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Introduction Implementation
Solvation is an elementary process in nature and is of paramount < Initiate poe in SIESTA 5
Importance to more sophisticated chemical, biological and biomolecular I
processes. The understanding of solvation Is an essential prerequisite [Coupled PB and GEF for o -
for the quantitative description and analysis of biomolecular systems. :
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Theory and model

We propose a multiscale total free energy functional for solvation E O
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* Conclusion

where®d is the electrostatic potential, n(r) represents electronic charge
density, and a function S(r) Is used to characterize the overlapping
solvent-solute boundary. The first three terms describe the nonpolar

energy functional. The last two terms represents the electronic energy | | | | _ _
functional, and the rest terms count for the electrostatic energy W€ derive coupled equations. Appropriate Iterative procedure IS
functional. By using the Euler-Lagrange variation, we derive the designed for solution. Our model Is validated with experimental data.

generalized Poisson-Boltzmann equation (2) for electrostatic potential, References
the generalized Laplace-Beltrami equation (LB) (3) for solvent-solute
Interface, and the Kohn-Sham equation (KS) (4) for electronic structure.

We construct a new multiscale total energy functional which not only
consists of polar and nonpolar solvation contributions, but also the
electronic kinetic and potential energies. By using variational principle,
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