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Differential Geometry based solvation models 

Introduction 

Conclusion 

  Solvation is an elementary process in nature and is of  paramount 

importance to more sophisticated chemical, biological and biomolecular 

processes. The understanding of solvation is an essential prerequisite 

for the quantitative description and analysis of biomolecular systems.  
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  We construct a new multiscale total energy functional which not only  

consists of polar and nonpolar solvation contributions, but also the 

electronic kinetic and potential energies. By using variational principle, 

we derive coupled equations. Appropriate iterative procedure is 

designed for solution. Our model is validated with experimental data.  
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 We propose a multiscale total free energy functional for solvation 

 

 

 

    

 

 

   

  where   is the electrostatic potential, n(r) represents electronic charge 

density, and a function S(r) is used to characterize the overlapping 

solvent-solute boundary.  The first three terms describe the nonpolar 

energy functional. The last two terms represents the electronic energy 

functional, and the rest terms count for the electrostatic energy 

functional.  By using the Euler–Lagrange variation, we derive the 

generalized Poisson-Boltzmann equation (2) for electrostatic potential, 

the generalized Laplace-Beltrami equation (LB) (3) for solvent-solute 

interface, and the Kohn-Sham equation (KS) (4) for electronic structure.  

 

   

   

 

 

 

  

 where VLB and VKS are  effective LB and KS potentials, respectively . 

  Figure 1: Solvation free energy 

cycle: the total solvation energy 

is decomposed into several 

steps: The energy associated 

with Step (7) is generally termed 

a ``nonpolar solvation energy'' 

while the difference in energies 

associated with Steps (1) and (6) 

is generally considered as 

``polar solvation energy'' 

Theory and model 

Implementation 
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Figure 2: Flowchart of the numerical solution of the coupled PDES 

Figure 3: Left: Correlation between experimental data and the calculated in 

solvation free energy of 24 small molecules; Right: Illustration of surface 

electrostatic potential at their corresponding isosurface of S=0.50  
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