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Drug discovery is critical to modern healthcare but is hindered by traditional methods like molecular docking, free 

energy perturbation, and empirical modeling, which are time-consuming, costly, and often limited in scope. Deep 

learning has emerged as a transformative tool, enabling accurate predictions of protein structures and complex 

patterns while driving a shift toward data-driven approaches. Transformer-based models like ChatGPT demonstrate 

the promise of self-supervised learning, addressing the scarcity of labeled data in drug discovery. However, 

challenges remain in adapting these models to capture stereochemical intricacies in protein-ligand interactions. 

Addressing these limitations could revolutionize drug discovery, making it faster, more accurate, and cost-effective.

• Hyperdigraph

Definition 1：The hyperdigraph on finite vertex set 𝑽 is defined by

ℋ = 𝑉, 𝐸 , 𝐸 = {𝑒 : [𝑘] → 𝑉, [𝑘] = {0, 1, … , 𝑘}}

𝑬 is a set of directed hyperedges. A 𝑘-directed hyperedge is a sequence including 𝑘 + 1 distinct elements in 𝑽 .
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• Hyperdigraph Laplacian

The chain complex 𝐶∗ 𝑉;𝕂 = 𝐶𝑝 𝑉;𝕂 𝑝≥1 with the boundary operator 𝜕𝑘: 𝐶𝑘 𝑉;ℋ → 𝐶𝑘−1 𝑉;ℋ  given by

𝜕𝑘(𝑥0, 𝑥1, … , 𝑥𝑘) =෍

𝑖=0

𝑘

−1 𝑛 (𝑥0,… , ෝ𝑥𝑖 … , 𝑥𝑘), 𝑛 ≥ 1.

The infimum chain complex defined by

𝛺𝑘 ℋ;𝕂 = {𝑥 ∈ 𝐶𝑘(ℋ;𝕂)|𝜕𝑘𝑥 ∈ 𝐶𝑝−1(ℋ;𝕂)}

Definition 2: The hyperdigraph Laplacian, 𝛥𝑘
ℋ : 𝛺𝑘 ℋ;𝕂 → 𝛺𝑘 ℋ;𝕂  of ℋ is defined by

𝛥𝑘
ℋ = 𝜕𝑘

∗ ∘ 𝜕𝑘 + 𝜕𝑘+1 ∘ 𝜕𝑘+1
∗ , 𝑘 ≥ 1 𝐨𝐫 𝐿𝑘

ℋ = 𝐵𝑘
𝑇𝐵𝑘 + 𝐵𝑘+1𝐵𝑘+1

𝑇 , 𝑘 ≥ 1

ℋ

𝐸0

0-dimension, ℋ0

𝐸1

1-dimension, ℋ1

𝐸2

2-dimension, ℋ2

𝐸 
0

𝐸 
𝑘

𝐸 
𝑘

𝐸 
0 𝐸 

1

𝐸 
1

   

   

      

𝐿 = 𝐵 
 𝐵  𝐵 𝐵 

 

 1
0  1

1  1
  1

  1
 

 1
0

 1
1

 1
 

 1
 

 1
 

 1 =  1
  1     

 

   

   

      

𝐸0
0 𝐸0

1 𝐸0
 𝐸0

 𝐸0
 

𝐸0
0

𝐸0
1

𝐸0
 

𝐸0
 

𝐸0
 

𝐿0 =  −  = 𝐵0
 𝐵0

𝐸0
 

𝐸0
 

• Persistent hyperdigraph Laplacian

Consider the order set (𝑆, ≤), a filtration of hyperdigraph is a covariant functor ℱ: (𝑆, ≤) ⟶ 𝑯𝒚𝒑𝒆𝒓 from the category (𝑆, ≤) to 

the category of hyperdigraph. 

Definition 3: For each 𝑎 ≤ 𝑏 ∈ 𝑆, the 𝑘th (𝑎, 𝑏)-persistent hyperdigraph Laplacian of ℱ is defined by

𝛥𝑘
𝑎,𝑏 = 𝜕𝑘

𝑎 ∗ ∘ 𝜕𝑘
𝑎 + 𝜕𝑘+1

𝑎,𝑏 ∘ 𝜕𝑘+1
𝑎,𝑏 ∗

, 𝑘 ≥ 0

𝐿𝑘
𝑎,𝑏 = 𝐵𝑘

𝑎 𝑇𝐵𝑘
𝑎 + 𝐵𝑘+1

𝑎,𝑏 𝐵𝑘+1
𝑎,𝑏 𝑇

, 𝑘 ≥ 0
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• Achieved the best performance in binding affinity prediction on the PDBbind database, including 

the CASF-2007, CASF-2013, and CASF-2016 benchmarks.1


	Slide 1

