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Discrete singular convolution for the solution
of the Fokker—Planck equation
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This paper introduces a discrete singular convolution algorithm for solving the Fokker—Planck
equation. Singular kernels of the Hilbert-type and the delta type are presented for numerical
computations. Various sequences of approximations to the singular kernels are discussed. A
numerical algorithm is proposed to incorporate the approximation kernels for physical applications.
Three standard problems, the Lorentz Fokker—Planck equation, the bistable model and the Henon—
Heiles system, are utilized to test the accuracy, reliability, and speed of convergency of the present
approach. All results are in excellent agreement with those of previous methods in the field.
© 1999 American Institute of Physids$0021-960809)50518-7

I. INTRODUCTION economical systems can be described by the Fokker—Planck

equation with various coefficients. There has been a great
One of the formal approaches to the real world phenomyeg| of theoretical attenti§i® on the FPE in the recent

ena is to start from the microscopic theory such as the CIa%iears. Numerous algorithms have been explored for the nu-
sical Liouville equation or the quantum Liouville equation. . arical solution of the Fokker—Planck equation. As one may
These equations describe many-body systems and their ge xpect, each of proposed methods has its advantages and
eral solutions are unfeasible to obtain at present. Reducel itations. Path integral methods have been utilized by a

descrlptlons in t(_arms of one- or few-partlcle_ distribution number of author&-2’Wehner and Wolféf have presented
functions or density operators lead to the Bogoliubov—Born—,

Green—Kirkwood—Yvon (BBGKY) hierarchy, Zwanzig's an elegant formalism where the path integrals involving the

: . . . . Onsager—Machlup functiondfsare numerically evaluated.
equation, or equivalently, Mori’'s generalized Langevin equa-,

. : : . - “Monte Carlo techniqué8 are very useful for providing in-
tion. These equations formally provide better physical in- . ) ; .

. . formation about certain properties of a system, usually in
sight for macroscopic phenomena. However, they are sti erms of the moments of the underlying stochastic process
exact and are not soluble in general. Appropriate truncatio d d W h 5 gd loned P lust ’
of these equations results in nonlinear mesoscopic kineti wendsen an ang have recently developed a cluster

equations, such as the Boltzmann equation. The BoltzmaniioNt¢ Carlo algorithrff’ which has potential for handling
equation describes a system in terms of a typical one-particiéitical slowing down phenomena in nonlinear Fokker—
reduced density operator which is coupled to the rest of th&'anck systems. Since Monte Carlo approaches do not di-
system via binary or triple collisions. Hydrodynamior rectly refer to the probability del’-IS.Ity d!str|but|on, more di-
transport equations, such as the equation of continuity, thd ©ct @pproaches, such as the finite d|f[e2rence method and
equation of motion, and the equation of energy conservatiorsPectral method are frequently emplpfféa when the en-
can be derived from kinetic equations. Hydrodynamic equal!re_ d|st_r|but|on function is required. Itis Well-knoyvn that the
tions are at the macroscopic level and can be used to simdinite difference method often suffers from stiff systems.
late the real world phenomena as what have usually beeihang and Coop&twere the first to discuss a practical finite
done with the Navier—Stokes equation in computational fluigdifference procedure in which the number density of the sys-
dynamics. However, the involved transport coefficients arde€m is preserved in each step, and the distribution function
formally still determined by the kinetic equations. The Bolt- €volves in a quasiequilibrium manner. The Chang—Cooper
zmann equation is nonlinear and is still hard to solve inmethod has been generalized by Larsgral* to allow a
general. A further simplified model is the celebrated Fokker-larger time increment and to achieve greater numerical sta-
Planck equatiorfFPE). bility for a wide class of systems, which include the nonlin-
The theory of the Fokker—Planck equation has a relagar Compton scattering problem. A drawback of their ap-
tively long history starting from the early work by Einstéin, proach is that analytic expressions for the collision
Langevin? Fokker? and Planck as well as many others!  parameters are required at each time step, which may not be
The modern theory of the Fokker—Planck equation is veryavailable for a practical application. Recently, Eppetiin
rich in its content due to rapid development in analytical andurther generalized the Chang—Cooper method by taking into
computational analyses and a broad spectrum of applicaccount the energy conservation. His fully conservative
tions. It is capable of describing a broad range of scientifischeme has been applied to a spatially homogeneous plasma
phenomena, such as the relation of fluctuations and randosystem involving the Coulomb collision. Most recently,
force, nonlinearity in pattern formation and various modeDrozdov and Morillo have utilized &-point Stirling inter-
coupling effects. Many physical, chemical, biological, andpolation formula for accurately calculating the distribution
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function?® These authors demonstrated that their results arbehaved functions. The first description is intuitive and con-
much more reliable than those of a previous cumulant expansenient for various applications. The functional description
sion. For a wide class of Fokker—Planck operators, the eiis particularly elegant and concise. It is also very convenient
genvalue expansion approach is applicabf&:*’In such an  for higher dimensional applications. The third description is
approach, various spectral methods and pseudospectral metkseful for certain practical applications involving derivatives
ods can be used to provide extremely accurate results for trend antiderivatives. These three methods are formally
eigenvalues of the Fokker—Planck equation. In cases like aquivalent and are commonly used for theoretical descrip-
Lorentz gas system, the full set of eigenfunctions and eigentions in general. The present work explores computational
values determines completely the dynamics of the Fokker-aspects of the distribution theory, namely a discrete singular
Planck equation. In particular, Shizgal's methiBdysing  convolution algorithm. Numerical tests indicate that present
nonclassical weight functions, is often optimized in terms ofapproach is extremely efficient and robust for solving the
accuracy and speed of convergence for certain problems ufokker—Planck equation describing various physical phe-
der study’®*” A distributed approximating functional nomena.
approaci®3°was used for solving the Fokker—Planck equa-  This paper is organized as the follow. The formalism of
tion with comparable results. Park and Petro¥drave re- discrete singular convolution is introduced in Sec. Il. Two
cently provided a detailed comparison of several differentypes of singular kernels, namely, singular kernels of the
methods for the solution of the Fokker—Planck equation. Hilbert type and the delta type, are discussed for the point of
In the eigenfunction expansion approach, use is made ofiew of distributions. Sequences of approximations to these
a mathematical transformation to arrive at a particular fornrdistributions are presented. A computational algorithm is
of the Fokker-Planck operator which is formally similar to Proposed to realize the concept of the discrete singular con-
the Schrdinger operator. Then the solution of the Fokker—Volution. Numerical techniques regarding discretization,
Planck equation can be treated in a manner analogous totgincation, boundary, and matrix representation of operators
bound state expansion treatment of the Sdimger equation. are discussed in detail. The application of the present ap-
Conceptually, there are some essential differences betwedtioach is illustrated by numerically solving the Fokker—
the Schidinger equation and the Fokker—Planck equationPlanck equation in Sec. Ill. Important models such as the
The former is a first principle approach to a closed system atorentz gas, and the quartic potential system are utilized to
the microscopic level and is an exact treatment. The latter iest the present algorithm. Another important benchmark
a statistical approach to an open system at the mesoscoﬁ?&Oblem: the Henon—Heiles system, is also included to illus-
level and is an approximated description. trate the present approach. Conclusions are given in Sec. IV.
Analytical approximation approaches, such as the scal-
ing theory!® WKB analysis? and normal mode analyéis
are extremely useful for obtaining approximate solutions unq|, p|ISCRETE SINGULAR CONVOLUTION
der certain conditions. For example, the interesting aspect
associated with the long time behavior of a system, deter- ~ Singular convolutions appear in many science and engi-
mined by the occurrence of exponentially small eigenvaluesheering problems. Discrete singular convolution is a general
can be very accurately analyzed by the WKB methfoth approach for numerically solving singular convolution prob-
contrast, most numerical methods encounter difficulties ifems. By appropriate realizations of a singular convolution
treating exponentially small eigenvalues. Ryskinas given kernel, the discrete singular convolution can be an extremely
an analytical procedure for correcting equations of evolutiongfficient, accurate, and reliable algorithm for scientific com-
including the Markov processes. putations. Computational philosophy is presented in the first
The purpose of the present paper is to introduce a dissubsection. A number of examples of approximation se-
crete singular convolutioDSC) algorithm for solving the —duences are given in the second subsection. These are fol-
Fokker—Planck equation. The underlying mathematicalowed by a numerical algorithm describing the detailed
structure of such an algorithm is the theory of distributionsimplementation of the present approach.
which was informally used by physicists and engineers, ang, Singular convolution
was later presented in rigorous mathematical form by ) ) )
SchwartZ? Korevaar*®* and others. There are three paral- _ 1h€ Simplest way to introduce theory sihgular convo-
lel descriptions for the theory of distributions. One descrip-Uution (SO is to work in the context of distributions. L&tbe
tion is to characterize them as an equivalence class, or gef- distribution andz(t) be an element of the space of test
eralized limit of various Cauchy sequencéandamental functions[e.g., »(t) € D]. A singular convolution is defined
sequencesand fundamental families as rigorously defined @S
by Korevaa*® This approach is particularly convenient for
the delta distribution. Another description is to formulate ~ F(t)=(T* n)(t):f
them as continuous linear functionals on the space of test -
functions as introduced by SchwaftzThe vector space of HereT(t—Xx) is a singular kernel. Depending on the form of
test functions is obtained from a class of test functions withthe kernelT, the singular convolution is the central issue for
compatible convergence or topology. The third description isa wide range of science and engineering problems. For ex-
based on generalized derivatives of integrable functionsample, singular kernels of the Hilbert-type have a general
Generalized derivatives are distributions rather than wellform of

©

T(t—x) np(x)dx. (1)
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1 f(x) is relaxed to a band-limited? function. In general, the
T)= m(n=12,...). (2)  convolution defined by the pair of functions is required being
Lebesque integrable.
Here, kernelT(x) =(1/x) is commonly occurred in electro- A sequence of approximation can be improved by a

dynamics, molecular spectroscopy, theory of analytic funcregularizer
tions and the Hilbert transforn®(x)=(1/x?), is the kernel im R _1 g
used in tomography. Other interesting examples are singular U'an o(X)=1. 8)
kernels of the delta type
The role of a regularizer is to increase the regularity of con-
T(x)=6"(x) (n=0,1,2...). (3 volution kernels. For the delta sequence, it follows from Eq.

Here, kemelT(x)=&(x) is important for interpolation of (5 that

surfaces and curve@ncluding atomic and molecular poten- )
tial energy surfade and T(x)=46"(x), (n=1,2,...) are f lim T,(X)R,(x)dx=R,(0)=1, ©)
essential for numerically solving partial differential equa- “o
tions. Singular kernels of Abel-type whereR,(0)=1 is the special requirement fordelta regu-
1 larizer.
T(x)= 5 (0<B<1), @

. . . B. Examples
was introduced in the tautochrone problem. It has applica- P

tions in the area of holography and interferometry with phase

objects and is of practical importance in aerodynamics, heaJt‘
and mass transfer, and plasma diagnostics. Since these three The Hilbert transform links between the imaginary part

types of kernels are singular, they cannot be directly digi-and the real part of an analytic function. It has important

talized in computer. Hence, the singular convolution, @y.  applications in a wide variety of science and engineering
is of little numerical merit. To avoid the difficulty of using fields mostly associated with causality, such as in the linear
singular expressions directly in computer, sequences of agesponse theory and the concept of analytic signals. The Hil-
proximations T,) of the distributionT can be constructed bert transform is defined by a singular convolution

lim T,(x)—T(x), (5) 1 (= f(x=y)
o Hitl0=—P |

Sequences for singular kernels of the Hilbert-type

dy, felL?(R)NC(R), (10

where aq is a generalized limit. _Obviously, in the case of \yhere P denotes taking the Cauchy principal value and
T(x)=4(x), the sequencel,,(x), is a delta sequence. | 2(R) denotes the space of square integrable functions on
It is interesting to note that the concept of approximationipe real axisR with the standard - ||, norm. Finally, C(R)

sequences is intimately related to wavelet idea of dilationgengtes the set of all continuous and bounded functior on
For example, a family of Shannon(g/avele} scaling func-  Nqte that the resulting function of the Hilbert transform

tions {T,(x) = (sinax/mx)} is a delta sequence again belongs t&.%(R). The Hilbert kernelH, can be uni-
sinax formly approximated by a Hilbert sequenkk,,
lim < » 7(x)>=7(0), (6) 11
o HOO=— = 1im H.(x)
where 7 is a test function and-, -) denotes the standard ame
inner product. Therefore, Shannon’s scaling functions pro- 1 1—cog ax)
vide approximations of the delta distribution. The advantage = lim 7 x (13)
is that, unlike the original delta distribution, a delta sequence =

is well behaved. As a consequencg(x) is actually no  whereH,(x) is a well-behaved except for the case @f
longer required to be an element of the space of test func=«,. Asymptotically, the Hilbert sequence decays slowly

tions. Most importantly, with a sufficiently smooth approxi- and the approximation can be improved by using a regular-
mation, it makes sense to considediacrete singular con- jzer

volution (DSO),
1 1—cogax)

Hao(X)=H,(OR(X)= — ———R,(x), (12
Fa(H)=2 Ta(t=x0F(x0), (7) T

K whereR_(x) satisfies Eq(8). Another possible restriction on
where F (t) is an approximation td=(t) and {x,} is an @ Hilbert regularizer iR, (m/a)=1. A good choice of the
appropriate set of discrete points on which the DGCis  Hilbert regularizer isR,(x) = e [(X~7@%20°] The deriva-
well defined. Note that, the original test functiog{x) has tives of the Hilbert transform,d%dx9)’H can be expressed
been replaced by(x). The mathematical property or re- as derivatives of the Hilbert kerneld¥/dx%)H, ,(x), in the
quirement off (x) is determined by the approximate kernel convolution. In fact, all other Hilbert-type singular kernels,
T,. In particular, if T, is Shannon’s sampling kernel H,(n=2,3,...), can beexpressed as the derivatives of
[T,(X)=(sinax/mX) and a<x], then the requirement for (1/m)(1/x),
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11 tion of light passing a regular series of pinholes in which the
Ha(¥)=— 7 kth pinhole’s contribution is proportional te*.
Example 2: Modified Dirichlet's delta sequence.
(= 1)n-1 gn-t Sometimes there is a slight advantage in taking the last
T (n—1) dx" ? H(x) term in D, with a factor of3,
(_1)nfl dnfl
= lim lim (ﬂ——l)'WHH’U(X) DZ(X)ZDQ—%COSQX)
sin( ax)

(=11 d"l 1 1-cogax) =——, a=012.... (16)

=Ilim lim Ry(X). 21 tan(5x)

o o (=L)X T X
(13 This is the so-called modified Dirichlet kernel. The differ-

ence D,—D?* tends uniformly to zero on(—m, ) as

2. Sequences for singular kernels of the delta type a—o, They are equivalent with respect to convergence.

L . . The expression given b
The delta distribution or so-called Dirac delta functién P 9 y

is a generalized function which follows from the fact that it
is an integrable function inside a particular interval but itself Di(x) for [x|<ma for «a=0,12...
needs not to have a value. Heaviside introduced both the unfl=(*)= 0 otherwise (17)
step Heaviside function and the Dirac delta function as its
derivative and referred to the latter as tivét impulse Dirac,
for the first time, explicitly discussed the propertiesin
his classic text on quantum mechanics; for this rea8as
often called Dirac delta function. However, delta distribution
has a history which antedates both Heaviside and Dirac.
appeared in explicit form as early as 1822, in Fourigtiso-
rie Analytique de la ChaleurThe work of Heaviside, and
subsequently of Dirac, in the systematic but informal exploi- _ * iex
tation of the step function and delta function, has made delta a(X)= o fﬁmx[*a’w]e d¢
distribution familiar to physicists and engineers before Sobo-
lev, SchwartZ? Korevaar?® and others put it into a rigorous _ sin(ax)
mathematical form. The Dirac delta function is the most im- Toax
portant special case of distributions or generalized functions.

In particular, the Hermite function expansion of Dirac
delta function was proposed by Schwéftand Korevadf
over 40 years ago and was introduced by Hoffretual. for

is a delta sequence of the Dirichlet type @s» .

Example 3: Shannon’s delta sequence.

Shannon’s delta sequence or Dirichlet’s continuous delta
gequence is given by the following Fourier transform of the
characteristic functiony; _ , 4,

(18

This converges to the delta distribution as-»«. Equation
(18) is related to Shannon’s sampling theory in the informa-

) . . . ... tion theory and theory of sampling. | lly forms an or-
numerical simulations® General analysis of the delta distri- tion theory and theory of sampling. It actually forms an o

bution by means of orthogonal series has been studied bthogonal basis for a reproducing kernel Hilbert space. Shan-

Waltef and otheré5%6The use of many delta sequences as|¥on s sampling kernel can be derived from the generalized

probability density estimators was discussed by Walter anéiﬁ;agge mterpolatltr)wg f_ormula. AIFetrnatlvtgly, Shannon's
Blum® and otherd?49:50 guence can be given as an integration

Example 1: Dirichlet’s delta sequence.

The most important example of a delta sequence of the

1 (e
Dirichlet-type is Dirichlet’'s delta sequence %a(X)= T Jo cosxy)dy, (19

Du(x) for [x|<7 for a=0,12... o _
6,(X)= 0 otherwise , (19 or as the limit of a continuous product
whereD , is the Dirichlet kernel a N a _ 1 sin(ax)
5,0)=lim =[] cog z¢x|=lim x— ——~. (20
1[1 Neo TK=1 2 Neoe 207
Dy(x)= —| 5 +cogx) +cog2x) +--- +cogkx) SIn| SR X
sin (k+ 3)x]

_ To improve the asymptotic behavior of Shannon’s sam-
, k=0,12.... (15 . : : :
27 sinix pling kernel, regularized Lagrange interpolating kernel, and
regularized Shannon’s sampling kernel were proposed
Dirichlet's delta sequence plays an important role in approxitecently®:52
mation theory and is the key element in trigonometric poly-  Example 4: The de la VakePoussin delta sequence.
nomial approximations. Physically, it describes the diffrac-  The de la Valle Poussin kernel is given by
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n It seems to us that for sequences of the delta type and the
Pnp(X)= mk;n‘ip Dy(x) Hilbert-type, an interpolatindor quasi-interpolating algo-

rithm sampling atNyquist frequencgya=(w/A), has great
1 1nP advantage over a noninterpolating discretization. Not only
= 2—+ — E coskx the interpolating(or quasi-interpolating nature guarantees
T k=1 the highest accuracy on the set of grid points, but it also
provides the highest possible computational efficiency off a
cog (n—p+k)x] grid. This is because thdyquist intervalgiven by[—(#/A),
(7/A)] is the largest possible sampling interval that is free of

X X alias whenever the? function f(x) under study satisfies the
sin (2n+1—p) > sin (p+1) E} Nyquist condition
= — , (21) ) oo
2m(p+ 1)S|n2<§) suppf(K)C) = 1 5 (29
p=0,...n; n=01,..., (220  This fact can actually be phrased in the following Shannon’s

. , , sampling theoren?
whereD,(x) are Dirichlet kernels given by Ed15). It is

interesting to note that de la VadléPoussin kernels reduce to .
Ferg’s positively definite kernel wherp=n. The de la > sing (X=x)
Vallée Poussin delta sequence is given by f(X):k;w Fov) ———— (26)
5n,p(x) K(X_Xk)
Pap(x) for [x|<x for p=0,...n; n=0,1,..., The significance of Shannon’s sampling theorem is that by a
“lo otherwise discrete, but infinite set of sampling dafé(x,)} one can

actually recover a band-limited? function on a real line.
23 This is particularly significant for the information theory.
asn, p—. The de la Valle Poussin delta sequence is of Shannon’s sampling theorem also has great impact on signal

the Dirichlet type wherp<n. and image processing because the Fourier transform of
A simplified de la Valle Poussin kernel given by Shannon’s delta sequence kernel is an ideal low-pass filter
_ for signals band-limited t¢—(#/A), (#/A)].
5,(X)= i cog ax) ZCOS{ZaX) (24) Another important aspect of Shannon’s delta sequence
QO X kernel is that it is a reproducing kernel
is very useful numerically. Expressidi24) is used in our - - -
further discussion. sing(x—y) = sing(X—Xp) SinF(y—Xn)

=2 . (27
. T “— ' a

C. Computational asfpect.s | K(X_y) n Z(X_Xn) K(y_xn)

To use approximation sequences for certain computa-
tions, a numerical algorithm is required. In fact, such anit can be used to generate an orthonormal basis for the
algorithm is not unique. Different algorithms can be pro- Paley—Wiener reproducing kernel Hilbert spa&® A form
posed and they can be improved. The purpose of this sulivhich is more useful for a quadrature filter representation is
section is to provide a simple and efficient numerical ap-

proach. Various computational aspects are discussed in this ™

. o SINT X, .
subsection. sinmx 2 7" sinm(2x—X,)
= (28)
1. Discretization X nEte W « m(2X—Xy)
2 n

For a given kernel, there are many possible ways of
discretizations. Important examples are interpolating, quasishannon’s delta sequence kernel is also related to the earlier
interpolating, and noninterpolating discretizations. More-ywhittaker's cardinal serié&%®
over, the grid in each discretization can be either uniform or

nonuniform. Since uniform discretization can lead to a single — LT
(—1)"sin—x smK(x—xn)

integration kernel on a grid, it is simple, robust and efficient. A
In a nonuniform discretization, the kernel must vary on a T R : (29)
grid. This produces no problem for a global method in which ~X—nmw K(X_Xn)

the grid and the kernel are systematically determined by ze-

ros of the highest degree polynomial. However, it can béWhittaker's cardinal series has played an extremely impor-
very inconvenient for a local method to be discretized nontant role in the development of mathematical theory of sam-
uniformly because the lack of a simple procedure to prepling. Moreover, the Nth power of Shannon’s kernel
scribe the kernel over the whole domain with high computa{sinx/7x)\ is a B-spline of ordem in its Fourier represen-
tional accuracy. tation. In this sense, variol&spline approximations, which
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are widely used in applied mathematics and engineering, are 1 = f(x—y)
related to various reproducing kernels and theory of deltéHn[f](X)Eq—TPf_dey
distribution.
We shall also use thidyquist rate uniform interpolation T
for the discretization of Dirichlet delta sequence kernel, _qyn-1 0 o1 SIPo (X=X
(—-1) 1 S d 2A
T (n—1) 7 (X")dxn—l e
i 1 N E(X—Xk)
sin I+§ (x—=x") sin| K(x—xk)
I — — 1 (0 (34)
. , LT XX _ . .
27 sin E(x—x ) (2M+1)sm(A 2M+1) The case oh=1 can be found in Ref. 56. A proof of this

theorem is beyond of the scope of the present paper and is
presented elsewhere. This generalized Hilbert sampling theo-
In a comparison to the Shannon’s delta sequence kernel, Diem has potential for using in many science and engineering
richlet's delta sequence kernel has one more paramdter problems. Numerical applications of E@4) and its regular-
which can be optimized to achieve better results in compuized forms are described elsewhere.

tations. Usually, we set a sufficiently lardé for various Since 7/A is proportional to the highest frequency can
numerical applications. Obviously, Dirichlet's delta se-pe reached in the Fourier representatidnshould be very

quence kernel converts to Shannon’s delta sequence kernelghall for a given problem involving very oscillatory func-
the limit of M —ce. This uniform interpolating discretization tions or very h|gh frequency Components_

will also be used for discreting modified Dirichlet's delta

sequence kernels

) 1 N
sin I+§ (x—x") sm(x(x—xk))

1 - T X=X\ 3D
27rtar{§(x—x’) (2M+1)tar(K2M+1

and for the de la Valle Poussin delta sequence kernels

1 coda(x—x')]—cog2a(x—x")]

(x—x")?

T

T (X=X — GO (X—y)
COS—(X— X)) —COS—(X—X
A k A K

sy —

3 (32

)2 !
—(X—X
( k

2. Truncation

It is obvious that the aforementioned approximation se-
quences are formally defined in the unbounded dortrain,
), Hence, the corresponding convolution kernels have a
noncompact support. Practically, it is impossible to imple-
ment a unbounded domain in a computer. Therefore, it is
necessary for numerical purpose to restrict the support of the
kernels to a finite region. In practical, this can be achieved
either by a conformal mapping or by a spatial truncation of
the convolution kernel. Conformal mapping requires a
change in the governing equation under study. In compari-
son, truncation is a very simple approach. The manner of
kernel truncation can dramatically affect the numerical per-
formance of the kerndfrom the point of view of mathemat-
ics, a kernel is not well defined until its domain, range and
truncation are all specifigdThere are two types of trunca-
tions. One isboundary adaptiveruncations. The other is
translationally invarianttruncations. The former can in prin-
ciple provide a scheme for handling complex boundary. It
has an advantage that only informatitr grid value$ on

where A=2A is required by interpolation. The efficiency the set of grid points in the computational domain is ever
and accuracy of these discretizations will be numerically@duired for the convolution. No additional boundary exten-

tested in the next section.

sion is needed. A problem is that in order to satisfy boundary

Finally the sequences of the Hilbert type is similarly condition or geometry requirement, it is necessary for the

discretized as

(="t d"! 1 1-cogax)
(n—1)! dx" T 7 X

R,(x)

(_1)n—l dn—l 1 Sinzﬁ(x_xk)

Tl dxX" Ia #
ﬂ(x_xk)

Ry(x=x). (33

Hence transforms of the Hilbert-type for a continudius
function band-limited to(#/A) are given by the following
generalized Hilbert sampling theorem:

resulting kernel to vary near the computational boundary
which implies more computations and may reduce numerical
accuracy. In contrast, a translationally invariant truncation
leads to just one kernel in the whole computational domain,
which is numerically cheap and efficient. Better numerical
efficiency can by achieved by making the kersgimmetric
(or antisymmetri. This leads to a translationally invariant
algorithm

w

f<”>(x)~kEW SM(x-x0f(x) (n=0,1,2,...), (35

where 2V+1 is the computational bandwidth, or effective
kernel support, which is usually smaller than the whole com-
putational domain[a,b]. Here &V (x—x,) denotes for the
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nth derivative of any of Eqs(29), (30), (31), and(32). Fur-  simplifying a matrix representation and reducing computer
thermore, in order for the boundary conditiéor complex =~ memory required. Numerically, it is simple and convenient
geometry to be met, it requires appropriate handling of theto have a diagonal matrix representation of an operator. This,
function, f(x,), outsidethe computational domain. however, often cannot be achieved. For example, the Hamil-
tonian of the Schidinger equation often has its potential part
being diagonal in the position representation and its kinetic
energy part being diagonal in the momentum representation.
A complete numerical algorithm has to provide a scheman principle, there is a basis representation in which a given
for handling boundaries. In a global method, its computaamiltonian is fully diagonal. However, finding this repre-
tional domain is the same as its kernel support. In order t@entation is equivalent to solving eigenstates of the Hamil-
satisfy boundary requirements, the kernel must be congnjan system. In the DSC approach we choose a grid repre-
structed in adaptive manner. Hence, the kernel varies at dikentation for the coordinate so that the potential Pafk),

ferent grid points. The major drawback of such an algorithmyf the Hamiltonian is diagonal. Hence, we choose a direct
is its difficulty in the construction of adaptive kernels for jnterpolation on the grid for its discretization

problems involving complex geometries and boundary con-
ditions. Thus, global methods have been relatively unsuc-  V(X)—=V(X) Smp- (36)

cessful for dealing with these problems comparing to theifrne gifferentiation matrix of the Hamiltonian on the coordi-

achievements in solving problems of simple geometries andate grid is then given in terms of the distribution derivative
boundary conditions. Whereas most local methods use an

entirely different philosophy for their kernel construction. B ﬁ_zd_z_)_ ﬁ_25(2)(x —x) 37)
For instance, a differentiation kernel in a finite difference 2u dx? 2u o M kD
method can be the same everywhere and it is translational
invariant on the grid. Local methods are very flexible for
dealing with boundary and geometry.

3. Boundary

I . . .
Where 1 is the mass of the Hamiltonian system anff

X (Xm— Xi) areanalytically given by
In Eq. (35), if the kernel, 5" (x—x,), is fixed to be ) d\2

symmetric (or antisymmetrig and translationally invariant, 82 (X=X = (d_x Fo(X—Xy)
there must be cases wheféx,) are located outside of the X=Xm
computational domair{a,b], and their values are undefined Thys, the full DSC grid representation for the Hamiltonian
there. In the present algorithm, suftx,) are to be obtained gperator H, is given by
by boundary conditions. For examples, in the Fokker—Planck
equation, the natural boundary condition is used &fq)
outside the domaifia,b] are set identically to zero. In the

Dirichlet boundary condition, sucfi(x,) are taken to be This expression is referred as a Hamiltonian-DSC matrix el-

f(ra)r (olr f(bg)t') I;\hpierrlodrlrc bounndc:r?ryvc?ndnlic';n}dsug’]r(xé) m i(?]ment. Although the Hamiltonian is used as an example, any
are replaced y their correspo g vaues nside the domaigy, o, operator which consists of a nondiagonal differentia-
[a,b]. In the Neumann boundary condition, suttx,) are

. , , tion part and/or a diagonal part can be treated similarly. Note
determlngd byf(a) andf (;fl) Lor f(b), and f .(b)]' There that unlike its global method counterpart, the present matrix
are special cases, such as in Burgers’ equation, wifa)es

. : . representation is banded. The bandedness is particularly im-
antisymmetric around the boundary point and stiph) are b P y

) X o . ortant to large scale computations. Obviously, it is unnec-
replaced by their correspondinffx,) inside the domain P g P y

[a.b] with a negative sign. Symmetric extensions (£, are essary to restrict the grid to the coordinate grid; it can be the
1 . k

. . . momentum grid or any other appropriate gg@en for time
used if boundaries are symmetric planes. discretization. This symmetric(or antisymmetrig, transla-

tion invariant algorithm will be used in the next section for

4. Discrete representation of operators solving the Fokker—Planck equation.

In numerically solving the Fokker—Planck equation, it is
necessary to give a matrix representation to an operator so
that the action of the operator can be numerically realizedy; AppLICATIONS
Property of an operator matrix is crucial for numerical accu-
racy and efficiency. Choosing a numerically appropriate ma- In the present study we limit our attention to the delta
trix representation for an operator is quite complicated. Itsequence kernels of Shanné®hannoi, the de la Valle
involves not only the property of the operator, the initial Poussin(DLVP), Dirichlet (Dirichlet), and the modified Di-
value and boundary conditions, but also the numericatichlet(MD). Nevertheless, various other delta sequence ker-
scheme to be utilized. From the computational point of view,nels can be similarly employed. It is noted that the delta
the most important property of an operator matrix is its ef-sequence kernels of Shann¢@hannoh and de la Valle
fective boundness, diagonality, and symmetry. The effectivd?oussin(DLVP) are parameter-free, which is an important
boundness of an operator often depends on the initial valuand convenient feature for applications, in particular for un-
and/or boundary conditions. To a desired level of accuracyexperienced users. TheVP+1 parameter used for the Di-
the truncated operator matrix should cover the effective enrichlet and modified Dirichlet kernels is chosen as 71 for all
ergy range of the system. Operator symmetry is useful focalculations. As long as theM2+1 value is chosen suffi-

(39

2

h
H Xm0 = =5 82 (X=X + V(X) Sk - (39)

Downloaded 31 Mar 2002 to 137.132.3.10. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 110, No. 18, 8 May 1999 G. W. Wei 8937

ciently large (M + 1>W, where 2V+ 1 is the matrix band- TABLE I. Eigenvalues of the Lorentz gas Fokker—Planck operator.
width), the numerical results are not sensitive to the specific
values used.

The goal of the present section is to test the DSC algo
rithm for the solutions of the Fokker—Planck equation. The*: ~ 4.68340  4.683395 4683395  4.683395  4.683394

i A 10.11252 1011252 1011252 10.11252  10.11252
DSC method can been applied to the Fokker—Planck equak2 1642068 1642968 1642968 1642968 16429 67

tion in many different ways. Two possible approaches are,. 4005238 40.05238 4005233 4005238  40.05230
direct time-dependent treatment and eigenfunction expansiox,, 80.44794 80.44794 80.44794 80.44794  80.44755
(see Appendix The latter is used in this paper. The Fokker—\is 1424461 1424461 1424461 1424461 1424446
Planck-DSC matrix, whose elements are of the form of ex*» 2151631 2151627 2151627 2151628 2151592
pression(39), is directly diagonalized to generate eigenfunc- A3o0 ggg'gég ggg'g;gg ggg'géi’g gggg;i; ggg'gggg
tions and eigenvalues. These can be used to determine th& : : : : :
dynamics of the Fokker—Planck system as described in the

Appendix. The Fokker—Planck equation treated in this work

Shizgalet al. Shannon  Dirichlet MD DLVP
(N=70) (N=60) (N=60) (N=60) (N=90)

is of the common forrt reported very rapid convergence with the first 40 eigenvalues
accurately calculated by using 70 or fewer QDM points.
af(x,t) a9 J . ,
=—|A(X)+ —B(x)|f(x,1), (40) The corresponding Fokker—Planck equation of Lorentz
at IX IX gas is given by
whereA(x) is a drift coefficient andB(x) a diffusion coef- af(x,t) 9 ) 9?
ficient. Note that bottA andB can be nonlinear in the vari- - 5[(2X =3)f(x,t)]+ (?—Xz[Xf(X,t)]- (41

ablex. The distribution functiorf (x,t) is normalized to one

and its dynamics is governed by E@O0). The present re- The effective potentiaV/(z) for this system is

sults, which are in terms of an eigenfunction expansion, are 46 15

compared with those of other established methods in the V(z)=_— 22+ —. (42
field. It is found that the DSC algorithm can provide results

which are better than, or at least equivalent to those of pre-Note the functional relation betweerandx is given by Eq.
vious global spectral methods in terms of accuracy and speed17) in the Appendix] Mathematically, this potential is
of convergence. However, the DSC algorithm is considerbounded below but it has singularities both at zero and at
ably simpler than global spectral approaches. infinity. The operator domain for the problem[3, «). Shiz-

For the convenience of the description and completegal and Cheff noted that the computational interval has to
ness, the formalisms of the Fokker—Planck equation, particuse sufficiently large in order for the large eigenvalues to be
larly the formal relation between the FPE and the Siihger ~ convergent.
equation, is reviewed in the Appendix. The theory of the In the present work we examine the performance of the
Fokker—Planck equation has been extensively studied in theSC algorithm by using delta sequence kernels of Shannon
last a few decades. The formalism of the eigenfunction ex{Shannon Dirichlet (Dirichlet), modified Dirichlet (MD)
pansion of the Fokker—Planck equation also has been dignd the de la Valle PoussifDLVP). The computations uti-
cussed by a number of authdfs® We select only those lizing the first three delta sequence kernels are conducted
details that are most relevant for our purposes. This section igsing 60 grid points irz and are found to be in excellent
divided into three subsections; Sec. Il A is devoted to theagreement with those given by Shizgal and Cemtained
treatment of the Lorentz gas. The benchmark bistable moddly using up to 70 QDM points. These results for the first 40
is numerically studied in Sec. Il B. Finally, the Henon— eigenvalues are listed in Table | together with those of Shiz-
Heiles system is treated in Sec. III C. gal and Cheri® We found that the de la Vake Poussin
(DLVP) delta sequence kernel requires 1.5 times of grid
points (N=90) to achieve similar accuracy.

The Lorentz gas model is an interesting problem repre-
senting the kinetic motion of a typical light particle in a heat
bath of heavy particles. The interaction of two types of par-
ticles is modeled by the binary hard sphere collision process- To demonstrate further the reliability and robustness of
ing. The Lorentz gas model is a standard example of théhe DSC method for the Fokker—Planck equations, we con-
Fokker—Planck equation derived from more general theorgider the bistable system, a model that has significant theo-
of the Boltzmann equation by using the hard sphere collisiometical applications and is numerically difficult for a certain
assumption. This model has been applied to thermalizatioparameter region. It has received a lot of attention in the
of electrons in a gaseous matfixThe eigenvalue problem literature recently. Van Kampen, Dekker, and van Kanfipen
of the Lorentz gas has been studied by many authors recenthave performed very detailed theoretical analysis and a finite
using various methods, such as the Rayleigh—Ritz variationalifference scheme calculation of this system. Suzuki studied
procedure®®®the Wigner—Wilkins kernel® and the Sonine this system by using his scaling thehapproach. Risken
polynomial expansiofi*®? Particularly, Shizgal and Ch&h  examined the system by using a matrix continued fraction
have reported the quadrature discretization metf@BM)  technique! Caroliet al. consider this system as a test model
calculation employing a nonclassic weight function. Theyfor the WKB treatment of the Fokker—Planck equattdmn

A. Lorentz gas

B. Bistable system
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TABLE IlI. Eigenvalues of the Fokker—Planck operator for a bistable systeaD(1).

Shizgalet al. Shannon Dirichlet MD DLVP
(N=60) (N=42) (N=42) (N=42) (N=63)

N 3.3545300-2) 3.3545287-2) 3.354 528 7-2) 3.3545287-2) 3.3545287-2)

N> 0.927 372 0.927 372 0.927 372 0.927 372 0.927 372
N3 1.680 264 1.680 264 1.680 264 1.680 264 1.680 264
A5 3.733985 3.733 985 3.733 985 3.733985 3.733 985
N1g 11.687 442 11.687 441 11.687 441 11.687 441 11.687 441
N1s 22.639 908 22.639 909 22.639 909 22.639 909 22.639 909
Nog 36.031 815 36.031 785 36.031 785 36.031 785 36.031 787
Nos 51.5419 51.53592 51.53592 51.53592 51.536 13

their systematic study, they concluded that the final approacproblem is defined in the domain 6f-c, ). Computation-
to equilibrium is governed by the Kramers high-viscosity ally, a relatively large numerical interval is required when
rate. Larson and Kostlficonducted a formal analysis of this the size ofe is large.
system from the point of view of chemical kinetics. Indira In order to compare the present results with those ob-
et al'® obtained a numerical solution for the system usingtained previously, we restrict the present calculations for the
both finite-element and Monte Carlo methods. Blackmorecases ok=0.1, 0.01. The delta sequence kernels of Shannon
and Shizgdf’ have applied their QDM approach to the model (Shannoj, Dirichlet (Dirichlet), and modified Dirichlet
and given a detailed numerical analysis for various physicalMD) are first employed in the present calculations. As
behaviors of the system. Recently Shizgal and Cheave  usual, it takes about 1.5 times of grid points for the de la
designed a number of new nonclassic QDM weight functions/allée PoussinDLVP) delta sequence kernel to reach the
to attain a superior rate of convergence for this problem. Thgame level of accuracy. For the convenience of comparison,
purpose of the present study is to demonstrate that the DS§)| eigenvalues in this subsection are measured in units of
algorithm with certain interpolating delta sequence kernelqso,)\n:@n)_
can achieve an extremely high speed of convergence. In the case o£=0.1, the DSC calculations of Shannon,
~ The Fokker—Planck equation describing a typicalpirichlet, and modified Dirichlet using only 42 grid points,
bistable system is given by yield the results of the first 25 eigenvalues that are in very
af(x,t) 9 . 92 good agreement with 'Fhe c_onverged resglts obtained by
i (XTI D+ e T(X1). (43 QDM using up to 60 grid point¥ A comparison of these
results are listed in Table Il. The grid points required for the
Here the parameterg g, ande are positive and are related to de |a Valle PoussinDLVP) delta sequence kernel is 63.
one another through the fluctuation-dissipation theorem at The case ofe=0.01 is significantly more difficult to
equilibrium. However, when the system is far from equilib- cajculate. The DSC results obtained by using four delta se-
rium, y, g and e become independent of each other. Forguence kernels for the first 25 eigenvalues is listed in Table
simplicity and a comparison with previous work, we set||| Similar calculations by Blackmore and Shiz§ausing
y=g=1 in the present work. The corresponding effective100 QDM grid points are also included in Table Iil for ref-
potential for Eq.(43) (see Appendikis erence. Except for the first excited state, all eigenvalues are
(2-2)2 1 converged up to 6 significant figures using only 52 grid
V@) ==z 2—6(322— 1), (44)  points when the delta sequence kernels of Shannon, Dirich-
let, and modified Dirichlet are employed. Whemlecreases,
where the size of characterizes the physical regime de-the shape of the potential bottom become increasely unflat
scribed in the problem. Foe sufficiently small, one has a and irregular. As a result, the first few excited states are very
triple-well potential which supports three isolated, approxi-sensitive to the number of grid points used and converge
mately harmonic systems at low energy. These triple wellsiery slowly as noted by Blackmore and Shizgal. In general,
lead to nearly threefold degenerated states which are very dramatical, nonmonotonic change in potential shape re-
sensitive to Computational intervals. For intermediatdfhe quires a very |arge number of gnd points to describe accu-
potential has three shallow wells coupled to each other withately. Therefore, computationally, certain related eigenstates
the three minima at the poirlts become very sensitive to the number of grid points used in
_ 2.1 121102 the calculation. The first few eigenvalues approach zero as
2=0, =[5+ (5+2e)""% (45) e—0. Shizgal and Chéh have recently obtained\,
This potential supports nearly twofold degenerated states=6.077(—8) with 60 QDM grid points associated with a
For sufficiently largee, the potential transforms into a Gaussian weight o 29 This is compared to the present
double-well type with a maximum at the origin and two result of \ ;= 1.28(— 8) with 52 DSC points of Shannon or
minima atz= *[ %+ (}+2¢)?]2 The potential asymptoti- Dirichlet or modified Dirichlet. A test calculation foe
cally behaves ag® and can obviously support infinitely =0.001 indicates that significantly more grid points are
many discrete states with positive energies. Formally, th@eeded to converge the first 50 eigenvalues. Since the
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TABLE IIl. Eigenvalues of the Fokker—Planck operator for a bistable system0(01).

Shizgalet al. Shannon Dirichlet MD DLVP
(N=100) (N=52) (N=52) (N=52) (N=78)

Ny 6.154 650—12) 1.278 247-10) 1.276 09%—-10) 1.282 279-10) 1.271 30110

\o 0.967 865 0.967 864 0.967 864 0.967 864 0.967 864
A3 1.864 542 1.864 542 1.864 542 1.864 542 1.864 542
A5 1.866 975 1.866 975 1.866 975 1.866 975 1.866 975
N1o 3.943 531 3.943531 3.943531 3.943 531 3.943 531
N1s 5.960 839 5.960 839 5.960 839 5.960 839 5.960 839
Nog 8.793 163 8.793 146 8.793 147 8.793 147 8.793 146
Nog 12.269 3 12.268 697 12.268 696 12.268 697 12.268 704

Fokker—Planck operator for the bistable potential is un-where the parameter is a measure of the anharmonicity of
bounded(but bounded beloyy it has infinity many discrete the two-dimensional system and is here taken ta/0€125
eigenvalues. The higher energy eigenstates exhibit the typte enable the comparison of the present results with those of
cal global behavior and the corresponding eigenvalues besther authors. Noid and Marciisdiscussed the quasibound
come more and more nearly degenerated. Computationallgtates of this system in terms of the principal quantum num-
these large eigenvalues generally converge more slowly anger n and angular momentum quantum number Their
require more grid points for smallervalues. In other words, classification of states is used in the present description.
to maintain certain level of accuracy for higher energy eigenThere is aCy, symmetry in the Henon—Heiles potential
values, the grid mesh size should inversely proportional to which can be utilized in computations to reduce the number
the energies of the statgcl/A)—0 as fh—x)]. of grid points required. However, for the purpose of testing
the DSC algorithm, we do not take this advantage. In the
cases that the delta sequence kernels of Sha(Bloannoi,
Dirichlet (Dirichlet), and modified Dirichle{MD) are used,

As the last testing problem for this section, we considerthe present results are calculated using only 40 grid points in
the benchmark Henon—Heiles sysfénto demonstrate the each dimension Nx=Ny=40,A,=A,=0.444 878 05).
reliability and robustness of the DSC algorithm for calculat-These are listed in Table IV together with those by Shizgal
ing the eigenfunctions. Physically, the 2D anharmonicand Chef obtained by using up to 50 QDM grid points in
Henon—Heiles resonating system is one of the most imporeach dimension. It is seen that all the present results obtained
tant systems for chaotic analysis and it provides a simple andsing different delta sequence kernels are in excellent agree-
convenient example for the understanding and description ghent. The same level of accuracy is attained by using the de
Poincare surfaces and trajectories. Numerically, it is da Vallee Poussin(DLVP) delta sequence kernel with 1.5
widely-used benchmark problem. A variety of numerical ap-times of grid points in each dimensioN{= Ny=60,A,
proaches have been tested on the Henon—Heiles potentiaIAy:o,zgg 016 39).
system. Earlier work by Marcust al® used basis sets with
990 and 1225 basis states. Feital®® have reported an ac-
curate calculation using their split operator-FFT method; thatV- CONCLUSION
required 16 384 time steps. A recent computation by Shizgal — This paper introduces a discrete singular convolution
and Cheff® achieved six significant figure accuracy for ei- (psc) algorithm for the numerical solution of the Fokker—
genvalues as high as close to the disassociation limit, using|anck equation. Singular kernels of the Hilbert-type and the
50 or fewer grid points in each dimension. In general, Shizyg|ta type are considered. Various sequences of approxima-
gal's approach converges extremely fast since it can be ORjons are constructed for numerical analysis. Computational
timized according to the problem under stidyDiscrete  techniques are discussed for singular kernels of both the
variable representati6hand its improved versiéi achieve Hilbert-type and the delta type. A generalized Hilbert sam-
a similar level of accuracy as Shizgal's quadrature discretip”ng theorem is given. By focusing on the delta sequence
zation method(QDM). Similar level of accuracy was ob- yernels of Shannon, Dirichlet, modified Dirichlet, and the de
tained by Zhangt al. by means of distributed approximating |5 valige Poussin, the utility of the DSC algorithm is ex-
functionals® The purpose of the present work is to demon-piored for solving the Fokker—Planck equation. Important
strate that an extremely high speed of convergence for thi§,merical issues examined in this paper are the accuracy of
2D system can be achieved by using the DSC algorithm withy,oximation, the speed of convergence, the simplicity of

C. The Henon—Heiles system

various interpolating kernels. _ _implementation. The DSC algorithm performs extremely
~ The govern equation for the Henon—Heiles system isyg|| for all issues. The present results are in excellent agree-
given by ment with those of previous approaches.
1% 1 9% 1 1 Three typical examples, which cover a variety of physi-
232 2 (9—y2+ §X2+ zyz—AX(gxz—yz)}wnm(x,y) cal situations, are chosen to demonstrate the usefulness and
to test the accuracy of the present algorithm. The first ex-
= €nmnm(X,Y), (46) ample is the Lorentz gas problem with a quadratic drift co-
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TABLE IV. Eigenvalues of the Henon—Heiles system.

n m Feitet al. Shizgalet al. Shannon Dirichlet MD DLVP
3 3 3.9825 3.982 417 3.982 417 3.982417 3.982417 3.982417
3 -3 3.9859 3.985761 3.985761 3.985761 3.985761 3.985761
5 3 5.8672 5.867 015 5.867 015 5.867 015 5.867 015 5.867 015
5 -3 5.8816 5.881 446 5.881 446 5.881 446 5.881 446 5.881 446
6 6 6.9991 6.998 932 6.998 932 6.998 932 6.998 932 6.998 932
6 -6 6.9996 6.999 387 6.999 387 6.999 387 6.999 387 6.999 387
7 3 7.6979 7.697 721 7.697 721 7.697 721 7.697 721 7.697 721
7 -3 7.7371 7.736 885 7.736 885 7.736 885 7.736 885 7.736 885
8 6 8.8116 8.811 327 8.811 327 8.811 327 8.811 327 8.811 327
8 -6 8.8154 8.815 188 8.815 188 8.815188 8.815 188 8.815 188
9 3 9.4670 9.466 773 9.466 773 9.466 773 9.466 773 9.466 773
9 -3 9.5526 9.552 382 9.552 382 9.552 382 9.552 382 9.552 382
9 9 10.0356 10.035413 10.035413 10.035413 10.035 413 10.035413
9 -9 10.0359 10.035 592 10.035 592 10.035 592 10.035 592 10.035 592
10 6 10.5727 10.572 480 10.572 480 10.572 480 10.572 480 10.572 480
10 -6 10.5907 10.590 470 10.590 470 10.590 470 10.590 470 10.590 470
11 3 11.1603 11.160 258 11.160 258 11.160 259 11.160 259 11.160 259
11 -3 11.3253 11.325231 11.325231 11.325231 11.325231 11.325231
11 9 11.7497 11.749 519 11.749 519 11.749 519 11.749 519 11.749 519
11 -9 11.7525 11.752 297 11.752 297 11.752 297 11.752 297 11.752 297
12 6 12.3335 12.333785 12.333785 12.333785 12.333 785 12.333785
12 -6 12.2771 12.277 192 12.277 192 12.277 192 12.277 192 12.277 192
12 12 12.7474 12.748 445 12.748 431 12.748 431 12.748 431 12.748 421
12 -12 13.0310 13.032 062 13.032 062 13.032 062 13.032 062 13.032 062
13 3 13.0868 13.086 873 13.086 873 13.086 873 13.086 873 13.086 873
13 -3 13.0800 13.081 196 13.081 196 13.081 196 13.081 196 13.081 196

efficient and a nonclassical diffusion term. The transformedet, the first 97 eigenvalues converge to eight significant
Fokker—Planck equation has a singular potential describinfjgures, when only 42 grid points are used in each dimension.
hard sphere collisions of a light particle with a heavy particleThese results are in excellent agreement with those of other
bath. The DSC algorithm performs extremely well for this methods, such as those of Feital®® obtained using the
system. In the calculation using the interpolating delta sesymmetric split operator-FFT and, in particular, of Shizgal
quence kernels of Shannon, Dirichlet, and modified Dirich-and Cher?® The latter were calculated using up to 50 QDM
let, the first 40 eigenvalues converge to six significant fig-grid points in each dimension. The present results indicate
ures, using only 60 grid points. These results are in excellerthat the DSC algorithm is an efficient, reliable, and robust
agreement with those of Shizgal and Cffembtained by us- method for numerically solving the Fokker—Planck equation
ing up to 70 QDM grid points. and eigenvalue problems in general.

In the second example, we utilized a bistable model for
two differente values €=0.1, 0.0). Since thee value mea- ACKNOWLEDGMENT
sures the rati.o of dissipation and convection i'n the Fpkker— This work was supported in part by the National Univer-
Planck equation, a smailmeans a fast convective motion of sity of Singapore.
the system. The corresponding small Fokker—Planck eigen-

values are difficult to evaluate by numerical approaches duS\PPENDIX' THE FORMAL RELATION BETWEEN THE
to irregular shape at the bottom of the effective potential. A%OKKER—F.’LANCK EQUATION AND THE

in the previous example, the DSC algorithm converges faste§cHRODINGER EQUATION
than that of the QDM approach reported by Shizefadl 183 _ _ o
for this model when the interpolating delta sequence kernels The Fokker—Planck equatiod0) considered in this
of Shannon, Dirichlet, and modified Dirichlet are utilized. work is a second order linear partial differential equation of
We used only 42 and 52 grid points far—=0.1 and e the parabolic type. It is convenient to rewrite E40) as
=0.01, respectively. Similar results reported by Shizgal and  sf(x,t)
Chert® were calculated by using up to 60 and 100 QDM grid =
points, respectively. We noted that the QDM approach with
some specifically designed weight function can attain an exwhere the Fokker—Planck operatogp is given by
tremely fast speed of conv_ergerftf_e. . IA(X)  9?B(X)

The last example considered is the Henon—Heiles anhar- L= o +
monic oscillator potential, which is another standard problem
for various numerical methods. The DSC algorithm con-The quantityf(X,ty) is an initial distribution function at time
verges very rapidly for this problem too. For the delta se-t,. Important solutions for the Fokker—Planck equation are
guence kernels of Shannon, Dirichlet, and modified Dirich-the formal one

:Lpr(X,t), (Al)

2 (A2)
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f(x,t)=e-Ft 0 (x,t,), (A3)  Where®(x,t) is defined by
and the stationary one f(x,1)=fo(X)D(x,1). (A12)
e~ UM The quantity®(x,t) can be expanded by a complete set of
fs(X)= m, (A4) eigenfunctions for the operattrin Eq. (A11) according to

O (x,t)=e - P(x,t
where the functiorl is given in terms of the drift and dif- (xt)=e (x.to)

fusion coefficients

xAly)
U0 = fo B(y) dy+In[B(x)]. (A5) where expansion coefficietit, is determined by the initial
] ) _ _condition f(x,ty). Note that the new Fokker—Planck opera-
These expressions are often discussed in the theoretlc&qr L, is a self-adjoint operator on the space spanned by
analysis of the Fokker—Planck equation. For practical purygsic functionsé,. The inner product in such a space is

poses, the Fokker—Planck equation is often numericallyefined with respect to the weight functiég(x). Operator
solved by certain computational algorithms. One particularlys,iisfies a desired eigenvalue equation

useful way of obtaining the numerical solution is the eigen-

function expansion approach. The crucial assumption in such L @n(X) = €n¢n(X). (A14)

an approach .is that the Fokker—Planck operator has a com- |5 principle, the Fokker—Planck eigenvalue problem

plete set of discrete spectrum (A14) can be solved directly by numerical methods. How-
Lo pfn(X)=—Apfn(X), (AB) ever, computationally it is more convenient to work with a

Schralinger equation-like Fokker—Planck equation which is
where the eigenfunction§,(x) form a biorthogonal basis given by

such that the initial probability distribution functidi{x,tq)

=§ bpe™ 710 (x), (A13)

can be expressed as d*yn(2)
- dT +V(2)¥n(2) = €nipn(2), (A15)
f(x,to)=; anfa(Xto), (A7) wherey,(2) is given by
¥n(2)= (o[ x(2)1VB[X(2)) "2 x(2)], (A16)

where the coefficienta,, are determined by
and the functional relation betwearandz is

n=°Cfn,tf,tf,t “ldx, A8 X
a fﬁw (X, 1) F(x,to)[fo(X,tg)] X (A8) Z(X)=j (B(y)] “2dy, AL7)

The potential in the Schdinger equation-like Fokker—
Planck equation, EQA15) is given in terms of the drift and
diffusion coefficients in the Fokker—Planck equation,

f(x,t)= >, a,exg —Nn(t—to)]fq(X,to). (A9) V(2)= W (2) - 2W,(2)], (A18)

where the functiorW(z) can be obtained from the general
More detailed discussion of EGA9) can be found in stan- drift and diffusion functions as

dard references-8 If the Fokker—Planck system behaves

with fo(X,tg)=fo(x) being the equilibrium distribution. In
its eigenfunction expansion, the fullime-dependentsolu-
tion, Eq.(A3) of the Fokker—Planck equation is written as

normally and has an equilibrium distribution whénrs, 1 1 .
then eigenvalues\,, are positive semidefiniteho=0 and W(z)= JB At ZB ' (A19)
A>0Vn>0.
Since the drift and diffusion coefficients can be a com-2nd
plex function ofx, the Fokker—Planck operatdrgp is in , dB[x(2)]
general not a Hermitian operator. However, in the eigenvalue B'=—,—. (A20)

problem, it is more convenient to work with a self-adjoint _ ' . o
operator. In order to construct a self-adjoint Fokker—Planckhe effective potential/ derived in this manner belongs to

operator, we consider a particular case of &), the class of potentials that occur in supersymmetric quantum
mechanics. It is the final form, E¢A15), that has been used
¢ (x)=iex _fx wdy (AL0) N this work.
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