Topology based deep learning for drug discovery

Guowei Wei

Departments of Mathematics Michigan State University http://www.math.msu.edu/~wei

The 3rd Annual Meeting of SIAM Central States Section September 29 — October 1, 2017 Colorado State University

> Grant support: NSF, NIH, MSU and BMS

Bristol-Myers Squibb

Drug design and discovery

- 1) Disease identification
- 2) Target hypothesis
- 3) Virtual screening

Amantadine M2-A complex

- 4) Drug structural optimization in the target binding site
- 5) Preclinical in vitro and in vivo test
- 6) Clinical test
- 7) Optimize drug's efficacy, toxicity, pharmacokinetics, and pharmacodynamics properties (quantitative systems pharmacology)

M2 channel

Influenza -- flu virus

Welcome to big-data era

Half of all jobs will be done by robots in the near future

Yearly Growth of Total Structures in the Protein Data Bank

Biological sciences are undergoing a historic transition: From qualitative, phenomenological, and descriptive to quantitative, analytical and predictive, as quantum physics did a century ago

Deep learning

Fukushima (1980) – Neo-Cognitron; LeCun (1998) – Convolutional Neural Networks (CNN);...

How to do deep learning for 3D biomolecular data? Obstacles for deep learning of 3D biomolecules:

- Geometric dimensionality: R^{3N,} where N~5500 for a protein.
- Machine learning dimensionality: > m1024³, where m is the number of atom types in a protein.
- Molecules have different sizes --- non-scalable.
- Complexity: biochemistry & biophysics
- **Solution:**
- Topological simplification
- Dimensionality reduction & unification (scalability)

Classical topological objects

Möbius Strips (1858)

Topological invariants: Betti numbers

 β_0 is the number of connected components. β_1 is the number of tunnels or circles. β_2 is the number of cavities or voids.

Topological simplification

Poincare-Hopf index

Morse theory

Opportunities, challenges and promises

Opportunities from topological methods:

***New approach for big data characterization and classification.**

***Dramatic reduction of dimensionality and data size.**

***Applicable to a variety of fields.**

Challenges with topological methods:

Geometric methods are often inundated with too much structural detail.

>Topological tools incur too much reduction of original geometric information.

>Topology is hardly used for quantitative prediction.

Promises from persistent homology: ✓ Embeds geometric information in topological invariants. ✓ Bridges the gap between geometry and topology.

Persistent homology answers following questions

What is the topology of a benzene?

Level sets generated by Laplace-Beltrami flows:

What is the topology of a H₂O-CO₂ complex?

Electron density level sets computed by using quantum mechanics:

Vietoris-Rips complexes of planar point sets Simplexes:

Topological modeling - Persistent homology

0-simplex 1-simplex 2-simplex k-chain: $\sum_{i} c_i \sigma_i^k$ Chain group: $C_k(K,Z_2)$

Boundary operator:

3-simplex

Frosini and Nandi (1999), Robins (1999), Edelsbrunner, Letscher and Zomorodian (2002), Edelsbrunner and Harer, (2007) Kaczynski, Mischaikow and Mrozek (2004), Zomorodian and Carlsson (2005), Ghrist (2008),

Vietoris-Rips complexes, persistent homology and persistent barcodes (Xia, Wei, 2014)

Topological fingerprints of an alpha helix

O

(Xia & Wei, IJNMBE, 2014)

Short bars are NOT noise!

Topological fingerprints of beta barrel

Protein:2GR8

Topological noise reduction

(Xia & Wei, IJNMBE 2015)

Original data

Twenty-iteration denoising

Persistent homology for ill-posed inverse problems

Original data: microtubule

Fitted with onetype of tubulins

Fitted with twotypes of tubulins

Objective oriented persistent homology

(Wang & Wei, JCP, 2016) Objective: Minimal surface energy $G = \hat{0} g[area] dr, \quad area = |\nabla S|$ where gamma (γ) is the surface tension, and S is a surface characteristic function:

Generalized Laplace-Beltrami flow

$$\frac{\partial S}{\partial t} = \left| \nabla S \right| \left[\nabla \bullet \frac{\gamma \nabla S}{\left| \nabla S \right|} \right]$$

Objective oriented persistent homology

Level sets generated from

2D persistence in protein 1UBQ unfolding

Multicomponent and multichannel persistent homology for a protein-drug complex

Components are generated from element specific persistent homology. Eight channels are constructed from births, deaths and persistences at Betti-0, Betti-1 and Betti-2.

(Cang & Wei, IJNMBE, 2017)

Topology based learning architecture

(Cang & Wei, IJNMBE, 2017)

Topological fingerprint based machine learning method for the classification of 2400 proteins

Hemoglobins in their relaxed and taut forms: 80% accuracy

(Cang et al, MBMB, 2015)

55 classification tasks of protein superfamilies over 1357 proteins from Protein Classification Benchmark Collection: 82% accuracy

Topological convolutional deep Learning architecture

Directory of Useful Decoy (DUD) Classification of 98266 compounds containing 95316 decoys and 2950

active ligands binding to 40 targets from six families

Drug Design & Discovery Resource (D3R) Grand Challenge 2

Given: Farnesoid X receptor (FXR) and 102 ligands Tasks: Dock 102 ligands to FXR, and compute their poses, binding free energies and energy ranking

Grand Challenge 2

Free Energy Set 1 (Stage 1) - RMSD

D3R Grand Challenge 2

Given: Farnesoid X receptor (FXR) and 102 ligands **Tasks:** Dock 102 ligands to FXR, and compute their poses, binding free energies and energy ranking

Grand Challenge 2

Free Energy Set 1 (Stage 2) - Kendall's Tau

Free Energy Set 1 (Stage 2) - RMSEc

Receipt ID

Filled circle indicates an incomplete set of predictions Green circle indicates your predictions (requires login)

Topological Multi-Task Deep Learning

Topological feature extraction

Multi-task topological deep learning

(Cang & Wei, PLOS CB, 2017)

Blind prediction of mutation energies

Prediction of partition coefficients: Star Set (223 molecules)

Concluding remarks

- Multidimensional, multicomponent, multichannel and objective orientated persistent homologies are introduced to retain essential chemical and biological information during the topological simplification of biomolecular geometric complexity.
- □ The abovementioned approaches are integrated with advanced machine learning, including deep learning, to achieve the state-of-the-art predictions of proteinligand binding affinities & ranking, mutation induced protein stability changes, and drug partition coefficients.

Take home messages

- > Molecular based mathbio (3 NSF-Simons Centers)
- > Topological data analysis
- > Machine learning

