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Is it time for a great chemistry between 
mathematics and biology? 
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Mathematics and Natural Sciences

 Mathematics is the foundation for Newtonian mechanics, Hamiltonian 

mechanics, Maxwell's electromagnetic theory, Boltzmann theory, 

statistical mechanics, thermodynamics, Einstein's theory of relativity, 

and quantum mechanics.  

 Nobel Prize winner Eugene Wigner: “The Unreasonable Effectiveness 

of Mathematics in the Natural Sciences”. 

 Mathematics has got more abstract since 1950s while biology 

became microscopic in 1960s.  

 Biology assumed an omics dimension (i.e., big data) around 2000. 

 The power of machine learning and deep learning has burst since 

2014. 

 Biological sciences are undergoing a historic transition from 

qualitative, phenomenological, and descriptive to quantitative, 

analytical and predictive, as quantum physics did a century ago.

 It is time to invent biology-inspired math and discover math-governed 

rules of life!



Drug design and discovery

1) Disease identification (physiology)
2) Target hypothesis (biochem./mole. biol.)
3) Virtual screening: binding affinity,  solubility, 

partition coefficient, toxicity, and side-effects 
(biophysics/bioinformatics)

4) Drug structural optimization in the target binding 
site (biochemistry/biophysics/synthetic chem.)

5) Preclinical in vitro and in vivo test 
6) Clinical test
7) Optimize drug’s efficacy, pharmacokinetics, and 

pharmacodynamics properties (quantitative systems 
pharmacology)

M2 channel AmantadineInfluenza -- flu virus M2-A complex



Structure data

Sequence data 

Biophysics

Bioinformatics            

Systems biology

Systems physiology

Machine learning

Deep learning

Manifold learning

Algebraic topology 
Differential geometry 
Graph theory
Partial differential equation

Drug 
Design & 
Discovery



GenBank Whole Genome Shotgun

Release Date Bases Sequences Bases Sequences

224 Feb 2018 253630708098 207040555 2608532210351 564286852



Yearly Growth of Total Structures in the Protein Data Bank

Mach 25, 2018: 138,878



CPU 

GPU 

TPU

Half of all jobs will be done by robots in the near future

Welcome to big-data era 



Deep learning 
Fukushima (1980) – Neo-Cognitron; LeCun (1998) – Convolutional Neural Networks (CNN);…



How to do deep learning for 3D biomolecular data?
Obstacles for deep learning of 3D biomolecules:

• Geometric dimensionality: R3N, where N~5500 for a protein.

• Machine learning dimensionality:  > 10243m, where m is the 

number of atom types in a protein.

• Molecules have different sizes --- non-scalable.

• Complexity: biochemistry & biophysics 

Solution: 

• Dimensionality reduction & unification (scalability) 

• Topological simplification/geometric simplification/graph 

theory simplification



Möbius Strips (1858)

Klein Bottle (1882)

Classical topological objects  

Torus

Double Torus

Sphere

Trefoil 
Knot

Seven Bridges of 
Königsberg

Leonhard Euler (1735) 

Leonhard Paul Euler
(Swiss Mathematician,       

April 15, 1707 – Sept 18 1783)

http://en.wikipedia.org/wiki/K%C3%B6nigsberg


Topological invariants: Betti numbers

0 is the number of connected components.

1 is the number of tunnels or circles.

2 is the number of cavities or voids.
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Topological simplification

HIV 4.2 

million 

atoms

Trefoil 
Knot

DNA 

Mug         Doughnut

Poincare-Hopf index Morse theory

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.bioch.ox.ac.uk/aspsite/index.asp?pageid=1118&ei=093PVKP9KZejyATNnIFA&bvm=bv.85076809,d.aWw&psig=AFQjCNHNKkkzxjR6rCKqUq9ScvzoZYx9gQ&ust=1422995202193459


Opportunities, challenges and promises

Challenges with topological methods:

Geometric methods are often inundated with too 

much structural detail. 

Topological tools incur too much reduction of 

original geometric information.

Topology is hardly used for quantitative prediction. 

Opportunities from topological methods:

New approach for big data characterization and classification.

Dramatic reduction of dimensionality and data size.

Applicable to a variety of fields.

Promises from persistent homology:

Embeds geometric information in topological invariants.

Bridges the gap between geometry and topology.



What is the topology of a benzene?

What is the topology of a H2O-CO2 complex?

Level sets generated by 

Laplace-Beltrami flows:

Electron density level sets computed 

by using quantum mechanics: 

Persistent homology answers following questions



Vietoris-Rips complexes of planar point sets

Simplexes:

0-simplex 1-simplex 2-simplex 3-simplex

Simplicial complexes of ten points:
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Simplexes:

0-simplex 1-simplex 2-simplex 3-simplex

Boundary operator:

Frosini and Nandi (1999),
Robins (1999),
Edelsbrunner, Letscher and Zomorodian 
(2002), Edelsbrunner and Harer, (2007)
Kaczynski, Mischaikow and Mrozek (2004),
Zomorodian and Carlsson (2005),
Ghrist (2008),
……k-chain:

Chain group: )( 2K,ZCk

Topological modeling - Persistent homology 

Filtration



Vietoris-Rips complexes, persistent homology and 

persistent barcodes (Xia, Wei, 2014)



Topological fingerprints of an alpha helix

(Xia & Wei, 

IJNMBE, 

2014)

Short bars are NOT 

noise!

Wasserstein metrics?



Topological fingerprints  of  beta barrel 

(Xia & Wei, IJNMBE, 2014)

Protein:2GR8



Persistent cohomology, Hodge theory 

and discrete exterior calculus  

Wasserstein metrics (Cang & Wei, 2018)



Topological noise reduction via geometric PDE

Original data 
Ten-iteration 

denoising

Twenty-iteration 

denoising

Forty-iteration 

denoising

(Xia & Wei, IJNMBE 2015)



Persistent homology for ill-posed inverse problems

Original data: 

microtubule 

Fitted with one-

type of tubulins

Fitted with two-

types of tubulins

PCC=0.96 PCC=0.96

(Xia, Wei, 
IJNMBE, 
2015)



G = g area[ ]dr,ò Sarea 

Objective oriented persistent homology

where gamma is the surface 

tension,  and S is a surface 

characteristic function:
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Generalized Laplace-Beltrami flow  

Objective: Minimal surface energy

(Wang & Wei, JCP, 2016)
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Barcodes are generated by cubical complex and cubical homology
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Topological analysis 
of protein folding

ID: 1I2T

(Xia, Wei, IJNMBE, 2014)
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Quantitative!



Time

2D persistent homology of protein 1UBQ unfolding  

(Xia & Wei, JCC, 2015)
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…

Original protein-

ligand Complex

Classify atoms 

into element 

specific groups

Generate 

topological, DG & 

graph fingerprints

Multichannel 
images 

(54x200)

Convolutional deep 

learning neural 

network

…

Topological convolutional deep Learning architecture  

Convolution 
(128x200)

…

Pooling 
(128x100)

Flattening 
(1xN)

Prediction

(Cang & Wei, 
PLOS CB, 2017)



Convolution 

and pooling

Task specific  

representation

Multi-task topological deep learningTopological feature extraction

Membran

e protein 

mutation

impacts  

Globular 

protein 

mutation

impacts 

Topological Multi-Task Deep Learning  

(Cang & Wei, PLOS CB, 2017)



Topological fingerprint based machine learning 
method for the classification of 2400 proteins

Protein domains: 85% Accuracy
(Alzheimer’s disease)

Influenza A virus drug 
inhibition: 96% Accuracy

Hemoglobins in their relaxed and 
taut forms: 80% accuracy  

55 classification tasks of 
protein superfamilies over 
1357 proteins from Protein 
Classification Benchmark 
Collection: 82% accuracy

(Cang et al, MBMB, 2015)



Topological learning based predictions

Prediction correlations for 
2648 mutations on globular  
proteins  

Prediction correlations for 223 
mutations on membrane 
proteins  

Prediction RMSD of LogP (Star set)  Classification of ligands & decoys
DUD database  128,374 protein-ligand/decoy pairs 

Binding affinity prediction of PDBBind
v2013 core set of 195  complexes

Cang and Wei, PLOS CB,2017

Cang and Wei, PLOS CB,2017

Cang and Wei, PLOS CB,2018
Wu and Wei, JCC,2018



Given data Math based CNN Predicted complex

D3R Grand Challenge  in drug design

Final predictions to be compared with experiments



Drug Design & Discovery Resource (D3R) Grand Challenge 2 

Given: Farnesoid X receptor (FXR) and 102 ligands
Tasks: Dock 102 ligands to FXR, and compute their 
poses, binding free energies and energy ranking  

Dr Duc Nguyen

https://drugdesigndata.org/php/d3r/gc2/combined/free-energy/index.php?component=443&q=rmsd&set=1


D3R Grand Challenge 2 (2016-2017)

Given: Farnesoid X receptor (FXR) and 102 ligands
Tasks: Dock 102 ligands to FXR, and compute their 
poses, binding free energies and energy ranking  

Dr Duc Nguyen

https://drugdesigndata.org/php/d3r/gc2/combined/free-energy/index.php?component=443&q=rmsd&set=1


D3R Grand Challenge 3 (2017-2018)

Preliminary Evaluations, Subject to Revision and Refinement
Cathepsin Stage 1 Pose Predictions Scoring
Free Energy Sets
Cathepsin Stage 1B Pose Prediction
Cathepsin Stage 2 Scoring (partials)
Free Energy Sets Affinity ranking of 24 Complexes

VEGFR2 Scoring (partials)  JAK SC2 Scoring (partials)  p38-α Scoring (partials) 

JAK SC3 Free Energy Sets

TIE2 Scoring (partials)
Free Energy Set 1
Free Energy Set 2

ABL1 Scoring

1st

Dr Duc NguyenZixuan Cang

Eight of our predictions were ranked 1st

in a total of 21 competitions. 

https://drugdesigndata.org/php/d3r/gc3/combined/pose/index.php?component=968&results=rmsd&chart=pose&partial=0&ligand=Average
https://drugdesigndata.org/php/d3r/gc3/combined/scoring/index.php?component=968&method=ligand&partial=0
https://drugdesigndata.org/php/d3r/gc3/combined/free-energy/index.php?component=968&partial=0
https://drugdesigndata.org/php/d3r/gc3/combined/pose/index.php?component=972&results=rmsd&chart=pose&partial=0&ligand=Average
https://drugdesigndata.org/php/d3r/gc3/combined/scoring/index.php?component=1009&method=ligand&partial=0
https://drugdesigndata.org/php/d3r/gc3/combined/scoring/index.php?component=1009&method=ligand&partial=1
https://drugdesigndata.org/php/d3r/gc3/combined/free-energy/index.php?component=1009&partial=0
https://drugdesigndata.org/php/d3r/gc3/combined/scoring/index.php?component=966&method=ligand&partial=0
https://drugdesigndata.org/php/d3r/gc3/combined/scoring/index.php?component=966&method=ligand&partial=1
https://drugdesigndata.org/php/d3r/gc3/combined/scoring/index.php?component=969&method=ligand&partial=0
https://drugdesigndata.org/php/d3r/gc3/combined/scoring/index.php?component=969&method=ligand&partial=1
https://drugdesigndata.org/php/d3r/gc3/combined/scoring/index.php?component=965&method=ligand&partial=0
https://drugdesigndata.org/php/d3r/gc3/combined/scoring/index.php?component=965&method=ligand&partial=1
https://drugdesigndata.org/php/d3r/gc3/combined/free-energy/index.php?component=970&partial=0
https://drugdesigndata.org/php/d3r/gc3/combined/scoring/index.php?component=967&method=ligand&partial=0
https://drugdesigndata.org/php/d3r/gc3/combined/scoring/index.php?component=967&method=ligand&partial=1
https://drugdesigndata.org/php/d3r/gc3/combined/free-energy/index.php?component=967&set=1&partial=0
https://drugdesigndata.org/php/d3r/gc3/combined/free-energy/index.php?component=967&set=2&partial=0
https://drugdesigndata.org/php/d3r/gc3/combined/scoring/index.php?component=971&method=ligand&partial=0


D3R Grand Challenge 3 (2017-2018)
Given: X-ray crystal structures of cathepsin (CatS) and 24 ligands
Tasks: Compute their binding  affinity ranking  

Dr Duc Nguyen



Our other methods for drug design and discovery

 Geometric graph theory, algebraic graph theory and topological 
graph theory 

 Differential geometry: geodesic distance, curvatures and 
curvature tensors

 Partial differential equation based biophysical models   

US patent pending

Quantitative systems pharmacology modeling

Predicting drug pharmacokinetics and pharmacodynamics by 

integrating 
 Systems biology, protein networks, signal transduction pathways
 Cellular biology and cellular mechanics
 Systems physiological modeling
 Clinical data  and virtual patient simulation  

In collaboration with Bristol-Myers Squibb (BMS)



Concluding remarks 
Multidimensional, multicomponent, multichannel and

objective orientated persistent homologies are
introduced to retain essential chemical and biological
information during the topological simplification of
biomolecular geometric complexity.

 The abovementioned approaches are integrated with
advanced machine learning, including deep learning,
to achieve the state-of-the-art predictions of protein-
ligand binding affinities & ranking, mutation induced
protein stability changes, and drug partition
coefficients.

 Our goal is to create mathematical jobs and kill
experimental jobs in drug design and biology.

 Postdocs are wanted
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	Topology

