

ż2 = ��b + z2�x2 − c�� , �3�

is used as the response system with a=b=0.2 and c=5.7.
Here the response system is coupled with the drive system
through the y variable. The time scale parameter � is intro-
duced to adjust the natural frequency of the Rössler oscillator
�28�. By continuously varying �, we can change the fre-
quency detuning, i.e., the difference between the natural fre-
quencies of the uncoupled oscillators, which usually plays an
important role in PS problems.

The attractors of the drive and the response systems with-
out coupling are shown in Figs. 1�a� and 1�b�, respectively.
For these one-center rotation chaotic oscillators, the phase
can be straightforwardly defined as the angle in the xy plane
�5�, i.e.,

��t� = arctan
y�t� − y0

x�t� − x0
, �4�

where �x0 ,y0� is the rotation center. The mean frequency
�winding number� of the chaotic oscillator is �15,17�

� = �d��t�/dt� = lim
T→�

1

T
�

0

T

�̇�t�dt . �5�

According to these definitions, the 1:1 PS between the drive
and response systems can be characterized as phase locking

��d�t� − �r�t�� 	 const �6�

or a weaker condition of frequency locking, i.e., the equality
of their mean frequencies �r=�d. Throughout this paper the
subscripts d and r denote the drive system and the response
system, respectively. We emphasize that strictly phase lock-
ing and mean frequency locking are two independent criteria
to characterize PS �2,5�. For example, in the case of noise in
the phase dynamics, due to the phase slips the phase locking
relation is difficult to be satisfied, while the weaker condition
of frequency locking might be applicable. However, for de-
terministic dynamical systems, if the phase of a chaotic os-
cillator is well defined, usually these two criteria are equiva-
lent to characterize PS in chaotic oscillators.

Without coupling, the natural frequencies of systems �2�
and �3� are different, i.e., �d=0.94 and �r	�, respectively.
When coupled, despite the different dynamical equations and
the different natural frequencies, it is found that PS can occur
between these two coupled oscillators with appropriate � and
� values. Figure 2 gives one example illustrating PS at �
=1 and �=2. It is seen that under the driving the attractor of
the response system is still like a smeared limit cycle. What
has been changed is its size, which shrinks and becomes
comparable with that of the drive system. The phase locking
between the two oscillators is demonstrated in Fig. 2�b�,
where the phase difference between the drive and the re-
sponse systems does not grow with time but remain
bounded. Figure 2�c� shows the frequency difference 
�
=�d−�r versus the coupling strength �. There it is found
that PS begins at �p=1.75. In the CLE spectrum of the re-
sponse system shown in Fig. 2�d�, it is seen that the largest
CLE becomes negative at about �g=0.3, which actually is the
bifurcation point of GS in the coupled systems. Therefore, in
this case, �g	�p, i.e., PS occurs after GS. In the drive-
response configuration GS usually can be characterized by

FIG. 1. �Color online� Typical attractors of �a� the electric cir-
cuit system; �b� the Rössler system; �c� the Lorenz system; �d� the
Lorenz system on the uz plane.
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the negativity of the largest CLE in the response system
�26–28�. However, we notice that the negativity of the larg-
est CLE is only a necessary but not the sufficient condition
for GS �25�. Therefore, in the present study the response-
auxiliary system approach �27� has also been applied to con-

firm the occurrence of GS. Generally, the results from these
two detecting methods are consistent.

One important factor in PS is the frequency detuning be-
tween the coupled oscillators, which usually determines
whether PS can occur or not. Of course, another important
parameter is the coupling strength. We study how these two
parameters affect PS. The result is shown in Fig. 3�a� where
parameter � ranges from 0.5 to 1.5. It is found that within
this interval, PS can always be achieved as long as the cou-
pling strength is large enough. Since within this � interval
the relative frequency detuning ��d−�r� /�d ranges from 0
to 0.68, it implies that PS between two essentially different
chaotic oscillators can be achieved even when the frequency
detuning of the coupled oscillators is large. Moreover, by
exploring the bifurcations in the model, it is found that in
general PS occurs after GS in the present model. This result
is illustrated in Fig. 3�b�. Also in Fig. 3�b�, it is found that the
PS bifurcation curve l3 does not change continuously with
respect to parameter �. At �=0.9 there is a discontinuous
point. For the response system �3�, its frequency increases
linearly with �. Numerically we found this relation is �r
=1.05�. From this relation it is found that �=0.9 actually
corresponds to the critical point where the natural frequen-
cies of two oscillators are approximately equal to each other.
Therefore, in the present model, if the natural frequency of
the drive system is larger than that of the response system,
relatively smaller driving is needed to achieve PS. Other-
wise, relatively larger driving is needed as shown in Fig.
3�b�. Recently, three types of transitions to PS in coupled
parametrically different chaotic oscillators have been re-
ported �18�. Our result is similar to the third type of transi-
tion defined in Ref. �18�, i.e., the phases cannot be locking
until a strong correlation of the amplitudes is established.

III. PS BETWEEN THE RÖSSLER SYSTEM AND THE
LORENZ SYSTEM

So far, as theoretical models, two coupled Rössler oscil-
lators with parameter mismatch and two coupled Lorenz os-
cillators with parameter mismatch have been extensively in-
vestigated in PS �4,16–19�. In this section, we further couple
the Rössler system and the Lorenz system to study whether
PS could occur between these two essentially different sys-
tems. The dynamical equations for the drive system are

ẋ2 = − ��y2 + z2� ,

ẏ2 = ��x2 + ay2� ,

ż2 = ��b + z2�x2 − c�� , �7�

with the same parameter settings as in the previous section.
The response system is governed by

ẋ3 = ��y3 − x3� − ��x3 − x2� ,

ẏ3 = rx3 − y3 − x3z3,

FIG. 2. �Color online� PS between systems �2� and �3�. �
=1,�=2 for �a� and �b�; �=1 for �c� and �d�. �a� The attractor of the
response system under driving in the xy plane. The cross denotes
the unstable fixed point which is used as the rotation center to
define the phase. �b� The phases of the drive system ��d�, the re-
sponse system ��r�, and their difference �
��. �c� The frequency
difference 
� versus the coupling strength �. �d� The CLEs of the
response system versus the coupling strength �.
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ż3 = x3y3 − �z3, �8�

with �=16,r=45.92 and �=4. Here the driving is added
through the x variable. As shown in Fig. 1�c�, the Lorenz
attractor has two rotation centers. However, due to the sym-
metry, the phase in the Lorenz oscillator still can be defined

in the uz plane with u=
x2+y2 �5�, as shown in Fig. 1�d�.
Without coupling, the natural frequency of the Lorenz oscil-
lator is about �r=13.95, which is much larger than that of
the Rössler oscillator at �=1, i.e., �d=1.05.

When �=1, which corresponds to the case where the
usual Rössler oscillator drives the Lorenz oscillator, unfortu-
nately no PS is observed. We attribute this failure to the fact
that the frequency detuning between two coupled oscillators
is too large. With the increase of �, as expected, PS can be
successfully observed in the present model. Interestingly, it
takes place even between two chaotic oscillators with one
rotation center and two rotation centers respectively when
uncoupled. Figures 4�a� and 4�b� present an example when
�=13 and �=10. For �=13, the natural frequency of the
drive system becomes 13.75, which approaches the natural
frequency of the response system. It is seen that the attractor
of the response system has changed significantly: now it has
only one rotation center under driving, rather than two rota-
tion centers in the absence of driving. The rotation center is
numerically found to be one of the unstable fixed points of
the response system under driving. Although the attractor of
the response system shrinks, it is still much larger than that
of the drive system.

As shown in Fig. 4�a�, the phase in the response system
actually can be defined in both the xz and the yz planes.
However, in our computation we still define the phase of
system �8� in the uz plane. The reason for this is that the
present model, i.e., Eqs. �7� and �8�, can exhibit bistability
�29�. Depending on the initial conditions, there are two dif-
ferent attractors in the response system, which are confined
in the first quadrant and the third quadrant in the xy plane,
respectively. But in the uz plane, we found that the rotation
centers of the bistable attractors almost coincide, therefore
defining phase in the uz plane can avoid the inconvenience in
computation caused by the bistability in the present model.
We emphasize that the rotation centers of the bistable attrac-
tors, which are the two unstable fixed points of the system,
are only approximately symmetric with respect to the origin
in the xy plane, not strictly, since the inversion symmetry of
the Lorenz system has been destroyed by the driving term in
Eqs. �8�.

The phase-locking of the two chaotic oscillators is illus-
trated in Fig. 4�b�, showing PS can be achieved. In order to
investigate how PS is affected by the frequency detuning of
the two coupled oscillators, we compute the frequency dif-
ference 
�=�d−�r on the � -� parameter plane. The result
is shown in Fig. 4�c�. It is seen that a platform for PS exists
on the � -� parameter plane. From �=11 to �=15, PS can be
achieved for sufficient large coupling strength. Within this
interval, the relative frequency detuning ��d−�r� /�r ranges
from 0 to 0.21. This is still a relatively large range of fre-
quency detuning.

It is known that the present model is a prototype demon-
strating GS �26–28�, which is another important type of cha-
otic synchronization between different dynamical systems.
Now we have shown that PS can also be observed in this
model. Naturally, we are interested in the relation between
PS and GS when both of them can occur in one model. For
this purpose, we explore the CLEs of the response system.
Without coupling, the response system has three LEs: one

FIG. 3. �Color online� �a� The PS platform on the �−� param-
eter plane for system �3� driven by system �2�. �b� Bifurcation
curves for Eqs. �3� driven by Eqs. �2�. l1 corresponds to the GS
bifurcation, i.e., above this line, the largest CLE of the response
system becomes negative; l2 corresponds to transition where the
null LE of the response system becomes negative; and l3 corre-
sponds to the PS bifurcation, i.e., above this line, the mean frequen-
cies of the drive and the response systems are locking.
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positive, one null and one negative. In Fig. 4�d�, the two
largest CLEs 
1 ,
2 and the frequency difference between
two oscillators 
� are plotted versus the coupling strength.
From Fig. 4�d�, it is found that in the current parameter set-
ting PS occurs immediately after GS. In order to verify
whether this is the general case, we intensively explore the
largest CLEs of the response system with other � values. It is
found that in the present model GS always can be observed,
but PS cannot always be achieved. Whenever PS is achieved,
it occurs after GS. These results are confirmed in Fig. 5.
Qualitatively, they are the same as that in the previous sec-
tion. But this time, there seems no obvious discontinuous
point on PS bifurcation curve l3.

In Fig. 4�d�, we observe two types of anomalous behavior.
The first one corresponds to the behavior of 
� before PS. It
is found that with the increase of the coupling strength, the
frequency difference is first amplified leading to maximal

phase decoherence between two systems before PS is
achieved. Therefore, what we observed in Fig. 4�d� is a kind
of anomalous PS. Very recently, such phenomenon has been
reported in coupled parametrically chaotic oscillators �30�.
We found that it could be generally observed between two
essentially different chaotic systems. The second anomalous
behavior corresponds to 
2 with small coupling strength. It is
found that under weak coupling, 
2 first becomes positive;
then it becomes negative with the further increasing of cou-
pling. This is different from Fig. 2�d� and the results in Ref.
�4�, where no positive regime of the second largest CLE is
found with the increase of coupling strength. Since with
weak coupling the largest CLE 
1 is usually positive, the
response system actually exhibits hyperchaos within the re-
gime where 
2 is positive. Physically, the null LE corre-
sponds to the phase variable along the trajectory in phase
space �2�. Its null value implies that the perturbation along

FIG. 4. �Color online� PS between systems �7� and �8�. �=13,�=10 for �a� and �b�; �=13 for �d�. �a� The attractor of the response system
under driving. The cross denotes the unstable fixed point which is used as the rotation center to define the phase. �b� The phases of the drive
system ��d�, the response system ��r�, and their difference �
��. �c� The PS platform on the �−� parameter plane. �d� The frequency
difference 
�, the largest two CLEs 
1 ,
2 versus the coupling strength �.
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the trajectory neither grows nor decays. The positive 
2 im-
plies that the neutrality of the phase variable in the response
system has been broken under the chaotic driving. Similar
anomalous behavior of 
2 has already been found in Ref.
�31�. On the other hand, the second largest LE can also be-
come locally negative under chaotic driving, which has been
discussed in Ref. �32�.

Finally the Lorenz oscillator driven by the Rössler oscil-
lator through the y variable has been investigated. The results
are shown in Fig. 6. In Fig. 6�a�, it is found that PS can be
observed for almost the whole range of parameter � studied,
namely, from �=1 to �=16. This result is quite remarkable
since it implies that PS can be achieved even when the natu-
ral frequency of the response oscillator is one order larger
than that of the driving oscillator. One such example is illus-
trated in Fig. 6�b�, where PS can even be achieved with �d
=1.05 and �d=13.95, respectively. In Ref. �23�, a special
method called mutual phase coupling has been developed to
achieve PS between the Rössler oscillator and the Lorenz
oscillator. Here we show actually the usual one-way state
coupling also works effectively. Moreover, as shown in Fig.
6�b�, PS can only happens after GS is achieved. The exami-
nation of the CLEs for different � values once again con-
firms that in this case PS still cannot occur before GS.

IV. CONCLUSION AND DISCUSSION

In this work, PS between two essentially different chaotic
oscillators has been investigated. Two models in drive-
response configuration are considered. In the first situation,
two one-center rotation chaotic oscillators, i.e., a nonlinear
electric circuit system and the Rössler system, are unidirec-
tionally coupled; in the second situation the one-center

Rössler oscillator drives the two-center Lorenz oscillator. PS
is characterized by the phase locking and frequency locking
between two coupled oscillators. To explore the relation be-
tween PS and GS, the CLEs in the response system have
been computed. Our numerical results show that PS does
occur between two essentially different chaotic oscillators in
spite of their physical difference as well as the large fre-
quency detuning between them.

In the first work of PS �4�, two bidirectionally coupled
Rössler oscillators with very small parameter mismatch is
studied. Due to the very small parameter mismatch, it is not
strange that small coupling is enough to entrain the two os-
cillators to achieve phase locking. In the meantime, this cou-
pling is weak enough not to cause the amplitudes of the two
oscillators to be correlated. Therefore, in this case PS mani-
fests itself as phase locking or frequency locking between
two chaotic oscillators while their amplitudes can remain
uncorrelated. On the other hand, for coupled chaotic oscilla-
tors with large parameter mismatch �17,18�, or for coupled

FIG. 5. �Color online� Bifurcation curves for system �8� driven
by system �7�. The meaning of curves l1 , l2, and l3 are the same as
that in Fig. 3�b�.

FIG. 6. �Color online� �a� The PS platform on the the �−�
parameter plane for system �7� coupling system �8� via the y vari-
able. �b� The frequency difference 
�, the largest two CLEs 
1 ,
2

versus �. �=1.
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essentially different chaotic oscillators, PS still can be ob-
served in terms of phase locking or frequency locking. Nev-
ertheless, in these cases, the amplitudes of the coupled cha-
otic oscillators is found to be correlated, i.e., the amplitudes
of two systems have functional relation in terms of GS. Re-
cently, a mathematical theory has been developed for PS in
phase coherent systems �33,34�. It reveals that whether PS
could achieve between a dynamical system and a periodic
driving signal �or other phase coherent chaotic signal� de-
pends on the property of the unperturbed system, i.e., the
dependence of the phase dynamics on the amplitude dynam-
ics. If such dependence is weak, the phase variable corre-
sponds to the neutral direction in the attractor which is char-
acterized by the null Lyapunov exponent. In this case, it is
likely for the phase of the system to be locked by the driving
signals. However, if the dependence is strong, PS may occur
after the correlation has been achieved between the ampli-
tudes, or may not occur at all.

It is known that PS and GS both take place between dif-
ferent chaotic systems. The relation between these two kinds
of synchronization has been discussed in several publications
�4,16–18�. In Ref. �16�, two coupled Rössler oscillators with
small parameter mismatch were studied. It is found that PS
occurs before GS is achieved in the coupled systems. More-
over, since the parameter mismatch is small, the coupling
needed to achieve PS is also very small. Later, the study in
Ref. �17�, which still considers two parametrically different
chaotic oscillators, demonstrates that this is not necessarily
the case. If the parameter mismatch is large, PS may occur
after GS. In addition, for large parameter mismatch, a large
coupling should be applied for the system to achieve PS.
Very recently, three types of transition to PS have been iden-
tified in coupled parametrically different chaotic oscillators.
The transition depends on the coherence properties of mo-

tions measured by diffusion of the phase �18�. For small
diffusion, PS occurs before GS; while for strong diffusion PS
sets in only after the onset of GS. Once again, stronger cou-
pling strength is needed to achieve PS in the latter case. For
PS between two essentially different chaotic oscillators, the
present results seems to suggest that only when their ampli-
tudes are correlated through GS, can their phases be locked
to achieve PS. In order to set up functional relation between
the amplitudes of two oscillators, usually a relatively large
coupling is required, especially in the unidirectional coupling
scheme as in the current study.

Physically, for essentially different chaotic systems, or for
two systems with large parameter mismatch, there exist
many distinct characteristic time scales, or the mean periods
of the unstable periodic orbits �UPOs� are broadly distrib-
uted. Sometimes even the topological structures of the drive
and the response systems are different. Under these circum-
stances, it is not surprising that relatively strong coupling is
need to synchronize UPOs with large difference in periods,
or to drive the attractor in the response system away from its
original attractor to become topologically equivalent with the
driving attractor. This is the reason why in this work the
phases between two essentially different chaotic systems be-
come locking only after their amplitudes are correlated
through GS. We believe this characteristic should accompany
PS in many coupled essentially different chaotic systems.
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