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Abstract

This paper explores the utility of a discrete singular convolution algorithm for solving certain mechanical problems. Benchmark

mechanical systems, including plate vibrations and incompressible ¯ows, are employed to illustrate the robustness and to test accuracy

of the present algorithm. Numerical results indicate that the present approach is very accurate, e�cient and reliable for solving the

aforementioned problems. Ó 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Since many practical problems in science and engineering are either extremely di�cult or impossible to
solve by conventional analytical methods, numerical simulations play a more and more important role in
handling these problems. The advent of high-performance computers has given tremendous impetus to all
numerical methods for solving science and engineering problems. Although there has been a great deal of
achievement in developing accurate, e�cient and robust computational methods, ®nding numerical solu-
tions for partial di�erential equations (PDEs) is still a challenge owing to the presence of possible singu-
larities and/or homoclinic manifolds that induce sharp transitions in the solutions. The presence of these
phenomena can be extremely sensitive to numerical algorithms and can easily lead to numerically induced
spatial and/or temporal chaos [1]. The conventional approaches to these problems may be classi®ed as
either global methods [2±6] or local methods [7±16]. Global methods are highly localized in their spectral
representations, but are unlocalized in the coordinate representation. By contrast, local methods have high
spatial localization, but are delocalized in their spectral representations. Moreover, the use of global
methods is usually restricted to structured grids, whereas, local methods can be implemented to block-
structured grids and even unstructured grids. In general, global methods are much more accurate than local
methods, while the major advantages of local methods are their ¯exibility in handling complex geometries
and boundary conditions. In ordinary applications, it is relatively safe and e�cient to use either a global
method or a local one for numerically solving an ordinary di�erential equation or a partial di�erential
equation. However, when a di�erential equation has singularities and/or homoclinic orbits, neither the
global methods nor the local methods can be applied without numerical instabilities. The global methods
lose their accuracy near the singularities due to local high frequency components. The local methods have
to be implemented in an adaptive manner, which greatly limits their accuracy and requires extremely small
(spatial and/or temporal) mesh sizes. In many situations, the rate of convergence of a numerical method
simply cannot match the divergent rate of the problem under study near a singularity. It is desirable to have
a method that has both spectral and spatial localization, and is thus locally smooth and asymptotically
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decaying in both spectral and coordinate spaces. Particularly, such a method has the feature that combines
global methods' accuracy with local methods' ¯exibility.

The discrete singular convolution (DSC) algorithm [17] was proposed as a potential approach for nu-
merical realization of Hilbert transform, Abel transform, Radon transform, and delta transform. These
transforms are essential to many practical applications, such as computational electromagnetics, computed
tomography, molecular potential surface generation and dynamic simulation. The DSC algorithm has been
tested for its applications to stochastic process analysis [17], nanoscale pattern formation of complex
systems [18], homoclinic orbit of the Sine±Gordon singularity [19], and quantum eigenvalue problem of the
Schr�odinger equation [20]. The underlying mathematical structure for the DSC algorithm is the theory of
distributions [21].

The purpose of this paper is to explore the utility and test the reliability of the DSC algorithm for
mechanical applications. To this end, we consider two types of problems, plate vibrations and incom-
pressible ¯ows. This paper is organized as follows: The DSC algorithm is reviewed in Section 2. Some
relevant parts of the algorithm are described in a greater detail than the original paper. Vibration analysis
by the DSC algorithm is presented in Section 3. Eigenfunctions and eigenvalues of a rectangular plate and a
circular plate are studied. Section 4 is devoted to ¯uid ¯ow applications. We consider two test examples, the
Taylor problem and a double shear layer ¯ow, to illustrate the accuracy and robustness of the DSC ap-
proach for ¯ow simulations. This paper ends with a conclusion.

2. Theory and algorithm

Singular convolutions are essential to many science and engineering problems, such as electromagnetics,
Hilbert transform, Abel and Radon transforms. DSC is a general approach for the numerical realization of
singular convolutions. By appropriate construction or approximation of a singular kernel, the discrete
singular convolution can be an extremely e�cient, accurate and reliable algorithm for practical applications
[17].

It is most convenient to discuss singular convolution in the context of distributions. We denote T a
distribution and g�t� an element of the space of test functions. A singular convolution can be expressed as

F �t� �
Z 1

ÿ1
T �t ÿ x�g�x� dx: �1�

Here T �t ÿ x� is a singular kernel. Depending on the form of the kernel T, the singular convolution is the
central issue for many science and engineering problems. For example, singular kernels of the Hilbert type
have a general form of

T �x� � 1

xn
; �n > 0�: �2�

Here, kernels T �x� � 1=xa; �0 < a < 1� de®ne the Abel transform which is closely connected with a gen-
eralization of the tautochrone problem. Kernel T �x� � 1=x commonly occurs in theory of linear response,
signal processing, theory of analytic functions, and the Hilbert transform. Its three-dimensional version is
important to the theory of electromagnetics. T �x� � 1=x2 is the kernel used in tomography. Other inter-
esting examples are singular kernels of the delta type

T �x� � d�n��x�; �n � 0; 1; 2; . . .�: �3�
Here, kernel T �x� � d�x� is important for interpolation of surfaces and curves, and
T �x� � d�n��x�; �n � 1; 2; . . .� are essential for numerically solving di�erential equations. However, a com-
mon feature of these kernels is that they are singular, i.e., they cannot be directly digitized in computers. In
this regard, the singular convolution, (1), is of little numerical merit. To avoid the di�culty of using sin-
gular expressions directly in computers, sequences of approximations (Ta) of the distribution T can be
constructed
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lim
a!a0

Ta�x� ! T �x�; �4�

where a0 is a generalized limit. Obviously, in the case of T �x� � d�x�, the sequence, Ta�x�, is a delta sequence.
Furthermore, with a good approximation, it makes sense to consider a discrete version

Fa�t� �
X

k

Ta�t ÿ xk�f �xk�; �5�

where Fa�t� is an approximation to F �t� and fxkg is an appropriate set of discrete points on which the
discrete convolution (5) is well-de®ned. It is this discrete expression that makes a computer realization
possible. Note that, the original test function g�x� has been replaced by f �x�. The mathematical property or
requirement of f �x� is determined by the approximate kernel Ta. In general, the convolution is required
being Lebesgue integrable.

It is helpful to illustrate the algorithm by examples. A simple example is Shannon's kernel, �sin ax�=px.
Shannon's kernels are a delta sequence and thus provide an approximation to the delta distribution

lim
a!1

sin ax
px

; g�x�
� �

� g�0�: �6�

Other important examples include the Dirichlet kernel

sin l� 1
2

ÿ ��xÿ x0�� �
2p sin 1

2
�xÿ x0�� � ; �7�

the modi®ed Dirichlet kernel

sin� l� 1
2

ÿ ��xÿ x0��
2p tan�1

2
�xÿ x0�� ; �8�

and the de la Vall�ee Poussin kernel

1

pa
cos�a�xÿ x0�� ÿ cos�2a�xÿ x0��

�xÿ x0�2 : �9�

For sequences of the delta type, an interpolating (or quasi-interpolating) algorithm sampling at Nyquist
frequency, a � p=D, has great advantage over a non-interpolating discretization. Therefore, the Shannon's
kernel is discretized as

sin�a�xÿ x0��
p�xÿ x0� ! sin p

D �xÿ xk�
p
D �xÿ xk� : �10�

In fact, not only the interpolating (or quasi-interpolating) nature guarantees the highest accuracy on the set
of grid points, but also it provides the highest possible computational e�ciency o� a grid. This is because
the Nyquist interval given by �ÿp=D; p=D� is the largest possible sampling interval that is free of alias
whenever an L2 function f �x� under study satis®es the Nyquist condition

suppf̂ �k� �
n
ÿ p

D
;
p
D

o
: �11�

This fact can be formally addressed by Shannon's sampling theorem

f �x� �
X1

k�ÿ1
f �xk�

sin p
D �xÿ xk�

p
D �xÿ xk� : �12�

The signi®cance of Shannon's sampling theorem is that by a discrete, but in®nite set of sampling data,
ff �xk�g, one can actually recover a bandlimited L2 function on a real line. Such bandlimited L2 functions are
known as elements of the Paley±Wiener reproducing kernel Hilbert space. The discrete Shannon's kernels,
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fsin p
D �xÿ xk�= p

D �xÿ xk�gk2Z , are a complete set of sampling basis. Shannon's sampling theorem has great
impact on information theory, signal and image processing because the Fourier transform of Shannon's
kernel is an ideal low-pass ®lter for signals bandlimited to �ÿp=D; p=D�.

It is noted that the sequence of approximation can be improved by a regularizer [23,24]

lim
r!1

Rr�x� � 1: �13�

The regularizer is designed to increase the regularity of convolution kernels. For the delta sequence, it
follows from Eq. (4) thatZ

lim
a!a0

Ta�x�Rr�x� dx � Rr�0� � 1; �14�

where Rr�0� � 1 is the special requirement for a delta regularizer. A typical delta regularizer used in this
work and elsewhere [24] is exp�ÿx2=2r2�. Therefore, Shannon's kernel is regularized as

sin�p=D��xÿ xk�
�p=D��xÿ xk� !

sin�p=D��xÿ xk�
�p=D��xÿ xk� eÿ��xÿxk�2=2r2�: �15�

Since exp�ÿx2=2r2� is a Schwartz class function, it makes the regularized kernel applicable to tempered
distributions. Numerically, the regularized expression performs much better than Shannon's kernel for
being used in a local approach for solving partial di�erential equations [24]. Qian and Wei [22] have recently
given a rigorous error estimation of the regularized formulae.

The uniform, Nyquist rate, interpolating discretization and the regularization are also adopted for the
Dirichlet kernel

sin l� 1
2

ÿ ��xÿ x0�� �
2p sin 1

2
�xÿ x0�� � ! sin p

D �xÿ xk�
ÿ �

�2M � 1� sin p
D

xÿxk
2M�1

� � exp

 
ÿ �xÿ xk�2

2r2

!
: �16�

In comparison to Shannon's kernel, the Dirichlet kernel has one more parameter M which can be optimized
to achieve better results in computations. Usually, we set a suf®ciently large M for various numerical
applications. Obviously, the Dirichlet kernel converts to Shannon's kernel at the limit of M !1. The
uniform interpolating discretization and the regularization will also be used for the modi®ed Dirichlet
kernel

sin l� 1
2

ÿ ��xÿ x0�� �
2p tan 1

2
�xÿ x0�� � ! sin p

D �xÿ xk�
ÿ �

�2M � 1� tan p
D

xÿxk
2M�1

� � exp

 
ÿ �xÿ xk�2

2r2

!
; �17�

and for the de la Vall�ee Poussin kernel

1

pa
cos�a�xÿ x0�� ÿ cos�2a�xÿ x0��

�xÿ x0�2 ! 2

3

cos p
�D �xÿ xk� ÿ cos 2p

�D �xÿ xk�
p
�D �xÿ xk�
h i2

exp

 
ÿ �xÿ xk�2

2r2

!
; �18�

where �D � �3=2�D. Since p=D is proportional to the highest frequency which can be reached in the Fourier
representation, the D should be very small for a given problem involving highly oscillatory functions or very
high frequency components.

We use a symmetrically (or antisymmetrically) truncated singular kernel

f �n��x� �
XW

k�ÿW

d�n�a;r�xÿ xk�f �xk�; �n � 0; 1; 2; . . .�; �19�

where 2W � 1 is the computational bandwidth, or e�ective kernel support, which is usually smaller than the
whole computational domain, �a; b�. Here d�n�a;r�xÿ xk� is a collective symbol for the nth derivative of any of
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the right-hand side of Eqs. (15)±(18). Note that kernel (19) is translationally invariant in the computational
domain. Therefore, it is very simple to implement.

Qian and Wei [22] have recently provided a mathematical estimation for the choice of W, r and D. For
example, if the L2 error for approximating an L2 function f is set to 10ÿg (g > 0), the following relations are
to be satis®ed

r�pÿ BD� >
�����������
4:61g

p
; and

W
r
>

�����������
4:61g

p
; �20�

where r � r=D and B is the frequency bound for the function of interest, f. The ®rst inequality states that
for a given grid size D, a large r is required for approximating high frequency component of an L2 function.
The second inequality indicates that if one chooses the ratio r � 3, then the half bandwidth W � 30 can be
used to ensure the highest accuracy in a double precision computation (g � 15). This theoretical estimation
is in very good agreement with a previous numerical test [24].

Consider an operator O having a di�erential part D and a function part F

O � D� F : �21�
In the DSC approach, it is convenient to choose a grid representation for the coordinate so that the
function part F of the operator is diagonal. Hence, its discretization is simply given by a direct interpolation
on the grid

F �x� ! F �xk�dm;k: �22�
The di�erential part of the operator on the coordinate grid is then represented by functional derivatives

D �
X

n

dn�x� dn

dxn
!
X

n

dn�xm�d�n�a;r�xm ÿ xk�; �23�

where dn�x� is a coe�cient and d�n�a;r�xm ÿ xk� is analytically given by

d�n�a;r�xm ÿ xk� � d

dx

� �n

da;r�x
�

ÿ xk�
�

x�xm

: �24�

Here da;r�xÿ xk� is a collective symbol for the right-hand sides of Eqs. (15)±(18). The di�erentiations in
Eq. (24) can be easily carried out for a given da;r�xÿ xk�. For example, if

dp
D;r
�xÿ xk� �

sin p
D �xÿ xk�

�p=D��xÿ xk� e
ÿ�xÿxk�2=2r2

;

we have for x 6� xk [24]

d�1�p=D;r�xm ÿ xk� �
cos p

D �xÿ xk�
�xÿ xk� exp

 
ÿ �xÿ xk�2

2r2

!
ÿ sin p

D �xÿ xk�
p
D �xÿ xk�2

exp

 
ÿ �xÿ xk�2

2r2

!

ÿ sin p
D �xÿ xk�

p
D r2

exp

 
ÿ �xÿ xk�2

2r2

!
; �25�

d�2�p=D;r�xm ÿ xk� � ÿ
p
D sin p

D �xÿ xk�
�xÿ xk� exp

 
ÿ �xÿ xk�2

2r2

!
ÿ 2

cos p
D �xÿ xk�
�xÿ xk�2

exp

 
ÿ �xÿ xk�2

2r2

!

ÿ 2
cos p

D �xÿ xk�
r2

exp

 
ÿ �xÿ xk�2

2r2

!
� 2

sin p
D �xÿ xk�

p
D �xÿ xk�3

exp

 
ÿ �xÿ xk�2

2r2

!

� sin p
D �xÿ xk�

p
D �xÿ xk�r2

exp

 
ÿ �xÿ xk�2

2r2

!
� sin p

D �xÿ xk�
p
D r4

�xÿ xk� exp

 
ÿ �xÿ xk�2

2r2

!
; �26�
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d�3�p=D;r�xm ÿ xk� � ÿ
p2

D2 cos p
D �xÿ xk�

�xÿ xk� exp

 
ÿ �xÿ xk�2

2r2

!
� 3

p
D sin p

D �xÿ xk�
�xÿ xk�2

exp

 
ÿ �xÿ xk�2

2r2

!

� 3
p
D sin p

D �xÿ xk�
r2

exp

 
ÿ �xÿ xk�2

2r2

!
� 6

cos p
D �xÿ xk�
�xÿ xk�3

exp

 
ÿ �xÿ xk�2

2r2

!

� 3
cos p

D �xÿ xk�
�xÿ xk�r2

exp

 
ÿ �xÿ xk�2

2r2

!
� 3
�xÿ xk� cos p

D �xÿ xk�
r4

exp

 
ÿ �xÿ xk�2

2r2

!

ÿ 6
sin p

D �xÿ xk�
p
D �xÿ xk�4

exp

 
ÿ �xÿ xk�2

2r2

!
ÿ 3

sin p
D �xÿ xk�

p
D �xÿ xk�2r2

exp

 
ÿ �xÿ xk�2

2r2

!

ÿ �xÿ xk�2 sin p
D �xÿ xk�

p
D r6

exp

 
ÿ �xÿ xk�2

2r2

!
; �27�

and

d�4�p=D;r�xm ÿ xk� � 4
p2

D2 cos p
D �xÿ xk�

�xÿ xk�2
exp

 
ÿ �xÿ xk�2

2r2

!
�

p3

D3 sin p
D �xÿ xk�
�xÿ xk� exp

 
ÿ �xÿ xk�2

2r2

!

� 4
p2

D2 cos p
D �xÿ xk�
r2

exp

 
ÿ �xÿ xk�2

2r2

!
ÿ 12

p
D sin p

D �xÿ xk�
�xÿ xk�3

exp

 
ÿ �xÿ xk�2

2r2

!

ÿ 6
p
D sin p

D �xÿ xk�
�xÿ xk�r2

exp

 
ÿ �xÿ xk�2

2r2

!
ÿ 6

p
D �xÿ xk� sin p

D �xÿ xk�
r4

exp

 
ÿ �xÿ xk�2

2r2

!

ÿ 24
cos p

D �xÿ xk�
�xÿ xk�4

exp

 
ÿ �xÿ xk�2

2r2

!
ÿ 12

cos p
D �xÿ xk�

�xÿ xk�2r2
exp

 
ÿ �xÿ xk�2

2r2

!

ÿ 4
�xÿ xk�2 cos p

D �xÿ xk�
r6

exp

 
ÿ �xÿ xk�2

2r2

!
� 24

sin p
D �xÿ xk�

p
D �xÿ xk�5

exp

 
ÿ �xÿ xk�2

2r2

!

� 12
sin p

D �xÿ xk�
p
D �xÿ xk�3r2

exp

 
ÿ �xÿ xk�2

2r2

!
� 3

sin p
D �xÿ xk�

p
D �xÿ xk�r4

exp

 
ÿ �xÿ xk�2

2r2

!

ÿ 2
�xÿ xk� sin p

D �xÿ xk�
p
D r6

exp

 
ÿ �xÿ xk�2

2r2

!

� �xÿ xk�3 sin p
D �xÿ xk�

p
D r8

exp

 
ÿ �xÿ xk�2

2r2

!
: �28�

At x � xk, it is convenient to evaluate these derivatives separately

d�1�p=D;r�0� � 0; �29�

d�2�p=D;r�0� � ÿ
1

3

3� p2

D2 r2

r2
; �30�

d�3�p=D;r�0� � 0; �31�

and

d�4�p=D;r�0� �
1

5

15� 10 p2

D2 r2 � p4

D4 r4

r4
: �32�
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Note that the di�erentiation matrix in Eq. (23) is in general banded. This gives rise to great advantage in
large scale computations. Extension to higher dimensions can be realized by tensorial products. We refer
expression (24) and its higher dimensional generalizations as DSC matrices.

In the present study, we focus our attention to the regularized Shannon's kernel (15). Nevertheless,
various other delta sequence kernels can be similarly employed [17]. The DSC parameters are chosen as
W � 32 and r=D � 3:8 for the following computations except for speci®ed ones. We select two classes of
benchmark test problems, each from solid mechanics and ¯uid mechanics, to demonstrate the usefulness, to
test the accuracy and to explore the limitations of the DSC algorithm. Details of these computations are
described in the following two sections.

3. Plate vibration

Plate analysis is of great practical signi®cance, associated with applications in many engineering ®elds,
such as civil, mechanical, aerospace, etc. Apart from a few analytically solvable cases, there is no general
solution for plate vibrations. Numerical simulation is one of the major approaches for plate analysis.
Various numerical methods have been used for plate computations. These include the series expansion
[25] for orthotropic plates, integral equation approach [26±28], methods of ®nite strips and ®nite ele-
ments [29±31], domain decomposition approaches [32,33], Galerkin methods [34], and Rayleigh±Ritz
variational methods [35,36], to name only a few. As our ®rst attempt, we consider only isotropic plates
with homogeneous boundary conditions for which analytical solutions are available for comparisons.
Vibration analysis of plates with mixed boundary conditions and complex geometries will be accounted
elsewhere.

Let us consider an isotropic plate with undeformed middle surface having a governing equation [37]

Lw � r4w� N
D
r2wÿ qx2

D
w � 0; �33�

where w is solely a function of the spatial coordinates, N the inplane force intensity, D the ¯exural rigidity, q
the mass density per unit area, and x the sinusoidal time response frequency. According to the accepted
convention of the theory of elasticity, the normal force N is positive in Eq. (33) if the plate is in compression
and negative if the plate in tension.

3.1. Rectangular plates

The problem of all-side simply supported rectangular plates in absence of inplane forces (N � 0) is the
simplest one to solve. The simply supported boundary conditions are given by

w � 0; Mx � ÿD
o2w
ox2

�
� m

o2w
oy2

�
� 0 �for x � 0; a�;

w � 0; My � ÿD
o2w
oy2

�
� m

o2w
ox2

�
� 0 �for x � 0; b�;

�34�

where m is the Poisson's ratio, a and b are the lengths of the rectangular plate. The analytical solution of this
case is actually independent of the Poisson's ratio and is given by [37]

wnm � Anm sin
npx

a
sin

mpy
b

; n;m � 1; 2; . . . ; �35�

where Anm is an amplitude coe�cient determined from the initial condition of the problem, n and m are
integers. The frequency is given by

xnm �
����
D
q

s
np
a

� �2
�

� mp
b

� �2
�
: �36�
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In the present computation, we use the DSC algorithm for the spatial discretization. The DSC-matrix for
operator L is constructed according to Eq. (23). To simplify the problem further, we take the computa-
tional domain as �0; 10p� � �0; 10p� with 33 equally spaced grid points in each dimension. Results are ob-
tained by a direct diagonalization of the DSC-biharmonic matrix by using a standard eigenvalue solver.

The ®rst 100 exact eigenvalues and absolute errors of the present numerical calculations are listed in
Table 1. With fewer than seven points per wavelength, some of the errors are as small as 10ÿ14. It is evident
that the present approach is extremely accurate for plate vibration analysis.

3.2. Circular plates

To illustrate the DSC approach further, we consider a circular plate with compressive inplane forces. It
is well-known that since the direct diagonalization approach is limited by computer memory requirement,
iterative methods are often used for large scale computations. However, iterative approaches are slightly
more complicated to program and is subject to stability requirement. Instead of directly diagonalizing the
DSC-operator matrix, it is useful to demonstrate the stability and the reliability of the present algorithm
for iterative computations. To this end we introduce an arti®cial time dependence to the operator of
Eq. (33)

Table 1

Errors for plate vibrations

Nth Exact� 104 Error Nth Ex-

act�104

Error Nth Exact� 104 Error

1 4 7.39()13) 34 2704 3.09()11) 67 9604 3.64()12)

2 25 6.96()14) 35 2704 2.75()12) 68 10000 7.73()13)

3 25 1.25()12) 36 2809 1.39()12) 69 10000 5.73()12)

4 64 6.78()13) 37 2809 2.96()11) 70 10201 3.92()12)

5 100 1.50()13) 38 3364 1.07()13) 71 10201 7.76()13)

6 100 3.37()13) 39 3364 4.38()13) 72 10816 9.26()14)

7 169 2.28()13) 40 3721 4.33()13) 73 10816 1.05()12)

8 169 4.87()13) 41 3721 1.70()13) 74 11236 1.09()12)

9 289 4.91()13) 42 4225 3.37()14) 75 11236 6.25()13)

10 289 2.02()13) 43 4225 3.82()13) 76 11881 1.61()12)

11 324 1.60()12) 44 4225 6.75()13) 77 11881 1.57()13)

12 400 1.54()14) 45 4225 1.11()12) 78 12769 1.53()13)

13 400 1.46()12) 46 4624 7.21()13) 79 12769 1.71()13)

14 625 1.59()12) 47 4624 1.42()13) 80 13456 1.33()12)

15 625 3.80()13) 48 5184 5.01()12) 81 13456 5.44()12)

16 676 8.23()14) 49 5329 2.98()12) 82 13689 1.73()12)

17 676 2.16()12) 50 5329 1.84()13) 83 13689 1.69()13)

18 841 2.15()12) 51 5476 3.85()13) 84 14884 1.77()12)

19 841 1.33()12) 52 5476 5.93()13) 85 14884 1.99()12)

20 1024 5.00()13) 53 6400 8.27()12) 86 15625 1.35()12)

21 1156 1.66()13) 54 6400 6.37()11) 87 15625 1.94()12)

22 1156 5.99()13) 55 6724 6.36()11) 88 15625 3.41()12)

23 1369 1.64()13) 56 6724 7.13()12) 89 15625 2.63()11)

24 1369 7.93()13) 57 7225 3.59()12) 90 16384 2.54()12)

25 1600 5.15()12) 58 7225 4.16()13) 91 16900 1.82()11)

26 1600 5.53()13) 59 7225 4.38()13) 92 16900 6.87()13)

27 1681 4.91()13) 60 7225 1.35()12) 93 16900 8.17()12)

28 1681 3.49()12) 61 7921 4.27()14) 94 16900 1.27()11)

29 2025 2.65()13) 62 7921 1.09()12) 95 18496 3.62()14)

30 2025 7.40()13) 63 8100 5.52()12) 96 18496 3.89()14)

31 2500 1.90()12) 64 8100 5.17()14) 97 18769 1.88()12)

32 2500 1.13()12) 65 9409 1.90()14) 98 18769 2.73()12)

33 2500 8.20()13) 66 9409 7.10()13) 99 21025 2.00()12)

100 21025 1.12()11)
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ow
ot
�Lw: �37�

The steady state solution of Eq. (37) is the eigenfunction of the operator L. In this case, we test a di�erent
boundary condition, the clamped boundary condition all around the circular plate

w � 0;
ow
or
� 0 �for r � R�: �38�

The solution of this problem has the form of [37]

w�r; h� �
X
n;l;m

An;mJm�fn;mr=R�� � Bl;mIm�gl;mr=R��eimh � cc; m P 0; n; l > 0; �39�

Fig. 1. Typical mode shapes of a clamped circular plate under compressive inplane forces. (a) mode [1,3], f1;3 � 6:4, R1;3 � 6:5; (b)

mode [1,5], f1;5 � 8:8, R1;5 � 9:0; (c) mode [1,8], f1;8 � 12:2, R1;8 � 12:3; (d) mode [2,2], f2;2 � 8:4, R2;2 � 8:5; (e) mode [2,3], f2;3 � 9:8,

R2;3 � 9:8; (f) mode [2,4], f2;4 � 11:1, R2;4 � 11:1; (g) mode [3,2], f3;2 � 11:6, R3;2 � 11:8; (h) mode [3,3], f3;3 � 13:0, R3;3 � 13:0.
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where cc denotes the complex conjugate. Here Jm�fn;mr=R� is the standard (cylinder) Bessel function,
Im�gl;mr=R� is the modi®ed Bessel function of the ®rst kind [37,38]. Here fn;m and gl;m are nontrivial zeroes of
Jm and Im, respectively. An;m and Bl;m are expansion coe�cients.

In the present computation, we adapt the Crank±Nicolson scheme for time discretization. At nth iter-
ation, the semi-discretized equation is

1

�
ÿ 1

2Dt
L

�
wn�1 � wn � 1

2Dt
Lwn: �40�

The DSC algorithm for spatial variable discretization is the same as prescribed in Eq. (23). For de®niteness
and simplicity, we consider only the case of x � 0;N � D in the present work. In such a case, the steady
state solution of Eq. (37) is a superposition of the standard (cylinder) Bessel functions Jm�fn;mr=R� for a
given radius, R.

Eq. (37) is solved in polar coordinates �r; h�. A total number of 32 points are used for the r-grid and
64 for the h-grid. Note that the present approach is at its global limit for the r-grid, but is still a local
algorithm for h-grid. The time increment is 1 for all simulations. The radius R can be used as a control
parameter to guide the system to an appropriate eigenstate. For simplicity we select only a few typical
modes to demonstrate the ability of the present algorithm for handling circular geometry and clamped
boundary condition. Fig. 1 illustrates the contour patterns of a few typical mode shapes characterized
with their �n;m� values. These modes are the steady states of Eq. (37) obtained by long time integrations.
The present simulations are very stable and all results are very smooth. Remarkably, the control pa-
rameters, Rn;m, used for obtaining these states match well with the theoretical values [38], fn;m (see the
caption of Fig. 1).

4. Incompressible ¯ow

Let us consider the incompressible Navier±Stokes and Euler equations

ut � uux � vuy � ÿpx � 1

Re
�uxx � uyy�; �41�

vt � uvx � vvy � ÿpy � 1

Re
�vxx � vyy�; �42�

ux � vy � 0; �43�
in a square �0; 2p� � �0; 2p� with periodic boundary conditions. Here �u; v� is the velocity vector, p is
the pressure, Re�Re > 0� is the Reynolds number and Re � 1 de®nes the Euler equation. The Navier±
Stokes equations are analytically solvable for appropriate initial values [40] and thus provide a bench-
mark test for potential numerical methods of ¯uid dynamics. With appropriate initial values, the
Euler equation can be used to describe a ¯ow ®eld of vertically perturbed horizontal shear layers around a
jet [39±41].

A simple time discretization as described by Yang and Shizgal [42] is chosen in the present DSC ap-
proach. At time tn�1, there are three coupled equations for the velocity ®eld

1

Re
r2

�
ÿ 1

Dt

�
un�1 � pn�1=2

x � Sn
x ; �44�

1

Re
r2

�
ÿ 1

Dt

�
vn�1 � pn�1=2

y � Sn
y ; �45�

and for the pressure

r2pn�1=2 � Sn
p : �46�
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Here Sn
x ; S

n
y and Sn

p are

Sn
x � ÿ

un

Dt
� �unun

x � vnun
y�; �47�

Sn
y � ÿ

vn

Dt
� �unvn

x � vnvn
y�; �48�

Sn
p �

1

Dt
�un

x � vn
y� ÿ �un

x�2 ÿ �vn
y�2 ÿ 2un

y vn
x : �49�

At each time tn�1, the pressure ®eld pn�1=2 is solved according to Eq. (46) from the known velocity ®eld
vector �un; vn�. The velocity ®eld vector �un�1; vn�1� is then updated according to Eqs. (44) and (45). All
spatial di�erentiation matrices are constructed according to Eq. (23).

4.1. The Navier±Stokes equation

This example is used to illustrate the accuracy of the present approach. We take the initial condition as

u�x; y; 0� � ÿ cos�x� sin�y�;
v�x; y; 0� � sin�x� cos�y�: �50�

The exact solution for this case is given by:

u�x; y; t� � ÿ cos�x� sin�y�eÿ�2t=Re�;

v�x; y; t� � sin�x� cos�y�eÿ�2t=Re�;

p�x; y; t� � ÿ 1

4
�cos�2x� � cos�2y��eÿ�4t=Re�:

�51�

Our calculations are conducted at a variety of Reynolds numbers ranging from 100 to 1. In each di-
mension, 31 equally spaced grid points (Nx � Ny � 31) are used for each dimension of the computational
domain. The W value is chosen as 30. The time mesh size is ®xed as 0.001. L2 and L1 errors for various
Reynolds numbers are listed in Table 2. Note that, the present result for the inviscid case (Re � 1) is about
1010 times more accurate than that of E and Shu obtained by using a high order essentially non-oscillatory
scheme [40]. It is evident that the accuracy of the DSC approach is extremely high, particularly when the
Reynolds numbers are very large. Our other test calculations indicate that a better accuracy can be easily
attained if the present low level time discretization is improved. Nevertheless, the present results are some of
the best to our knowledge.

Table 2

L2 and L1 errors of the numerical solutions for the 2D Navier±Stokes equation

Re t � 0:5 t � 1:0 t � 1:5 t � 2:0

L2 L1 L2 L1 L2 L1 L2 L1

102 3.2()07) 9.8()08) 6.4()08) 1.9()07) 9.4()07) 2.9()07) 1.2()06) 3.8()07)

103 3.2()09) 9.9()10) 6.5()09) 2.0()09) 9.7()09) 3.0()09) 1.3()08) 4.0()09)

104 3.2()11) 1.0()11) 6.4()11) 2.1()11) 9.7()11) 3.1()11) 1.3()10) 4.1()11)

105 7.1()13) 6.3()13) 1.5()12) 1.4()12) 2.3()12) 2.3()12) 3.3()12) 2.9()12)

1 9.8()15) 7.9()15) 1.5()14) 8.8()15) 2.3()14) 1.3()14) 3.3()14)a 1.8()14)

a L2 � 9:1�ÿ04� was reported by E and Shu obtained by using a high order essentially non-oscillatory scheme [40].
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4.2. The Euler equation

We now look at the case when Re � 1 (the Euler equation) with sharply varying initial values. This
example is chosen to illustrate the ability of the present algorithm for providing very ®ne resolution with a
relatively coarse grid. The initial values are that of a jet in a doubly periodic geometry [39]

u�x; y; 0� �
tanh 2yÿp

2q

� �
if y6 p;

tanh 3pÿ2y
2q

� �
if y > p

8><>:
9>=>;;

v�x; y; 0� � d sin�x�;

�52�

where d � 0:05 is used for the present calculations. This initial value describes a ¯ow ®eld consisting
of horizontal shear layers of ®nite thickness, perturbed by a small amplitude vertical velocity, making
up the boundaries of the jet. The evolution under the Euler equation leads to a periodic array of
large vortices, with the shear layer between the rolls being thinned by the large straining ®eld. This
problem is not analytically solvable and has been used to test numerical algorithms by many authors
[39±41].

It is known that for certain choice of parameters the solution quickly develops into roll-ups with smaller
and smaller scales, and the resolution is lost eventually with a ®xed grid for local methods [40]. We choose a
65� 65 grid for the computational domain. The results of di�erent time units are plotted in Fig. 2. It is seen

Fig. 2. The streamlines for the double shear layer problem integrated with 652 grid points. (a) t � 4; (b) t � 6; (c) t � 8; (d) t � 10.
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that our solutions are smooth and stable for this case. We found that average kinetic energy is well pre-
served (a straight line) over the time history.

5. Conclusion

This paper explores the usefulness and tests the accuracy of a DSC [17] algorithm for mechanical ap-
plications. Two classes of benchmark examples are chosen to illustrate the present approach. The ®rst class
of problems is plate vibration analysis. Both a rectangular plate and a circular plate are employed to test the
present approach. For the rectangular plate, a uniform, simply supported boundary condition is used and
the biharmonic equation is analytically solvable. We use a direct matrix diagonalization method to cal-
culate the ®rst 100 eigenvalues. By using a reasonable mesh size we obtain results with errors as small as
10ÿ14 for many eigenvalues. The second example considered is a circular plate with compressive inplane
force and clamped boundary condition. The corresponding governing equation is also analytically solvable
and thus it provides another benchmark test for numerical methods. To test the utility of the present
approach for plate analysis, we choose an iterative scheme to extract plate mode shapes and vibration
frequencies. A few typical results indicate that the present iterative-DSC algorithm works extremely well in
predicting the shape and frequency of the circular plate vibration. In fact, the simulated modes match well
with theoretical ones. Results of plates with mixed boundary conditions and complex geometries will be
presented elsewhere.

In the second class of problems, we consider incompressible ¯uid ¯ows. The ®rst case in this class is the
Navier±Stokes equation in a square box with periodic boundary condition, the Taylor problem. This
problem admits an analytical solution. We use the DSC algorithm for spatial discretization and a ®rst-order
scheme for time advancing. Numerical simulations are performed over a wide range of Reynolds numbers
with a small mesh. The present approach reaches the machine precision when the Reynolds numbers are
su�ciently large. In particular, at Re � 1, our result is 1010 times more accurate than that of E and Shu
obtained by using a high-order essentially non-oscillatory scheme [40]. The DSC results are the best for this
problem to our knowledge. The last case is the Euler equation with the initial value representing doubly
periodic shear layer ¯ows. To resolve small scale roll-ups produced in this problem is not an easy task,
particularly with a relatively small mesh. Smooth and stable results are obtained in the present calculations.
It is found that the kinetic energy of the system is preserved very well over the time history of the inte-
gration.

The illustrative calculations presented in this paper indicate that the present DSC approach is very
accurate, e�cient and reliable for certain mechanical applications. We note that although the DSC algo-
rithm has a controllable accuracy for numerical approximations, it has, in general, a banded matrix. This is
particularly important for large scale computations. Since the DSC matrix is banded, it has the potential to
be implemented in complex geometries and mixed boundary conditions. These studies are in progress.
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