Is it time for a great chemistry between mathematics and biology?

Guowei Wei

Departments of Mathematics Michigan State University http://www.math.msu.edu/~wei

Workshop on Geometry, Imaging and Computing Center of Mathematical Sciences and Applications Harvard University March 24-26

Grant support: NIH, NSF, MSU and BMS

Mathematics and Natural Sciences

- Mathematics is the foundation for Newtonian mechanics, Hamiltonian mechanics, Maxwell's electromagnetic theory, Boltzmann theory, statistical mechanics, thermodynamics, Einstein's theory of relativity, and quantum mechanics.
- Nobel Prize winner Eugene Wigner: "The Unreasonable Effectiveness of Mathematics in the Natural Sciences".
- Mathematics has got more abstract since 1950s while biology became microscopic in 1960s.
- Biology assumed an omics dimension (i.e., big data) around 2000.
- The power of machine learning and deep learning has burst since 2014.
- Biological sciences are undergoing a historic transition from qualitative, phenomenological, and descriptive to quantitative, analytical and predictive, as quantum physics did a century ago.
- It is time to invent biology-inspired math and discover math-governed rules of life!

Drug design and discovery

- **Disease identification (physiology)** 1)
- 2) Target hypothesis (biochem./mole. biol.)
- 3) Virtual screening: binding affinity, solubility, partition coefficient, toxicity, and side-effects (biophysics/bioinformatics)
- 4) Drug structural optimization in the target binding site (biochemistry/biophysics/synthetic chem.)
- Preclinical in vitro and in vivo test 5)
- **Clinical test 6**)
- **Optimize drug's efficacy, pharmacokinetics, and** 7) pharmacodynamics properties (quantitative systems pharmacology)

Influenza -- flu virus

M2 channel

Amantadine M2-A complex

Structure data Sequence data **Biophysics Bioinformatics** Systems biology Systems physiology Drug Design & Discovery Machine learning Algebraic topology **Deep learning** Differential geometry Manifold learning Graph theory Partial differential equation

GenBank

Whole Genome Shotgun

Release	Date	Bases	Sequences	Bases	Sequences
224	Feb 2018	253630708098	207040555	2608532210351	564286852

Yearly Growth of Total Structures in the Protein Data Bank

Mach 25, 2018: 138,878

Welcome to big-data era

theoretical

network exploratory

information **S** objects

social extra

able

AlphaGo

important

Half of all jobs will be done by robots in the near future

Deep learning

Fukushima (1980) – Neo-Cognitron; LeCun (1998) – Convolutional Neural Networks (CNN);...

How to do deep learning for 3D biomolecular data? Obstacles for deep learning of 3D biomolecules:

- Geometric dimensionality: R^{3N,} where N~5500 for a protein.
- Machine learning dimensionality: > 1024³m, where m is the number of atom types in a protein.
- Molecules have different sizes --- non-scalable.
- Complexity: biochemistry & biophysics
- **Solution:**
- Dimensionality reduction & unification (scalability)
- Topological simplification/geometric simplification/graph theory simplification

Classical topological objects

Möbius Strips (1858)

Sphere

Torus Klein Bottle (1882) Trefoil **Double Torus** Knot

Leonhard Paul Eule. (Swiss Mathematician, April 15, 1707 – Sept 18 1783)

Topological invariants: Betti numbers

 β_0 is the number of connected components. β_1 is the number of tunnels or circles. β_2 is the number of cavities or voids.

Topological simplification

Poincare-Hopf index

Morse theory

Opportunities, challenges and promises

Opportunities from topological methods:

***New approach for big data characterization and classification.**

***Dramatic reduction of dimensionality and data size.**

*****Applicable to a variety of fields.

Challenges with topological methods:

Geometric methods are often inundated with too much structural detail.

>Topological tools incur too much reduction of original geometric information.

 \succ Topology is hardly used for quantitative prediction.

Promises from persistent homology:
✓ Embeds geometric information in topological invariants.
✓ Bridges the gap between geometry and topology.

Persistent homology answers following questions

What is the topology of a benzene?

Level sets generated by Laplace-Beltrami flows:

What is the topology of a H₂O-CO₂ complex?

Electron density level sets computed by using quantum mechanics:

Vietoris-Rips complexes of planar point sets Simplexes:

0

Topological modeling - Persistent homology

0-simplex 1-simplex k-chain: $\sum_{i} c_i \sigma_i$ Chain group: C_k

$$\sum_{i} c_{i} \sigma_{i}^{\kappa}$$

$$C_{k}(K, Z_{2})$$

Boundary operator:

Frosini and Nandi (1999), Robins (1999), Edelsbrunner, Letscher and Zomorodian (2002), Edelsbrunner and Harer, (2007) Kaczynski, Mischaikow and Mrozek (2004), Zomorodian and Carlsson (2005), Ghrist (2008),

Filtration

Vietoris-Rips complexes, persistent homology and persistent barcodes (Xia, Wei, 2014)

Topological fingerprints of an alpha helix

Topological fingerprints of beta barrel

(Xia & Wei, IJNMBE, 2014)

Protein:2GR8

Wasserstein metrics

(Cang & Wei, 2018)

Topological noise reduction via geometric PDE

(Xia & Wei, IJNMBE 2015)

1.5 2 2.5 3

2.5

3

1.5

2

Persistent homology for ill-posed inverse problems

Original data: microtubule

Fitted with onetype of tubulins

Fitted with twotypes of tubulins

Objective oriented persistent homology

(Wang & Wei, JCP, 2016) Objective: Minimal surface energy

 $G = \hat{0} g[area] dr, \quad area = |\nabla S|$

where gamma (γ) is the surface tension, and S is a surface characteristic function:

Generalized Laplace-Beltrami flow

$$\frac{\partial S}{\partial t} = \left| \nabla S \right| \left[\nabla \bullet \frac{\gamma \nabla S}{\left| \nabla S \right|} \right]$$

Objective oriented persistent homology

Barcodes are generated by cubical complex and cubical homology

Multiresolution 2D persistence in protein complex 2YGD

log10(N)

2D persistent homology of protein 1UBQ unfolding

Topological convolutional deep Learning architecture

Topological Multi-Task Deep Learning

Topological feature extraction

Multi-task topological deep learning

(Cang & Wei, PLOS CB, 2017)

Topological fingerprint based machine learning method for the classification of 2400 proteins

Hemoglobins in their relaxed and taut forms: 80% accuracy

(Cang et al, MBMB, 2015)

55 classification tasks of protein superfamilies over 1357 proteins from Protein Classification Benchmark Collection: 82% accuracy

Topological learning based predictions

Prediction correlations for 2648 mutations on globular proteins

mutations on membrane

proteins

Prediction RMSD of LogP (Star set)

Binding affinity prediction of PDBBind v2013 core set of 195 complexes

D3R Grand Challenge in drug design

Drug Design & Discovery Resource (D3R) Grand Challenge 2

Given: Farnesoid X receptor (FXR) and 102 ligands **Tasks:** Dock 102 ligands to FXR, and compute their poses, binding free energies and energy ranking

Grand Challenge 2

Receipt ID

D3R Grand Challenge 2 (2016-2017)

Given: Farnesoid X receptor (FXR) and 102 ligands **Tasks:** Dock 102 ligands to FXR, and compute their poses, binding free energies and energy ranking

Grand Challenge 2

Receipt ID

Filled circle indicates an incomplete set of predictions Green circle indicates your predictions (requires login)

D3R Grand Challenge 3 (2017-2018)

Cathepsin S

Kinase: p38-a

Eight of our predictions were ranked 1st in a total of 21 competitions.

D3R Grand Challenge 3 (2017-2018)

Given: X-ray crystal structures of cathepsin (CatS) and 24 ligands Tasks: Compute their binding affinity ranking

Our other methods for drug design and discovery

- Geometric graph theory, algebraic graph theory and topological graph theory
- Differential geometry: geodesic distance, curvatures and curvature tensors
 - Partial differential equation based biophysical models

US patent pending

Quantitative systems pharmacology modeling

Predicting drug pharmacokinetics and pharmacodynamics by integrating

- Systems biology, protein networks, signal transduction pathways
- **Cellular biology and cellular mechanics**
- **Systems physiological modeling**
- □ Clinical data and virtual patient simulation

In collaboration with Bristol-Myers Squibb (BMS)

Concluding remarks

- Multidimensional, multicomponent, multichannel and objective orientated persistent homologies are introduced to retain essential chemical and biological information during the topological simplification of biomolecular geometric complexity.
- □ The abovementioned approaches are integrated with advanced machine learning, including deep learning, to achieve the state-of-the-art predictions of proteinligand binding affinities & ranking, mutation induced protein stability changes, and drug partition coefficients.
- □ Our goal is to create mathematical jobs and kill experimental jobs in drug design and biology.
- Postdocs are wanted

