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Discrete singular convolution for the solution
of the Fokker–Planck equation

G. W. Wei
Department of Computational Science, National University of Singapore, Singapore 119260

~Received 22 December 1998; accepted 11 February 1999!

This paper introduces a discrete singular convolution algorithm for solving the Fokker–Planck
equation. Singular kernels of the Hilbert-type and the delta type are presented for numerical
computations. Various sequences of approximations to the singular kernels are discussed. A
numerical algorithm is proposed to incorporate the approximation kernels for physical applications.
Three standard problems, the Lorentz Fokker–Planck equation, the bistable model and the Henon–
Heiles system, are utilized to test the accuracy, reliability, and speed of convergency of the present
approach. All results are in excellent agreement with those of previous methods in the field.
© 1999 American Institute of Physics.@S0021-9606~99!50518-7#
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I. INTRODUCTION

One of the formal approaches to the real world pheno
ena is to start from the microscopic theory such as the c
sical Liouville equation or the quantum Liouville equatio
These equations describe many-body systems and their
eral solutions are unfeasible to obtain at present. Redu
descriptions in terms of one- or few-particle distributio
functions or density operators lead to the Bogoliubov–Bor
Green–Kirkwood–Yvon ~BBGKY! hierarchy, Zwanzig’s
equation, or equivalently, Mori’s generalized Langevin eq
tion. These equations formally provide better physical
sight for macroscopic phenomena. However, they are
exact and are not soluble in general. Appropriate trunca
of these equations results in nonlinear mesoscopic kin
equations, such as the Boltzmann equation. The Boltzm
equation describes a system in terms of a typical one-par
reduced density operator which is coupled to the rest of
system via binary or triple collisions. Hydrodynamic~or
transport! equations, such as the equation of continuity,
equation of motion, and the equation of energy conservat
can be derived from kinetic equations. Hydrodynamic eq
tions are at the macroscopic level and can be used to s
late the real world phenomena as what have usually b
done with the Navier–Stokes equation in computational fl
dynamics. However, the involved transport coefficients
formally still determined by the kinetic equations. The Bo
zmann equation is nonlinear and is still hard to solve
general. A further simplified model is the celebrated Fokke
Planck equation~FPE!.

The theory of the Fokker–Planck equation has a re
tively long history starting from the early work by Einstein1

Langevin,2 Fokker,3 and Planck,4 as well as many others.5–7

The modern theory of the Fokker–Planck equation is v
rich in its content due to rapid development in analytical a
computational analyses and a broad spectrum of app
tions. It is capable of describing a broad range of scient
phenomena, such as the relation of fluctuations and ran
force, nonlinearity in pattern formation and various mo
coupling effects. Many physical, chemical, biological, a
8930021-9606/99/110(18)/8930/13/$15.00
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economical systems can be described by the Fokker–Pla
equation with various coefficients. There has been a g
deal of theoretical attention8–24 on the FPE in the recen
years. Numerous algorithms have been explored for the
merical solution of the Fokker–Planck equation. As one m
expect, each of proposed methods has its advantages
limitations. Path integral methods have been utilized by
number of authors.25–27Wehner and Wolfer16 have presented
an elegant formalism where the path integrals involving
Onsager–Machlup functionals11 are numerically evaluated
Monte Carlo techniques28 are very useful for providing in-
formation about certain properties of a system, usually
terms of the moments of the underlying stochastic proce
Swendsen and Wang have recently developed a clu
Monte Carlo algorithm29 which has potential for handling
critical slowing down phenomena in nonlinear Fokke
Planck systems. Since Monte Carlo approaches do not
rectly refer to the probability density distribution, more d
rect approaches, such as the finite difference method
spectral method are frequently employed30–32 when the en-
tire distribution function is required. It is well-known that th
finite difference method often suffers from stiff system
Chang and Cooper33 were the first to discuss a practical fini
difference procedure in which the number density of the s
tem is preserved in each step, and the distribution func
evolves in a quasiequilibrium manner. The Chang–Coo
method has been generalized by Larsenet al.34 to allow a
larger time increment and to achieve greater numerical
bility for a wide class of systems, which include the nonli
ear Compton scattering problem. A drawback of their a
proach is that analytic expressions for the collisi
parameters are required at each time step, which may no
available for a practical application. Recently, Epperlein19

further generalized the Chang–Cooper method by taking
account the energy conservation. His fully conservat
scheme has been applied to a spatially homogeneous pla
system involving the Coulomb collision. Most recentl
Drozdov and Morillo have utilized aK-point Stirling inter-
polation formula for accurately calculating the distributio
0 © 1999 American Institute of Physics
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function.23 These authors demonstrated that their results
much more reliable than those of a previous cumulant exp
sion. For a wide class of Fokker–Planck operators, the
genvalue expansion approach is applicable.11,36,37In such an
approach, various spectral methods and pseudospectral m
ods can be used to provide extremely accurate results fo
eigenvalues of the Fokker–Planck equation. In cases lik
Lorentz gas system, the full set of eigenfunctions and eig
values determines completely the dynamics of the Fokk
Planck equation. In particular, Shizgal’s method,35 using
nonclassical weight functions, is often optimized in terms
accuracy and speed of convergence for certain problems
der study.36,37 A distributed approximating functiona
approach38,39 was used for solving the Fokker–Planck equ
tion with comparable results. Park and Petrosian40 have re-
cently provided a detailed comparison of several differ
methods for the solution of the Fokker–Planck equation.

In the eigenfunction expansion approach, use is mad
a mathematical transformation to arrive at a particular fo
of the Fokker-Planck operator which is formally similar
the Schro¨dinger operator. Then the solution of the Fokke
Planck equation can be treated in a manner analogous
bound state expansion treatment of the Schro¨dinger equation.
Conceptually, there are some essential differences betw
the Schro¨dinger equation and the Fokker–Planck equati
The former is a first principle approach to a closed system
the microscopic level and is an exact treatment. The latte
a statistical approach to an open system at the mesosc
level and is an approximated description.

Analytical approximation approaches, such as the s
ing theory,10 WKB analysis,12 and normal mode analysis41

are extremely useful for obtaining approximate solutions
der certain conditions. For example, the interesting asp
associated with the long time behavior of a system, de
mined by the occurrence of exponentially small eigenvalu
can be very accurately analyzed by the WKB method.12 In
contrast, most numerical methods encounter difficulties
treating exponentially small eigenvalues. Ryskin24 has given
an analytical procedure for correcting equations of evoluti
including the Markov processes.

The purpose of the present paper is to introduce a
crete singular convolution~DSC! algorithm for solving the
Fokker–Planck equation. The underlying mathemati
structure of such an algorithm is the theory of distributio
which was informally used by physicists and engineers,
was later presented in rigorous mathematical form
Schwartz,42 Korevaar,43,44 and others. There are three para
lel descriptions for the theory of distributions. One descr
tion is to characterize them as an equivalence class, or
eralized limit of various Cauchy sequences~fundamental
sequences! and fundamental families as rigorously defin
by Korevaar.43 This approach is particularly convenient fo
the delta distribution. Another description is to formula
them as continuous linear functionals on the space of
functions as introduced by Schwartz.42 The vector space o
test functions is obtained from a class of test functions w
compatible convergence or topology. The third description
based on generalized derivatives of integrable functio
Generalized derivatives are distributions rather than w
Downloaded 31 Mar 2002 to 137.132.3.10. Redistribution subject to AI
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behaved functions. The first description is intuitive and co
venient for various applications. The functional descripti
is particularly elegant and concise. It is also very conveni
for higher dimensional applications. The third description
useful for certain practical applications involving derivativ
and antiderivatives. These three methods are form
equivalent and are commonly used for theoretical desc
tions in general. The present work explores computatio
aspects of the distribution theory, namely a discrete sing
convolution algorithm. Numerical tests indicate that pres
approach is extremely efficient and robust for solving t
Fokker–Planck equation describing various physical p
nomena.

This paper is organized as the follow. The formalism
discrete singular convolution is introduced in Sec. II. Tw
types of singular kernels, namely, singular kernels of
Hilbert type and the delta type, are discussed for the poin
view of distributions. Sequences of approximations to th
distributions are presented. A computational algorithm
proposed to realize the concept of the discrete singular c
volution. Numerical techniques regarding discretizatio
truncation, boundary, and matrix representation of opera
are discussed in detail. The application of the present
proach is illustrated by numerically solving the Fokke
Planck equation in Sec. III. Important models such as
Lorentz gas, and the quartic potential system are utilized
test the present algorithm. Another important benchm
problem, the Henon–Heiles system, is also included to ill
trate the present approach. Conclusions are given in Sec

II. DISCRETE SINGULAR CONVOLUTION

Singular convolutions appear in many science and en
neering problems. Discrete singular convolution is a gene
approach for numerically solving singular convolution pro
lems. By appropriate realizations of a singular convoluti
kernel, the discrete singular convolution can be an extrem
efficient, accurate, and reliable algorithm for scientific co
putations. Computational philosophy is presented in the fi
subsection. A number of examples of approximation
quences are given in the second subsection. These are
lowed by a numerical algorithm describing the detail
implementation of the present approach.

A. Singular convolution

The simplest way to introduce theory ofsingular convo-
lution ~SC! is to work in the context of distributions. LetT be
a distribution andh(t) be an element of the space of te
functions@e.g.,h(t)PD]. A singular convolution is defined
as

F~ t !5~T* h!~ t !5E
2`

`

T~ t2x!h~x!dx. ~1!

HereT(t2x) is a singular kernel. Depending on the form
the kernelT, the singular convolution is the central issue f
a wide range of science and engineering problems. For
ample, singular kernels of the Hilbert-type have a gene
form of
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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T~x!5
1

xn ~n51,2, . . .!. ~2!

Here, kernelT(x)5(1/x) is commonly occurred in electro
dynamics, molecular spectroscopy, theory of analytic fu
tions and the Hilbert transform;T(x)5(1/x2), is the kernel
used in tomography. Other interesting examples are sing
kernels of the delta type

T~x!5d~n!~x! ~n50,1,2, . . . !. ~3!

Here, kernelT(x)5d(x) is important for interpolation of
surfaces and curves~including atomic and molecular poten
tial energy surface!; and T(x)5d (n)(x), (n51,2, . . . ) are
essential for numerically solving partial differential equ
tions. Singular kernels of Abel-type

T~x!5
1

xb ~0,b,1!, ~4!

was introduced in the tautochrone problem. It has appl
tions in the area of holography and interferometry with ph
objects and is of practical importance in aerodynamics, h
and mass transfer, and plasma diagnostics. Since these
types of kernels are singular, they cannot be directly d
talized in computer. Hence, the singular convolution, Eq.~1!,
is of little numerical merit. To avoid the difficulty of using
singular expressions directly in computer, sequences of
proximations (Ta) of the distributionT can be constructed

lim
a→a0

Ta~x!→T~x!, ~5!

where a0 is a generalized limit. Obviously, in the case
T(x)5d(x), the sequence,Ta(x), is a delta sequence.

It is interesting to note that the concept of approximat
sequences is intimately related to wavelet idea of dilati
For example, a family of Shannon’s~wavelet! scaling func-
tions $Ta(x)5(sinax/px)% is a delta sequence

lim
a→`

,
sinax

px
, h~x!.5h~0!, ~6!

where h is a test function and̂•, •& denotes the standar
inner product. Therefore, Shannon’s scaling functions p
vide approximations of the delta distribution. The advanta
is that, unlike the original delta distribution, a delta seque
is well behaved. As a consequence,h(x) is actually no
longer required to be an element of the space of test fu
tions. Most importantly, with a sufficiently smooth approx
mation, it makes sense to consider adiscrete singular con-
volution ~DSC!,

Fa~ t !5(
k

Ta~ t2xk! f ~xk!, ~7!

where Fa(t) is an approximation toF(t) and $xk% is an
appropriate set of discrete points on which the DSC~7! is
well defined. Note that, the original test functionh(x) has
been replaced byf (x). The mathematical property or re
quirement off (x) is determined by the approximate kern
Ta . In particular, if Ta is Shannon’s sampling kerne
@Ta(x)5(sinax/px) and a,`], then the requirement fo
Downloaded 31 Mar 2002 to 137.132.3.10. Redistribution subject to AI
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f (x) is relaxed to a band-limitedL2 function. In general, the
convolution defined by the pair of functions is required bei
Lebesque integrable.

A sequence of approximation can be improved by
regularizer

lim
s→`

Rs~x!51. ~8!

The role of a regularizer is to increase the regularity of co
volution kernels. For the delta sequence, it follows from E
~5! that

E lim
a→a0

Ta~x!Rs~x!dx5Rs~0!51, ~9!

whereRs(0)51 is the special requirement for adelta regu-
larizer.

B. Examples

1. Sequences for singular kernels of the Hilbert-type

The Hilbert transform links between the imaginary pa
and the real part of an analytic function. It has importa
applications in a wide variety of science and engineer
fields mostly associated with causality, such as in the lin
response theory and the concept of analytic signals. The
bert transform is defined by a singular convolution

H@ f #~x![
1

p
PE

2`

` f ~x2y!

y
dy, f PL2~R!ùC~R!, ~10!

where P denotes taking the Cauchy principal value a
L2(R) denotes the space of square integrable functions
the real axisR with the standardi•i2 norm. Finally,C(R)
denotes the set of all continuous and bounded functions oR.
Note that the resulting function of the Hilbert transfor
again belongs toL2(R). The Hilbert kernel,H, can be uni-
formly approximated by a Hilbert sequenceHa ,

H~x!5
1

p

1

x
5 lim

a→`

Ha~x!

5 lim
a→`

1

p

12cos~ax!

x
, ~11!

where Ha(x) is a well-behaved except for the case ofa
5a0 . Asymptotically, the Hilbert sequence decays slow
and the approximation can be improved by using a regu
izer

Ha,s~x!5Ha~x!Rs~x!5
1

p

12cos~ax!

x
Rs~x!, ~12!

whereRs(x) satisfies Eq.~8!. Another possible restriction on
a Hilbert regularizer isRs(p/a)51. A good choice of the
Hilbert regularizer isRs(x)5e2@(uxu2p/a)2/2s2#. The deriva-
tives of the Hilbert transform, (dq/dxq)H can be expressed
as derivatives of the Hilbert kernel, (dq/dxq)Ha,s(x), in the
convolution. In fact, all other Hilbert-type singular kernel
Hn (n52,3, . . . ), can beexpressed as the derivatives
(1/p)(1/x),
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Hn~x!5
1

p

1

xn

5
~21!n21

~n21!!

dn21

dxn21 H~x!

5 lim
a→`

lim
s→`

~21!n21

~n21!!

dn21

dxn21 Ha,s~x!

5 lim
a→`

lim
s→`

~21!n21

~n21!!

dn21

dxn21

1

p

12cos~ax!

x
Rs~x!.

~13!

2. Sequences for singular kernels of the delta type

The delta distribution or so-called Dirac delta functiond
is a generalized function which follows from the fact that
is an integrable function inside a particular interval but its
needs not to have a value. Heaviside introduced both the
step Heaviside function and the Dirac delta function as
derivative and referred to the latter as theunit impulse. Dirac,
for the first time, explicitly discussed the properties ofd in
his classic text on quantum mechanics; for this reasond is
often called Dirac delta function. However, delta distributi
has a history which antedates both Heaviside and Dirac
appeared in explicit form as early as 1822, in Fourier’sThéo-
rie Analytique de la Chaleur. The work of Heaviside, and
subsequently of Dirac, in the systematic but informal expl
tation of the step function and delta function, has made d
distribution familiar to physicists and engineers before So
lev, Schwartz,42 Korevaar,43 and others put it into a rigorou
mathematical form. The Dirac delta function is the most i
portant special case of distributions or generalized functio

In particular, the Hermite function expansion of Dira
delta function was proposed by Schwartz42 and Korevaar43

over 40 years ago and was introduced by Hoffmanet al. for
numerical simulations.38 General analysis of the delta distr
bution by means of orthogonal series has been studied
Walter45 and others.46–48The use of many delta sequences
probability density estimators was discussed by Walter
Blum48 and others.47,49,50

Example 1: Dirichlet’s delta sequence.
The most important example of a delta sequence of

Dirichlet-type is Dirichlet’s delta sequence

da~x!5H Da~x! for uxu<p for a50,1,2, . . .

0 otherwise
, ~14!

whereDa is the Dirichlet kernel

Dk~x!5
1

p F1

2
1cos~x!1cos~2x!1•••1cos~kx!G

5
sin@~k1 1

2!x#

2p sin 1
2x

, k50,1,2, . . . . ~15!

Dirichlet’s delta sequence plays an important role in appro
mation theory and is the key element in trigonometric po
nomial approximations. Physically, it describes the diffra
Downloaded 31 Mar 2002 to 137.132.3.10. Redistribution subject to AI
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tion of light passing a regular series of pinholes in which t
kth pinhole’s contribution is proportional toeik.

Example 2: Modified Dirichlet’s delta sequence.
Sometimes there is a slight advantage in taking the

term in Da with a factor of 1
2,

Da* ~x!5Da2 1
2 cos~ax!

5
sin~ax!

2p tan~ 1
2x!

, a50,1,2, . . . . ~16!

This is the so-called modified Dirichlet kernel. The diffe
ence Da2Da* tends uniformly to zero on~2p, p! as
a→`. They are equivalent with respect to convergence.

The expression given by

da~x!5H Da* ~x! for uxu<pa for a50,1,2, . . .

0 otherwise
~17!

is a delta sequence of the Dirichlet type asa→`.
Example 3: Shannon’s delta sequence.
Shannon’s delta sequence or Dirichlet’s continuous d

sequence is given by the following Fourier transform of t
characteristic function,x@2a,a#,

da~x!5
1

2p E
2`

`

x@2a,a#e
2 i jxdj

5
sin~ax!

px
. ~18!

This converges to the delta distribution asa→`. Equation
~18! is related to Shannon’s sampling theory in the inform
tion theory and theory of sampling. It actually forms an o
thogonal basis for a reproducing kernel Hilbert space. Sh
non’s sampling kernel can be derived from the generali
Lagrange interpolating formula. Alternatively, Shannon
delta sequence can be given as an integration

da~x!5
1

p E
0

a

cos~xy!dy, ~19!

or as the limit of a continuous product

da~x!5 lim
N→`

a

p )
k51

N

cosS a

2k xD5 lim
N→`

1

2Np

sin~ax!

sinS a

2N xD . ~20!

To improve the asymptotic behavior of Shannon’s sa
pling kernel, regularized Lagrange interpolating kernel, a
regularized Shannon’s sampling kernel were propo
recently.51,52

Example 4: The de la Valle´e Poussin delta sequence.
The de la Valle´e Poussin kernel is given by
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Pn,p~x!5
1

p11 (
k5n2p

n

Dk~x!

5
1

2p
1

1

p (
k51

n2p

coskx

1
1

p (
k51

p F12
k

p11Gcos@~n2p1k!x#

5

sinF ~2n112p!
x

2GsinF ~p11!
x

2G
2p~p11!sin2S x

2D , ~21!

p50, . . . ,n; n50,1, . . . , ~22!

where Dk(x) are Dirichlet kernels given by Eq.~15!. It is
interesting to note that de la Valle´e Poussin kernels reduce
Ferér’s positively definite kernel whenp5n. The de la
Vallée Poussin delta sequence is given by

dn,p~x!

5H Pn,p~x! for uxu<x for p50, . . . ,n; n50,1, . . . ,

0 otherwise

~23!

as n, p→`. The de la Valle´e Poussin delta sequence is
the Dirichlet type whenp,n.

A simplified de la Vallée Poussin kernel given by

da~x!5
1

pa

cos~ax!2cos~2ax!

x2 ~24!

is very useful numerically. Expression~24! is used in our
further discussion.

C. Computational aspects

To use approximation sequences for certain comp
tions, a numerical algorithm is required. In fact, such
algorithm is not unique. Different algorithms can be pr
posed and they can be improved. The purpose of this s
section is to provide a simple and efficient numerical a
proach. Various computational aspects are discussed in
subsection.

1. Discretization

For a given kernel, there are many possible ways
discretizations. Important examples are interpolating, qu
interpolating, and noninterpolating discretizations. Mo
over, the grid in each discretization can be either uniform
nonuniform. Since uniform discretization can lead to a sin
integration kernel on a grid, it is simple, robust and efficie
In a nonuniform discretization, the kernel must vary on
grid. This produces no problem for a global method in wh
the grid and the kernel are systematically determined by
ros of the highest degree polynomial. However, it can
very inconvenient for a local method to be discretized n
uniformly because the lack of a simple procedure to p
scribe the kernel over the whole domain with high compu
tional accuracy.
Downloaded 31 Mar 2002 to 137.132.3.10. Redistribution subject to AI
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It seems to us that for sequences of the delta type and
Hilbert-type, an interpolating~or quasi-interpolating! algo-
rithm sampling atNyquist frequency, a5(p/D), has great
advantage over a noninterpolating discretization. Not o
the interpolating~or quasi-interpolating! nature guarantee
the highest accuracy on the set of grid points, but it a
provides the highest possible computational efficiency of
grid. This is because theNyquist intervalgiven by@2~p/D!,
~p/D!# is the largest possible sampling interval that is free
alias whenever theL2 function f (x) under study satisfies th
Nyquist condition,

suppf̂ ~k!,H 2
p

D
,
p

DJ . ~25!

This fact can actually be phrased in the following Shanno
sampling theorem53

f ~x!5 (
k52`

`

f ~xk!

sin
p

D
~x2xk!

p

D
~x2xk!

. ~26!

The significance of Shannon’s sampling theorem is that b
discrete, but infinite set of sampling data$ f (xk)% one can
actually recover a band-limitedL2 function on a real line.
This is particularly significant for the information theory
Shannon’s sampling theorem also has great impact on si
and image processing because the Fourier transform
Shannon’s delta sequence kernel is an ideal low-pass fi
for signals band-limited to@2~p/D!, ~p/D!#.

Another important aspect of Shannon’s delta seque
kernel is that it is a reproducing kernel

sin
p

D
~x2y!

p

D
~x2y!

5 (
n52`

` sin
p

D
~x2xn!

p

D
~x2xn!

sin
p

D
~y2xn!

p

D
~y2xn!

. ~27!

It can be used to generate an orthonormal basis for
Paley–Wiener reproducing kernel Hilbert spaceBa

2. A form
which is more useful for a quadrature filter representation

sinpx

px
5 (

n52`

` sin
p

2
xn

p

2
xn

sinp~2x2xn!

p~2x2xn!
. ~28!

Shannon’s delta sequence kernel is also related to the ea
Whittaker’s cardinal series54,55

~21!n sin
p

D
x

p

D
x2np

5

sin
p

D
~x2xn!

p

D
~x2xn!

. ~29!

Whittaker’s cardinal series has played an extremely imp
tant role in the development of mathematical theory of sa
pling. Moreover, the Nth power of Shannon’s kerne
(sinpx/px)N is a B-spline of orderN in its Fourier represen-
tation. In this sense, variousB-spline approximations, which
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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are widely used in applied mathematics and engineering,
related to various reproducing kernels and theory of d
distribution.

We shall also use theNyquist rate, uniform interpolation
for the discretization of Dirichlet delta sequence kernel,

sinF S l 1
1

2D ~x2x8!G
2p sinF1

2
~x2x8!G →

sinS p

D
~x2xk! D

~2M11!sinS p

D

x2xk

2M11D , ~30!

In a comparison to the Shannon’s delta sequence kernel
richlet’s delta sequence kernel has one more parameteM
which can be optimized to achieve better results in com
tations. Usually, we set a sufficiently largeM for various
numerical applications. Obviously, Dirichlet’s delta s
quence kernel converts to Shannon’s delta sequence kern
the limit of M→`. This uniform interpolating discretization
will also be used for discreting modified Dirichlet’s del
sequence kernels

sinF S l 1
1

2D ~x2x8!G
2p tanF1

2
~x2x8!G →

sinS p

D
~x2xk! D

~2M11!tanS p

D

x2xk

2M11D , ~31!

and for the de la Valle´e Poussin delta sequence kernels

1

pa

cos@a~x2x8!#2cos@2a~x2x8!#

~x2x8!2

→
2

3

cos
p

D̄
~x2xk!2cos

2p

D̄
~x2xk!

Fp

D̄
~x2xk!G2 , ~32!

where D̄5 3
2D is required by interpolation. The efficienc

and accuracy of these discretizations will be numerica
tested in the next section.

Finally the sequences of the Hilbert type is similar
discretized as

~21!n21

~n21!!

dn21

dxn21

1

p

12cos~ax!

x
Rs~x!

→
~21!n21

~n21!!

dn21

dxn21

1

p

sin2
p

2D
~x2xk!

p

2D
~x2xk!

Rs~x2xk!. ~33!

Hence transforms of the Hilbert-type for a continuousL2

function band-limited to~p/D! are given by the following
generalized Hilbert sampling theorem:
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l at
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Hn@ f #~x![
1

p
PE

2`

` f ~x2y!

yn dy

5
~21!n21

~n21!!

1

p (
k52`

`

f ~xk!
dn21

dxn21

sin2
p

2D
~x2xk!

p

2D
~x2xk!

.

~34!

The case ofn51 can be found in Ref. 56. A proof of thi
theorem is beyond of the scope of the present paper an
presented elsewhere. This generalized Hilbert sampling th
rem has potential for using in many science and enginee
problems. Numerical applications of Eq.~34! and its regular-
ized forms are described elsewhere.

Sincep/D is proportional to the highest frequency ca
be reached in the Fourier representation,D should be very
small for a given problem involving very oscillatory func
tions or very high frequency components.

2. Truncation

It is obvious that the aforementioned approximation
quences are formally defined in the unbounded domain~2`,
`!. Hence, the corresponding convolution kernels hav
noncompact support. Practically, it is impossible to imp
ment a unbounded domain in a computer. Therefore, i
necessary for numerical purpose to restrict the support of
kernels to a finite region. In practical, this can be achiev
either by a conformal mapping or by a spatial truncation
the convolution kernel. Conformal mapping requires
change in the governing equation under study. In comp
son, truncation is a very simple approach. The manne
kernel truncation can dramatically affect the numerical p
formance of the kernel~from the point of view of mathemat
ics, a kernel is not well defined until its domain, range a
truncation are all specified!. There are two types of trunca
tions. One isboundary adaptivetruncations. The other is
translationally invarianttruncations. The former can in prin
ciple provide a scheme for handling complex boundary
has an advantage that only information~or grid values! on
the set of grid points in the computational domain is ev
required for the convolution. No additional boundary exte
sion is needed. A problem is that in order to satisfy bound
condition or geometry requirement, it is necessary for
resulting kernel to vary near the computational bound
which implies more computations and may reduce numer
accuracy. In contrast, a translationally invariant truncat
leads to just one kernel in the whole computational doma
which is numerically cheap and efficient. Better numeric
efficiency can by achieved by making the kernelsymmetric
~or antisymmetric!. This leads to a translationally invarian
algorithm

f ~n!~x!' (
k52W

W

da
~n!~x2xk! f ~xk! ~n50,1,2,...!, ~35!

where 2W11 is the computational bandwidth, or effectiv
kernel support, which is usually smaller than the whole co
putational domain,@a,b#. Here da

(n)(x2xk) denotes for the
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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nth derivative of any of Eqs.~29!, ~30!, ~31!, and~32!. Fur-
thermore, in order for the boundary condition~or complex
geometry! to be met, it requires appropriate handling of t
function, f (xk), outsidethe computational domain.

3. Boundary

A complete numerical algorithm has to provide a sche
for handling boundaries. In a global method, its compu
tional domain is the same as its kernel support. In orde
satisfy boundary requirements, the kernel must be c
structed in adaptive manner. Hence, the kernel varies at
ferent grid points. The major drawback of such an algorit
is its difficulty in the construction of adaptive kernels f
problems involving complex geometries and boundary c
ditions. Thus, global methods have been relatively uns
cessful for dealing with these problems comparing to th
achievements in solving problems of simple geometries
boundary conditions. Whereas most local methods use
entirely different philosophy for their kernel constructio
For instance, a differentiation kernel in a finite differen
method can be the same everywhere and it is translation
invariant on the grid. Local methods are very flexible f
dealing with boundary and geometry.

In Eq. ~35!, if the kernel,da
(n)(x2xk), is fixed to be

symmetric ~or antisymmetric! and translationally invariant
there must be cases wheref (xk) are located outside of th
computational domain,@a,b#, and their values are undefine
there. In the present algorithm, suchf (xk) are to be obtained
by boundary conditions. For examples, in the Fokker–Pla
equation, the natural boundary condition is used andf (xk)
outside the domain@a,b# are set identically to zero. In th
Dirichlet boundary condition, suchf (xk) are taken to be
f (a) ~or f (b)). In periodic boundary condition, suchf (xk)
are replaced by their corresponding values inside the dom
@a,b#. In the Neumann boundary condition, suchf (xk) are
determined byf (a) and f 8(a) @or f (b) and f 8(b)]. There
are special cases, such as in Burgers’ equation, wheref (x) is
antisymmetric around the boundary point and suchf (xk) are
replaced by their correspondingf (xk) inside the domain
@a,b# with a negative sign. Symmetric extensions off (xk) are
used if boundaries are symmetric planes.

4. Discrete representation of operators

In numerically solving the Fokker–Planck equation, it
necessary to give a matrix representation to an operato
that the action of the operator can be numerically realiz
Property of an operator matrix is crucial for numerical acc
racy and efficiency. Choosing a numerically appropriate m
trix representation for an operator is quite complicated
involves not only the property of the operator, the init
value and boundary conditions, but also the numer
scheme to be utilized. From the computational point of vie
the most important property of an operator matrix is its
fective boundness, diagonality, and symmetry. The effec
boundness of an operator often depends on the initial v
and/or boundary conditions. To a desired level of accura
the truncated operator matrix should cover the effective
ergy range of the system. Operator symmetry is useful
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simplifying a matrix representation and reducing compu
memory required. Numerically, it is simple and convenie
to have a diagonal matrix representation of an operator. T
however, often cannot be achieved. For example, the Ha
tonian of the Schro¨dinger equation often has its potential pa
being diagonal in the position representation and its kine
energy part being diagonal in the momentum representat
In principle, there is a basis representation in which a giv
Hamiltonian is fully diagonal. However, finding this repre
sentation is equivalent to solving eigenstates of the Ham
tonian system. In the DSC approach we choose a grid re
sentation for the coordinate so that the potential part,V(x),
of the Hamiltonian is diagonal. Hence, we choose a dir
interpolation on the grid for its discretization

V~x!→V~xk!dm,k . ~36!

The differentiation matrix of the Hamiltonian on the coord
nate grid is then given in terms of the distribution derivati

2
\2

2m

d2

dx2→2
\2

2m
da

~2!~xm2xk!, ~37!

where m is the mass of the Hamiltonian system andda
(2)

3(xm2xk) areanalytically given by

da
~2!~xm2xk!5F S d

dxD
2

da~x2xk!G
x5xm

. ~38!

Thus, the full DSC grid representation for the Hamiltoni
operator,H, is given by

H~xm ,xk!52
\2

2m
da

~2!~xm2xk!1V~xm!dm,k . ~39!

This expression is referred as a Hamiltonian-DSC matrix
ement. Although the Hamiltonian is used as an example,
other operator which consists of a nondiagonal differen
tion part and/or a diagonal part can be treated similarly. N
that unlike its global method counterpart, the present ma
representation is banded. The bandedness is particularly
portant to large scale computations. Obviously, it is unn
essary to restrict the grid to the coordinate grid; it can be
momentum grid or any other appropriate grid~even for time
discretization!. This symmetric~or antisymmetric!, transla-
tion invariant algorithm will be used in the next section f
solving the Fokker–Planck equation.

III. APPLICATIONS

In the present study we limit our attention to the de
sequence kernels of Shannon~Shannon!, the de la Valle´e
Poussin~DLVP!, Dirichlet ~Dirichlet!, and the modified Di-
richlet ~MD!. Nevertheless, various other delta sequence k
nels can be similarly employed. It is noted that the de
sequence kernels of Shannon~Shannon! and de la Valle´e
Poussin~DLVP! are parameter-free, which is an importa
and convenient feature for applications, in particular for u
experienced users. The 2M11 parameter used for the Di
richlet and modified Dirichlet kernels is chosen as 71 for
calculations. As long as the 2M11 value is chosen suffi-
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ciently large (2M11.W, where 2W11 is the matrix band-
width!, the numerical results are not sensitive to the spec
values used.

The goal of the present section is to test the DSC al
rithm for the solutions of the Fokker–Planck equation. T
DSC method can been applied to the Fokker–Planck eq
tion in many different ways. Two possible approaches
direct time-dependent treatment and eigenfunction expan
~see Appendix!. The latter is used in this paper. The Fokke
Planck-DSC matrix, whose elements are of the form of
pression~39!, is directly diagonalized to generate eigenfun
tions and eigenvalues. These can be used to determine
dynamics of the Fokker–Planck system as described in
Appendix. The Fokker–Planck equation treated in this w
is of the common form11

] f ~x,t !

]t
5

]

]x FA~x!1
]

]x
B~x!G f ~x,t !, ~40!

whereA(x) is a drift coefficient andB(x) a diffusion coef-
ficient. Note that bothA andB can be nonlinear in the vari
ablex. The distribution functionf (x,t) is normalized to one
and its dynamics is governed by Eq.~40!. The present re-
sults, which are in terms of an eigenfunction expansion,
compared with those of other established methods in
field. It is found that the DSC algorithm can provide resu
which are better than, or at least equivalent to those of p
vious global spectral methods in terms of accuracy and sp
of convergence. However, the DSC algorithm is consid
ably simpler than global spectral approaches.

For the convenience of the description and comple
ness, the formalisms of the Fokker–Planck equation, part
larly the formal relation between the FPE and the Scho¨dinger
equation, is reviewed in the Appendix. The theory of t
Fokker–Planck equation has been extensively studied in
last a few decades. The formalism of the eigenfunction
pansion of the Fokker–Planck equation also has been
cussed by a number of authors.11,36 We select only those
details that are most relevant for our purposes. This sectio
divided into three subsections; Sec. III A is devoted to
treatment of the Lorentz gas. The benchmark bistable mo
is numerically studied in Sec. III B. Finally, the Henon
Heiles system is treated in Sec. III C.

A. Lorentz gas

The Lorentz gas model is an interesting problem rep
senting the kinetic motion of a typical light particle in a he
bath of heavy particles. The interaction of two types of p
ticles is modeled by the binary hard sphere collision proce
ing. The Lorentz gas model is a standard example of
Fokker–Planck equation derived from more general the
of the Boltzmann equation by using the hard sphere collis
assumption. This model has been applied to thermaliza
of electrons in a gaseous matrix.57 The eigenvalue problem
of the Lorentz gas has been studied by many authors rece
using various methods, such as the Rayleigh–Ritz variatio
procedure,58,59 the Wigner–Wilkins kernel,60 and the Sonine
polynomial expansion.61,62 Particularly, Shizgal and Chen36

have reported the quadrature discretization method~QDM!
calculation employing a nonclassic weight function. Th
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reported very rapid convergence with the first 40 eigenval
accurately calculated by using 70 or fewer QDM points.

The corresponding Fokker–Planck equation of Lore
gas is given by

] f ~x,t !

]t
5

]

]x
@~2x223! f ~x,t !#1

]2

]x2 @x f~x,t !#. ~41!

The effective potentialV(z) for this system is

V~z!5
z6

64
2z21

15

4z2 . ~42!

@Note the functional relation betweenz andx is given by Eq.
~A17! in the Appendix.# Mathematically, this potential is
bounded below but it has singularities both at zero and
infinity. The operator domain for the problem is@0, `!. Shiz-
gal and Chen36 noted that the computational interval has
be sufficiently large in order for the large eigenvalues to
convergent.

In the present work we examine the performance of
DSC algorithm by using delta sequence kernels of Shan
~Shannon!, Dirichlet ~Dirichlet!, modified Dirichlet ~MD!
and the de la Valle´e Poussin~DLVP!. The computations uti-
lizing the first three delta sequence kernels are condu
using 60 grid points inz and are found to be in excellen
agreement with those given by Shizgal and Chen36 obtained
by using up to 70 QDM points. These results for the first
eigenvalues are listed in Table I together with those of Sh
gal and Chen.36 We found that the de la Valle´e Poussin
~DLVP! delta sequence kernel requires 1.5 times of g
points (N590) to achieve similar accuracy.

B. Bistable system

To demonstrate further the reliability and robustness
the DSC method for the Fokker–Planck equations, we c
sider the bistable system, a model that has significant th
retical applications and is numerically difficult for a certa
parameter region. It has received a lot of attention in
literature recently. Van Kampen, Dekker, and van Kamp8

have performed very detailed theoretical analysis and a fi
difference scheme calculation of this system. Suzuki stud
this system by using his scaling theory10 approach. Risken
examined the system by using a matrix continued fract
technique.11 Caroli et al.consider this system as a test mod
for the WKB treatment of the Fokker–Planck equation.12 In

TABLE I. Eigenvalues of the Lorentz gas Fokker–Planck operator.

Shizgalet al.
(N570)

Shannon
(N560)

Dirichlet
(N560)

MD
(N560)

DLVP
(N590)

l1 4.683 40 4.683 395 4.683 395 4.683 395 4.683 3
l2 10.112 52 10.112 52 10.112 52 10.112 52 10.112 5
l3 16.429 68 16.429 68 16.429 68 16.429 68 16.429 6
l6 40.052 38 40.052 38 40.052 38 40.052 38 40.052 3
l10 80.447 94 80.447 94 80.447 94 80.447 94 80.447 5
l15 142.446 1 142.446 1 142.446 1 142.446 1 142.444 6
l20 215.163 1 215.162 7 215.162 7 215.162 8 215.159 2
l30 387.623 387.616 6 387.616 6 387.616 7 387.607 0
l40 590.867 590.822 9 590.821 6 590.824 3 590.839 1
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE II. Eigenvalues of the Fokker–Planck operator for a bistable system (e50.1).

Shizgalet al.
(N560)

Shannon
(N542)

Dirichlet
(N542)

MD
(N542)

DLVP
(N563)

l1 3.354 530 0~22! 3.354 528 7~22! 3.354 528 7~22! 3.354 528 7~22! 3.354 528 7~22!
l2 0.927 372 0.927 372 0.927 372 0.927 372 0.927 372
l3 1.680 264 1.680 264 1.680 264 1.680 264 1.680 264
l5 3.733 985 3.733 985 3.733 985 3.733 985 3.733 985
l10 11.687 442 11.687 441 11.687 441 11.687 441 11.687 44
l15 22.639 908 22.639 909 22.639 909 22.639 909 22.639 90
l20 36.031 815 36.031 785 36.031 785 36.031 785 36.031 78
l25 51.541 9 51.535 92 51.535 92 51.535 92 51.536 13
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their systematic study, they concluded that the final appro
to equilibrium is governed by the Kramers high-viscos
rate. Larson and Kostin14 conducted a formal analysis of th
system from the point of view of chemical kinetics. Indi
et al.15 obtained a numerical solution for the system us
both finite-element and Monte Carlo methods. Blackm
and Shizgal18 have applied their QDM approach to the mod
and given a detailed numerical analysis for various phys
behaviors of the system. Recently Shizgal and Chen37 have
designed a number of new nonclassic QDM weight functio
to attain a superior rate of convergence for this problem. T
purpose of the present study is to demonstrate that the D
algorithm with certain interpolating delta sequence kern
can achieve an extremely high speed of convergence.

The Fokker–Planck equation describing a typic
bistable system is given by

] f ~x,t !

]t
52

]

]x
~gx2gx3! f ~x,t !1e

]2

]x2 f ~x,t !. ~43!

Here the parametersg, g, ande are positive and are related t
one another through the fluctuation-dissipation theorem
equilibrium. However, when the system is far from equili
rium, g, g and e become independent of each other. F
simplicity and a comparison with previous work, we s
g5g51 in the present work. The corresponding effecti
potential for Eq.~43! ~see Appendix! is

V~z!5
~z32z!2

4e2 2
1

2e
~3z221!, ~44!

where the size ofe characterizes the physical regime d
scribed in the problem. Fore sufficiently small, one has a
triple-well potential which supports three isolated, appro
mately harmonic systems at low energy. These triple w
lead to nearly threefold degenerated states which are
sensitive to computational intervals. For intermediatee, the
potential has three shallow wells coupled to each other w
the three minima at the points18

z50, 6@ 2
31~ 1

912e!1/2#1/2. ~45!

This potential supports nearly twofold degenerated sta
For sufficiently largee, the potential transforms into
double-well type with a maximum at the origin and tw

minima atz56@ 2
31( 1

912e)1/2#1/2. The potential asymptoti-
cally behaves asz6 and can obviously support infinitel
many discrete states with positive energies. Formally,
ar 2002 to 137.132.3.10. Redistribution subject to AI
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problem is defined in the domain of~2`, `!. Computation-
ally, a relatively large numerical interval is required whe
the size ofe is large.

In order to compare the present results with those
tained previously, we restrict the present calculations for
cases ofe50.1, 0.01. The delta sequence kernels of Shan
~Shannon!, Dirichlet ~Dirichlet!, and modified Dirichlet
~MD! are first employed in the present calculations.
usual, it takes about 1.5 times of grid points for the de
Vallée Poussin~DLVP! delta sequence kernel to reach t
same level of accuracy. For the convenience of comparis
all eigenvalues in this subsection are measured in unitse
~so,ln5e«n).

In the case ofe50.1, the DSC calculations of Shanno
Dirichlet, and modified Dirichlet using only 42 grid points
yield the results of the first 25 eigenvalues that are in v
good agreement with the converged results obtained
QDM using up to 60 grid points.18 A comparison of these
results are listed in Table II. The grid points required for t
de la Vallée Poussin~DLVP! delta sequence kernel is 63.

The case ofe50.01 is significantly more difficult to
calculate. The DSC results obtained by using four delta
quence kernels for the first 25 eigenvalues is listed in Ta
III. Similar calculations by Blackmore and Shizgal18 using
100 QDM grid points are also included in Table III for re
erence. Except for the first excited state, all eigenvalues
converged up to 6 significant figures using only 52 g
points when the delta sequence kernels of Shannon, Dir
let, and modified Dirichlet are employed. Whene decreases,
the shape of the potential bottom become increasely un
and irregular. As a result, the first few excited states are v
sensitive to the number of grid points used and conve
very slowly as noted by Blackmore and Shizgal. In gene
a dramatical, nonmonotonic change in potential shape
quires a very large number of grid points to describe ac
rately. Therefore, computationally, certain related eigensta
become very sensitive to the number of grid points used
the calculation. The first few eigenvalues approach zero
e→0. Shizgal and Chen37 have recently obtainedl1

56.077(28) with 60 QDM grid points associated with

Gaussian weight ofe2x2/(2e). This is compared to the presen
result ofl151.28(28) with 52 DSC points of Shannon o
Dirichlet or modified Dirichlet. A test calculation fore
50.001 indicates that significantly more grid points a
needed to converge the first 50 eigenvalues. Since
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE III. Eigenvalues of the Fokker–Planck operator for a bistable system (e50.01).

Shizgalet al.
(N5100)

Shannon
(N552)

Dirichlet
(N552)

MD
(N552)

DLVP
(N578)

l1 6.154 650~212! 1.278 247~210! 1.276 095~210! 1.282 279~210! 1.271 301~210!
l2 0.967 865 0.967 864 0.967 864 0.967 864 0.967 864
l3 1.864 542 1.864 542 1.864 542 1.864 542 1.864 542
l5 1.866 975 1.866 975 1.866 975 1.866 975 1.866 975
l10 3.943 531 3.943 531 3.943 531 3.943 531 3.943 531
l15 5.960 839 5.960 839 5.960 839 5.960 839 5.960 839
l20 8.793 163 8.793 146 8.793 147 8.793 147 8.793 146
l25 12.269 3 12.268 697 12.268 696 12.268 697 12.268 70
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Fokker–Planck operator for the bistable potential is u
bounded~but bounded below!, it has infinity many discrete
eigenvalues. The higher energy eigenstates exhibit the t
cal global behavior and the corresponding eigenvalues
come more and more nearly degenerated. Computation
these large eigenvalues generally converge more slowly
require more grid points for smallere values. In other words
to maintain certain level of accuracy for higher energy eig
values, the grid mesh sizeD should inversely proportional to
the energies of the states@(1/D)→0 as (l→`)].

C. The Henon–Heiles system

As the last testing problem for this section, we consid
the benchmark Henon–Heiles system63 to demonstrate the
reliability and robustness of the DSC algorithm for calcul
ing the eigenfunctions. Physically, the 2D anharmo
Henon–Heiles resonating system is one of the most imp
tant systems for chaotic analysis and it provides a simple
convenient example for the understanding and descriptio
Poincare surfaces and trajectories. Numerically, it is
widely-used benchmark problem. A variety of numerical a
proaches have been tested on the Henon–Heiles pote
system. Earlier work by Marcuset al.64 used basis sets with
990 and 1225 basis states. Feitet al.65 have reported an ac
curate calculation using their split operator-FFT method; t
required 16 384 time steps. A recent computation by Shiz
and Chen36 achieved six significant figure accuracy for e
genvalues as high as close to the disassociation limit, u
50 or fewer grid points in each dimension. In general, Sh
gal’s approach converges extremely fast since it can be
timized according to the problem under study.37 Discrete
variable representation66 and its improved version67 achieve
a similar level of accuracy as Shizgal’s quadrature discr
zation method~QDM!. Similar level of accuracy was ob
tained by Zhanget al.by means of distributed approximatin
functionals.39 The purpose of the present work is to demo
strate that an extremely high speed of convergence for
2D system can be achieved by using the DSC algorithm w
various interpolating kernels.

The govern equation for the Henon–Heiles system
given by

F2
1

2

]2

]x22
1

2

]2

]y2 1
1

2
x21

1

2
y22lxS 1

3
x22y2D Gcnm~x,y!

5enmcnm~x,y!, ~46!
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where the parameterl is a measure of the anharmonicity o
the two-dimensional system and is here taken to beA0.0125
to enable the comparison of the present results with thos
other authors. Noid and Marcus68 discussed the quasiboun
states of this system in terms of the principal quantum nu
ber n and angular momentum quantum numberm. Their
classification of states is used in the present descript
There is aC3v symmetry in the Henon–Heiles potenti
which can be utilized in computations to reduce the num
of grid points required. However, for the purpose of testi
the DSC algorithm, we do not take this advantage. In
cases that the delta sequence kernels of Shannon~Shannon!,
Dirichlet ~Dirichlet!, and modified Dirichlet~MD! are used,
the present results are calculated using only 40 grid point
each dimension (Nx5Ny540,Dx5Dy50.444 878 05).
These are listed in Table IV together with those by Shiz
and Chen36 obtained by using up to 50 QDM grid points i
each dimension. It is seen that all the present results obta
using different delta sequence kernels are in excellent ag
ment. The same level of accuracy is attained by using the
la Vallée Poussin~DLVP! delta sequence kernel with 1.
times of grid points in each dimension (Nx5Ny560,Dx

5Dy50.299 016 39).

IV. CONCLUSION

This paper introduces a discrete singular convolut
~DSC! algorithm for the numerical solution of the Fokker
Planck equation. Singular kernels of the Hilbert-type and
delta type are considered. Various sequences of approx
tions are constructed for numerical analysis. Computatio
techniques are discussed for singular kernels of both
Hilbert-type and the delta type. A generalized Hilbert sa
pling theorem is given. By focusing on the delta sequen
kernels of Shannon, Dirichlet, modified Dirichlet, and the
la Vallée Poussin, the utility of the DSC algorithm is ex
plored for solving the Fokker–Planck equation. Importa
numerical issues examined in this paper are the accurac
approximation, the speed of convergence, the simplicity
implementation. The DSC algorithm performs extreme
well for all issues. The present results are in excellent ag
ment with those of previous approaches.

Three typical examples, which cover a variety of phy
cal situations, are chosen to demonstrate the usefulness
to test the accuracy of the present algorithm. The first
ample is the Lorentz gas problem with a quadratic drift c
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE IV. Eigenvalues of the Henon–Heiles system.

n m Feit et al. Shizgalet al. Shannon Dirichlet MD DLVP

3 3 3.9825 3.982 417 3.982 417 3.982 417 3.982 417 3.982
3 23 3.9859 3.985 761 3.985 761 3.985 761 3.985 761 3.985
5 3 5.8672 5.867 015 5.867 015 5.867 015 5.867 015 5.867
5 23 5.8816 5.881 446 5.881 446 5.881 446 5.881 446 5.881
6 6 6.9991 6.998 932 6.998 932 6.998 932 6.998 932 6.998
6 26 6.9996 6.999 387 6.999 387 6.999 387 6.999 387 6.999
7 3 7.6979 7.697 721 7.697 721 7.697 721 7.697 721 7.697
7 23 7.7371 7.736 885 7.736 885 7.736 885 7.736 885 7.736
8 6 8.8116 8.811 327 8.811 327 8.811 327 8.811 327 8.811
8 26 8.8154 8.815 188 8.815 188 8.815 188 8.815 188 8.815
9 3 9.4670 9.466 773 9.466 773 9.466 773 9.466 773 9.466
9 23 9.5526 9.552 382 9.552 382 9.552 382 9.552 382 9.552
9 9 10.0356 10.035 413 10.035 413 10.035 413 10.035 413 10.035
9 29 10.0359 10.035 592 10.035 592 10.035 592 10.035 592 10.035

10 6 10.5727 10.572 480 10.572 480 10.572 480 10.572 480 10.572
10 26 10.5907 10.590 470 10.590 470 10.590 470 10.590 470 10.590
11 3 11.1603 11.160 258 11.160 258 11.160 259 11.160 259 11.160
11 23 11.3253 11.325 231 11.325 231 11.325 231 11.325 231 11.325
11 9 11.7497 11.749 519 11.749 519 11.749 519 11.749 519 11.749
11 29 11.7525 11.752 297 11.752 297 11.752 297 11.752 297 11.752
12 6 12.3335 12.333 785 12.333 785 12.333 785 12.333 785 12.333
12 26 12.2771 12.277 192 12.277 192 12.277 192 12.277 192 12.277
12 12 12.7474 12.748 445 12.748 431 12.748 431 12.748 431 12.748
12 212 13.0310 13.032 062 13.032 062 13.032 062 13.032 062 13.032
13 3 13.0868 13.086 873 13.086 873 13.086 873 13.086 873 13.086
13 23 13.0800 13.081 196 13.081 196 13.081 196 13.081 196 13.081
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efficient and a nonclassical diffusion term. The transform
Fokker–Planck equation has a singular potential describ
hard sphere collisions of a light particle with a heavy parti
bath. The DSC algorithm performs extremely well for th
system. In the calculation using the interpolating delta
quence kernels of Shannon, Dirichlet, and modified Diric
let, the first 40 eigenvalues converge to six significant fi
ures, using only 60 grid points. These results are in excel
agreement with those of Shizgal and Chen36 obtained by us-
ing up to 70 QDM grid points.

In the second example, we utilized a bistable model
two differente values (e50.1, 0.01!. Since thee value mea-
sures the ratio of dissipation and convection in the Fokk
Planck equation, a smalle means a fast convective motion o
the system. The corresponding small Fokker–Planck eig
values are difficult to evaluate by numerical approaches
to irregular shape at the bottom of the effective potential.
in the previous example, the DSC algorithm converges fa
than that of the QDM approach reported by Shizgalet al.18,36

for this model when the interpolating delta sequence kern
of Shannon, Dirichlet, and modified Dirichlet are utilize
We used only 42 and 52 grid points fore50.1 and e
50.01, respectively. Similar results reported by Shizgal a
Chen36 were calculated by using up to 60 and 100 QDM g
points, respectively. We noted that the QDM approach w
some specifically designed weight function can attain an
tremely fast speed of convergence.37

The last example considered is the Henon–Heiles an
monic oscillator potential, which is another standard probl
for various numerical methods. The DSC algorithm co
verges very rapidly for this problem too. For the delta s
quence kernels of Shannon, Dirichlet, and modified Diric
ar 2002 to 137.132.3.10. Redistribution subject to AI
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let, the first 97 eigenvalues converge to eight signific
figures, when only 42 grid points are used in each dimens
These results are in excellent agreement with those of o
methods, such as those of Feitet al.65 obtained using the
symmetric split operator-FFT and, in particular, of Shizg
and Chen.36 The latter were calculated using up to 50 QD
grid points in each dimension. The present results indic
that the DSC algorithm is an efficient, reliable, and rob
method for numerically solving the Fokker–Planck equat
and eigenvalue problems in general.
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APPENDIX: THE FORMAL RELATION BETWEEN THE
FOKKER–PLANCK EQUATION AND THE
SCHRÖDINGER EQUATION

The Fokker–Planck equation~40! considered in this
work is a second order linear partial differential equation
the parabolic type. It is convenient to rewrite Eq.~40! as

] f ~x,t !

]t
5LFPf ~x,t !, ~A1!

where the Fokker–Planck operatorLFP is given by

LFP[
]A~x!

]x
1

]2B~x!

]x2 . ~A2!

The quantityf (x,t0) is an initial distribution function at time
t0 . Important solutions for the Fokker–Planck equation a
the formal one
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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f ~x,t !5eLFP~ t2t0! f ~x,t0!, ~A3!

and the stationary one

f st~x!5
e2U~x!

*e2U~x!dx
, ~A4!

where the functionU is given in terms of the drift and dif-
fusion coefficients

U~x!5E
0

x A~y!

B~y!
dy1 ln@B~x!#. ~A5!

These expressions are often discussed in the theore
analysis of the Fokker–Planck equation. For practical p
poses, the Fokker–Planck equation is often numeric
solved by certain computational algorithms. One particula
useful way of obtaining the numerical solution is the eige
function expansion approach. The crucial assumption in s
an approach is that the Fokker–Planck operator has a c
plete set of discrete spectrum

LLPf n~x!52lnf n~x!, ~A6!

where the eigenfunctionsf n(x) form a biorthogonal basis
such that the initial probability distribution functionf (x,t0)
can be expressed as

f ~x,t0!5(
n

anf n~x,t0!, ~A7!

where the coefficientsan are determined by

an5E
2`

`

f n~x,t0! f ~x,t0!@ f 0~x,t0!#21dx, ~A8!

with f 0(x,t0)[ f 0(x) being the equilibrium distribution. In
its eigenfunction expansion, the full~time-dependent! solu-
tion, Eq. ~A3! of the Fokker–Planck equation is written as

f ~x,t !5(
n

an exp@2ln~ t2t0!# f n~x,t0!. ~A9!

More detailed discussion of Eq.~A9! can be found in stan
dard references.11,18 If the Fokker–Planck system behav
normally and has an equilibrium distribution whent→`,
then eigenvaluesln are positive semidefinite,l050 and
ln.0 ;n.0.

Since the drift and diffusion coefficients can be a co
plex function of x, the Fokker–Planck operatorLFP is in
general not a Hermitian operator. However, in the eigenva
problem, it is more convenient to work with a self-adjoi
operator. In order to construct a self-adjoint Fokker–Plan
operator, we consider a particular case of Eq.~A4!,

f 0~x!5
1

B~x!
expS 2E

0

x A~y!

B~y!
dyD . ~A10!

By separatingf 0(x) from Eq. ~A1!, one can obtain a new
equation

]F~x,t !

]t
52A~x!

]F~x,t !

]x
1B~x!

]2F~x,t !

]x2

52LF~x,t !, ~A11!
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whereF(x,t) is defined by

f ~x,t !5 f 0~x!F~x,t !. ~A12!

The quantityF(x,t) can be expanded by a complete set
eigenfunctions for the operatorL in Eq. ~A11! according to

F~x,t !5e2L~ t2t0!F~x,t0!

5(
n

bne2en~ t2t0!fn~x!, ~A13!

where expansion coefficientbn is determined by the initial
condition f (x,t0). Note that the new Fokker–Planck oper
tor, L, is a self-adjoint operator on the space spanned
basic functionsfn . The inner product in such a space
defined with respect to the weight functionf 0(x). OperatorL
satisfies a desired eigenvalue equation

Lfn~x!5enfn~x!. ~A14!

In principle, the Fokker–Planck eigenvalue proble
~A14! can be solved directly by numerical methods. Ho
ever, computationally it is more convenient to work with
Schrödinger equation-like Fokker–Planck equation which
given by

2
d2cn~z!

dz2 1V~z!cn~z!5encn~z!, ~A15!

wherecn(z) is given by

cn~z!5~ f 0@x~z!#AB@x~z!# !1/2fn@x~z!#, ~A16!

and the functional relation betweenx andz is

z~x!5Ex

@B~y!#2~1/2!dy. ~A17!

The potential in the Schro¨dinger equation-like Fokker–
Planck equation, Eq.~A15! is given in terms of the drift and
diffusion coefficients in the Fokker–Planck equation,

V~z!5 1
4@W2~z!22Wz8~z!#, ~A18!

where the functionW(z) can be obtained from the gener
drift and diffusion functions as

W~z!5
1

AB
S A1

1

2
B8D , ~A19!

and

B85
dB@x~z!#

dz
. ~A20!

The effective potentialV derived in this manner belongs t
the class of potentials that occur in supersymmetric quan
mechanics. It is the final form, Eq.~A15!, that has been use
in this work.
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