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Abstract

Due to its high transmissibility, Omicron BA.1 ousted the Delta variant to become a dominating

variant in late 2021 and was replaced by more transmissible Omicron BA.2 in March 2022. An important

question is which new variants will dominate in the future. Topology-based deep learning models have

had tremendous success in forecasting emerging variants in the past. However, topology is insensitive to

homotopic shape variations in virus-human protein-protein binding, which are crucial to viral evolution

and transmission. This challenge is tackled with persistent Laplacian, which is able to capture both

the topology and shape of data. Persistent Laplacian-based deep learning models are developed to

systematically evaluate variant infectivity. Our comparative analysis of Alpha, Beta, Gamma, Delta,

Lambda, Mu, and Omicron BA.1, BA.1.1, BA.2, BA.2.11, BA.2.12.1, BA.3, BA.4, and BA.5 unveils

that Omicron BA.2.11, BA.2.12.1, BA.3, BA.4, and BA.5 are more contagious than BA.2. In particular,

BA.4 and BA.5 are about 36% more infectious than BA.2 and are projected to become new dominating

variants by natural selection. Moreover, the proposed models outperform the state-of-the-art methods

on three major benchmark datasets for mutation-induced protein-protein binding free energy changes.
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1 Introduction

The coronavirus disease, 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) has lasted for more than years. The development of effective vaccines, monoclonal anti-

bodies (mABs), and antiviral drugs has significantly improved our ability to bring COVID-19 pandemic

under control. Nonetheless, the emerging SARS-CoV-2 variants become a major threat to existing vaccines,

monoclonal antibodies (mABs), and antiviral drugs.

The Omicron variant has mutations on various SARS-CoV-2 proteins, such as non-structure protein 3

(NSP3), NSP4, NSP5, NSP6, NSP12, NSP14, spike (S) protein, envelope protein, membrane protein, and

nucleocapsid protein. Specifically, Omicron has three main lineages, BA.1 (B.1.1.529.1), BA.2 (B.1.1.529.2),

and BA.3 (B.1.1.529.3), and many sub-lineages. Many new recombinants occurred, including XD, XE, and

XF. XD and XE are recombination of Delta and BA.1, while XE is basically a BA.2 Omicron lineage carrying

a piece of BA.1 at the front end of its genome. The S protein of XE is still BA.2.

The research community focuses its attention on the mutations at the S protein receptor-binding domain

(RBD) due to the fact that the RBD facilitates the binding between the S protein and the host angiotensin-

converting enzyme 2 (ACE2), which initiates the viral entry of a host cell and infection. It turns out that the

binding strength between the S protein RBD and the ACE2 is proportional to the viral infectivity [20,25,41,

45, 47]. An artificial intelligence (AI) study revealed that natural selection is the governing mechanism for

SARS-CoV-2 evolution [10]. Specifically, viral evolution selects those mutations that are able to strengthen

the RBD-ACE2 binding. This mechanism led to the occurrence of many variants, such as Alpha, Beta,

Gamma, Delta, Mu, etc. Natural selection in SARS-CoV-2 mutations was conformed beyond doubt in April

2021 by the genotyping of over half a million viral genomes isolated from patients [50].

Additionally, antibodies are generated by the human immune response to infection or vaccination. A

strong RBD-antibody binding would lock off RBD-ACE2 binding and directly neutralize the virus [24,48,60].

As such, mABs targeting the S protein, particularly the RBD, are designed to treat viral infection. It was

unveiled that viral evolution also selects those mutations that are able to weaken RBD-antibody binding,

leading vaccine breakthrough infections [52,53]. Therefore, a new virus with RBD mutations that make the

virus more infectious and more capable of evading the antibody protection would become the next dominating

variant, which is the underlying principle for the successful forecasting of Omicron BA.2’s dominance [11].

In biophysics, the strength of protein-protein complex is measured by binding free energy (BFE). Mutation-

induced BFE change ∆∆G is calculated by

∆∆G = ∆GWT −∆GMT (1)

where ∆GWT and ∆GMT are the BFE of wild type and mutant. A positive (negative) BFE change indicates

the strengthening (weakening) of the protein-protein binding. Protein-protein BFE changes can be carried

out in a variety of ways as shown in software packages FOLDX [18], SAAMBE [38], mCSM-AB [39], mCSM-

PPI2 [42], BindProfX [58], etc. AI approaches take the advantage of existing data and often outperform other

methods when experimental data become available. Due to the structural complexity and high dimensionality

of of protein-protein interactions (PPIs), methods that are able to effectively reduce the PPI structural

complexity and dimensionality have demonstrated great advantages in predicting PPI BFE changes [49].

Advanced mathematics, particularly, persistent homology [6,15,16,33,57,61], offers tremendous abstraction

of PPIs. Persistent homology is the main workhorse in popular topological data analysis (TDA) [3,12,13,59].

Element-specific persistent homology (EPH) has had tremendous success in computational biology [4,5] and

worldwide competitions in computer-aided drug design [35].

Based on FPH, a topology-based network tree (TopNetTree) model was constructed from conventional

neural network and decision trees for predicting PPI BFE changes [49]. In the past two years, this approach

has been extended with SARS-CoV-2 related deep mutational data to predict the BFE changes RBD-ACE2
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and RBD-antibody complexes up on RBD mutations [7, 8]. Initially, in early 2020, TopNetTree model

was applied to successfully predict that RBD residues 452 and 501 “have high chances to mutate into

significantly more infectious COVID-19 strains” [10]. These RBD mutations later appeared in all major

variants, Alpha, Beta, Delta, Gamma, Delta, Epsilon, Theta, Kappa, Lambada, Mu, and Omicron L452R/Q

and N501Y mutations. In April 2021, the TopNetTree model predicted a list of 31 RBD antibody-escape

mutations, including W353R, I401N, Y449D, Y449S, P491R, P491L, Q493P, etc. [50]. Notably, experimental

results confirmed that mutations at RBD residues Y449, E484, Q493, S494, and Y505 enable the virus to

escape antibodies [2]. It was revealed that variants found in the United Kingdom and South Africa in late

2020 would strengthen virus infectivity, which is consistent with the experimental results [14]. In summer

2021, a topology-based deep neural network trained with mAbs (TopNetmAb) was developed to forecast a

list of most likely vaccine-escape RBD mutations, such as S494P, Q493L, K417N, F490S, F486L, R403K,

E484K, L452R, K417T, F490L, E484Q, and A475S [8], and mutations S494P, K417N, E484K/Q, and L452R

were designated as the variants of concern or variants of interest denounced by the Worldwide Health

Organization (WHO). The correlation between the experimental deep mutational data [26] and AI-predicted

RBD-mutation-induced BFE changes for all possible 3686 RBD mutations on the RBD-ACE2 complex is

0.7 [8]. In comparison, experimental deep mutational results for the same set of RBD mutations from 2

different labs only have a correlation of 0.67 [26, 46]. TopNetmAb predictions of Omicron [9] and Omicron

BA.2 [11] infectivity, vaccine breakthrough, and antibody resistance were nearly perfectly confirmed by

experiments and pandemic evolution in the world. These mechanistic discovery and successful predictions

may not be achievable via purely experimental means, indicate the indispensable role of AI for scientific

discovery.

However, persistent homology and TDA provide only topological invariants, which may not be sufficient

for representing PPI data. In particular, the shape of data arisen from a family of homotopy geometries

cannot be captured by persistent homology. For example, the geometry of each drum in an acoustic drum

set is designed to offer a specific sound or frequency, but persistent homology is insensitive to the change in

the sizes (or shapes) in the drum set. This challenge in TDA was addressed by the introduction of persistent

Laplacian, or persistent spectral graph [54]. Persistent Laplacian manifests the full set of topological invari-

ants and the shape of data in its harmonic and non-harmonic spectra, respectively. Additional mathematical

analysis [31] and a software package, i.e., HERMES [55], for persistent Laplacian have been reported in

the literature. This method has been successfully applied to biological studies, including protein thermal

stability [54], protein-ligand binding [32], and protein-protein binding problems [56].

In the present work, we introduce element-specific and site-specific persistent Laplacians to forecast

emerging SARS-CoV-2 variants. We hypothesize that persistent Laplacians generates intrinsically low-

dimensional representations of PPIs and dramatically reduce the dimensionality of PPI data, leading to

a reliable high-throughput screening of emerging SARS-CoV-2 variants. To quantitatively validate this

hypothesis, we integrate the harmonic and non-harmonic spectra of persistent Laplacians with efficient

machine learning algorithms, i.e., gradient boosting tree (GBT) and deep neural network (Net), to predict

PPI ∆∆G following mutations. The resulting topological and spectral-based machine learning models are

validated on three major benchmark datasets, the AB-Bind database [44], SKEMPI dataset [34] and SKEMPI

v2.0 dataset [22], giving rise to the state of the art performance. Meanwhile, with additional training on

SARS-CoV-2 related datasets, our models forecast emerging SARS-CoV-2 variants and recommend four

Omicron subvariants, i.e., BA.2.11, BA.212.1, BA.4, and BA.5 for active surveillance.

2 Results

In this section, we first carry out the infectivity predictions on emerging SARS-CoV-2 variants. Next, three

benchmark PPI datasets, i.e., the AB-Bind [44], SKEMPI [34], and SKEMPI 2.0 datasets [22] are employed

to demonstrate the proposed persistent Laplacian-based AI models with ten-fold cross validations. Two
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evaluation metrics, Pearson correlation Rp and the root-mean-square error (RMSE), are used to assess the

quality of the present models. Lastly, we present the validation of our models on SARS-CoV-2-related

datasets.

2.1 Emerging SARS-CoV-2 variants: Infectivity

Figure 1: The RBD mutations of Omicron subvariants at the RBD-ACE2 interface and their mutation-induced BFE changes. a

RBD mutations of Omicron subvariants at the RBD-ACE2 interface (PDB: 7T9L [30]). The shared 12 mutations are shown in

cyan. BA.1 mutations are plotted with magenta. BA.2 mutations are marked in yellow. BA.4 and BA.5 mutations are labeled

in orange. The rest colors can be matched from the right chart. b A comparison of predicted mutation-induced BFE changes

for various SARS-CoV-2 variants and subvariants.

Figure 1 shows the RBD mutations of Omicron subvariants and their BFE changes of SARS-CoV-2

variants. A comparison is also given to other main SARS-CoV-2 variants Alpha, Beta, Gamma, Delta,

Theta, Kappa, Lambda, and Mu variants. The Delta variant had the highest BFE change among the earlier

variants and was the most infectious variant before the occurrence of the Omicron variant, which explains

its dominance in 2021. Omicron BA.1, BA.2, and BA.3 have the common RBD mutations G339D, S373P,

S375F, K417N, N440K, S477N, T478K, E484A, Q493R, Q498R, N501Y, and Y505H. Omicron BA.1 has

three distinct RBD mutations S371L, G446S, and G496S. Four distinct mutations, S371F, T376A, D405N,

and R408S, were found for Omicron BA.2. Omicron BA.3 shares three mutations either with BA.1 or BA.2:

S371F, D405N, and G446S. The AI-predicted BFE changes of BA.1, BA.2, and BA.3 are 2.60, 2.98, and 2.88

kcal/mol, respectively [11]. These values are significantly higher than those of other major SARS-CoV-2

variants as shown in Figure 1. Note that Omicron BA.2 is the most infectious variant. It is about 20 and 4.2

times as infectious as the original SARS-CoV-2 and the Delta variant, respectively. The machine learning

model also predicts that BA.2 is about 1.5 times as contagious as BA.1, which is highly consistent with

experimental studies [1, 28]. BA.2 has been the dominating variant since late March 2022 [11].

We have also examined the other Omicron subvariants, namely, BA.1.1, BA.2.11, BA.2.12.1, BA.4, and

BA.5. Compared with BA.1, BA.1.1 has one additional RBD mutation, i.e., R346K. BA.2.11 has one more

RBD mutation, L452R, than BA.2 does. BA.2.12.1 has an extra RBD mutation, L452Q, compared with

BA.2. BA.4 and BA.5 share the same set of RBD mutations but differ in ORF7b, nucleocapsid (N), and

membrane (M) proteins. They have three additional RBD mutations, L452R, F486V, and R493Q compared

with BA.2. Note that R493Q is a reversion to the wide type, Q493. It is interesting that L452R is one of

Delta’s two RBD mutations. Additionally, mutations simultaneously occurred on two RBD residues, L452

and N501, which were singled out by our AI model in early 2020 [10].

Our AI-predicted BFE changes for BA.1.1, BA.2.11, BA.2.12.1, BA.4, and BA.5 are 2.70, 3.13, 3.03,

3.27, and 3.27 kcal/mol, respectively. It is noticed that BA.4 and BA.5 are predicted to be 1.36 times as
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infectious as BA.2 and have high potential to become new dominating SARS-CoV-2 variants.

2.2 The performance on the AB-Bind dataset

The AB-Bind dataset, including 1,101 mutational data entries for experimentally determined BFE changes

[44] is considered in the validation of the proposed models. Its 645 single mutations involving 29 antibody-

antigen complexes are denoted as the AB-Bind S645 set. In the AB-Bind S645 set, about one-fifth of

mutations strengthen the binding, while the rest are destabilizing mutations. In particular, 27 non-binders,

which are mutants determined not to bind within the experimental sensitivity of the assay, are in the dataset.

The mutation-induced binding free energy changes for these non-binders were set to -8 kcal/mol. For machine

learning models, non-binders are outliers and can cause a very negative impact on model accuracy.

Method Rp Method Rp

TopLapGBT 0.89/0.95∗ mCSM-AB 0.53/0.56∗

LapGBT 0.88/0.94∗ Discovery Studio 0.45

TopGBT 0.88/0.95∗ mCSM-PPI 0.31

TopLapNetGBT 0.87/0.93∗ FoldX 0.34

LapNetGBT 0.87/0.91∗ STATIUM 0.32

TopNetGBT 0.86/0.93∗ DFIRE 0.31

TopNet 0.81/0.88∗ bASA 0.22

TopLapNet 0.79/0.87∗ dDFIRE 0.19

LapNet 0.72/0.81∗ Rosetta 0.16

Table 1: Comparison of the Pearson correlation coefficients (Rp) of various methods for the AB-bind S645 set. Except for

present TopLapGBT and TopLapNet, the results of other existing methods are adopted from Ref. [39].
∗Results exclude 27 non-binders (their ∆∆Gs were set to -8 kcal/mol [44]).

As shown in Table 1, our TopLapGBT and LapNet models achieved the Rp of 0.89 and 0.72 for the

AB-Bind S645 set. In comparison, TopNet outperforms LapNet because TopNet includes auxiliary features,

while LapNet has only Laplacian features. The Rp values of our other seven models are lower than 0.89

but higher than 0.72. Note that our worst model (LapNet) still outperforms the other best model in the

literature by a large margin of 36%, while our best model is about 68% better than the other best model in

the literature, indicating the predictive power of our topology and Laplacian-based machine learning models.

Both GBTs and Nets models are quite sensitive to system errors as the model training is based on optimizing

the mean-square error of the loss function. The BFE changes of 27 non-binders (-8 kcal/mol) did not follow

the distribution of the whole dataset. For the TopLapGBT model, the RMSE of AB-Bind S645set is 1.68

kcal/mol and reduces to 0.97 kcal/mol when 27 non-binder samples are excluded. In this case, the Rp of the

TopLapGBT model is increased from 0.89 to 0.95. The consensus results of GBT and Net have correlations

of 0.86-0.87, which are lower than that of GBT but higher than that of Net. GBT models outperform Net

models in the validation, showing that GBT performs better than Net on a small dataset.

2.3 The performance on the SKEMPI dataset

The SKEMPI dataset [34] has 3,047 entries of BFE changes induced by mutations. This dataset is collected

from the literature for protein-protein heterodimeric complexes with experimentally determined structures.

It consists of single- and multi-mutations. Among them, 2,317 single mutations out of 3,047 entries are

called the S2317 dataset. Recently, a subset of 1,131 non-redundant interface single-mutations is selected

and denoted as the S1131 set [58]. Table 2 shows the Pearson correlation coefficients on tenfold cross-

validations of various models, including topology- and Laplacian-based models. The proposed topology- and

Laplacian-based models are found to be more accurate than other existing methods. One may notice that

for a larger training set, the consensus predictions of GBT and Net outperform GBT methods. Additionally,
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topology-based models contain topology features and auxiliary features, which include more biomolecular

information than Laplacian-based models.

Method Rp Method Rp

TopLapNetGBT 0.87 BindProfX 0.738

TopNetGBT 0.87 Profile-score+FoldX 0.738

TopLapNet 0.86 Profile-score 0.675

TopNet 0.86 SAAMBE 0.624

TopLapGBT 0.86 FoldX 0.457

TopGBT 0.86 BeAtMuSic 0.272

LapNetGBT 0.81 Dcomplex 0.056

LapNet 0.81

LapGBT 0.78

Table 2: Comparison of the Pearson correlation coefficients (Rp) of various methods for the S1131 set in the SKEMPI dataset.

The results of other methods are adopted from Ref. [58].

2.4 The performance on the SKEMPI 2.0 dataset

The SKEMPI 2.0 [22] database is an updated version of the original SKEMPI database with new mutations

from three other databases: AB-bind [44], PROXiMATE [23], and dbMPIKT [27]. This dataset has 7,085

entries, including single-mutations and multi-mutations. To validate mCSM-PPI2, David et al. filtered only

single-point mutations, selected 4169 variants in 319 different complexes, and denoted them as the S4169

set [42]. Additionally, set S8338 was derived from set S4169 by setting the BFE changes of the reverse

mutations as the negative values of the original BFE changes induced by mutations. We present our tenfold

cross-validation results on sets S4169 and S8338 in Table 3. For S4169, TopLapNetGBT has the most accurate

result with Rp of 0.82 and RMSE of 1.06 kcal/mol. Topology-based models, aided by auxiliary features,

have correlations greater than 0.80 and RMSE from 1.04 kcal/mol to 1.10 kcal/mol. Purely Laplacian-based

models also performed quite well, with the Pearson correlation of 0.76, which is the same as that of the

mCSM-PPI2.

S4169 S8338

Method Rp Method Rp

TopLapNetGBT 0.82 TopLapNetGBT 0.87

TopNetGBT 0.82 TopLapNet 0.87

TopLapNet 0.81 TopNetGBT 0.87

TopLapGBT 0.81 TopNet 0.86

TopNet 0.81 TopLapGBT 0.85

TopGBT 0.80 TopGBT 0.85

LapNetGBT 0.77 LapNetGBT 0.83

mCSM-PPI2 0.76 mCSM-PPI2 0.82

LapNet 0.76 LapNet 0.81

LapGBT 0.76 LapGBT 0.80

Table 3: Comparison of the Pearson correlation coefficients (Rp) of various methods for S4169 set and S8338 set in SKEMPI

2.0. Results of mCSM-PPI2 are from Ref. [42]

For the S8338 set, TopLapNetGBT has the highest Pearson correlation Rp of 0.8702 and RMSE of 1.01

kcal/mol as shown in Table 3. TopLapNet has the most accurate results with Rp of 0.8688 and RMSE of
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0.984 kcal/mol. Topology models, aided by auxiliary features, have the Rp in the range of (0.848, 0.870) and

RMSE in the range of (1.070 kcal/mol, 0.984 kcal/mol). LapNet and LapGBT models have their Rp values

slightly lower than that of mCSM-PPI2, but the Rp of their consensus (LapNetGBT) is higher than that of

the mCSM-PPI2.

2.5 The performance on SARS-CoV-2 datasets

Training datasets have the utmost importance in implementing our machine learning model for SARS-

CoV-2 applications. First, all the datasets mentioned above, including AB-bind, [44] PROXiMATE [23],

dbMPIKT [27], SKEMPI [34], and SKEMPI 2.0 [22], are used in our model training. Additionally, SARS-

CoV-2-related datasets are also employed to improve the prediction accuracy after a label transformation.

These are deep mutational enrichment ratio data, including mutational scNeting data of ACE2 binding

to the receptor-binding domain (RBD) of the S protein [40], mutational scNeting data of RBD binding to

ACE2 [26,46], and mutational scNeting data of RBD binding to CTC-445.2 and of CTC-445.2 binding to the

RBD [26]. Note that in our validation, our training datasets exclude the test dataset, which is a mutational

scNeting data of RBD binding to ACE2. Here, these datasets provide more information on SARS-CoV-2

and can be used to calibrate the models to predict the real experimental results.

Here, we present a validation of our model BFE change prediction for mutations on S protein RBD

compared to the experimental deep mutational enrichment data [26]. We compare between experimental

deep mutational enrichment data and BFE change predictions on SARS-CoV-2 RBD binding to ACE2 in

Figure 2. Both BFE changes (Figure 2 top) and enrichment ratios (Figure 2 bottom) describe the binding

affinity changes of the S protein RBD-ACE2 complex induced by mutations. It can be found that the

predicted BFE changes are highly correlated to the enrichment ratio data. Pearson correlation is 0.69.
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Figure 2: A comparison between experimental RBD deep mutation enrichment data and predicted BFE changes for SARS-

CoV-2 RBD binding to ACE2 (6M0J) [26]. Top: machine learning predicted BFE changes for single-site mutants of the S

protein RBD. Bottom: deep mutational scanning heatmap showing the average effect on the enrichment for single-site mutants

of RBD when assayed by yeast display for binding to the S protein RBD [26].
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3 Theories and methods

This section presents brief reviews of spectral graph theory, simplicial complex, and persistent Laplacian are

presented. Machine learning and deep learning models are discussed in test datasets and validation settings.

3.1 Persistent Laplacians

3.1.1 Spectral graphs

Spectral graph theory studies the spectra of graph Laplacian matrices. It gives rise to the topological and

spectral properties of underlying graphs or networks. Mathematically, a graph is an ordered pair G(V,E),

where V = {vi; i = 1, 2, ..., N} is the vertex set with size N and E = {eij = (vi, vj); i ≤ i < j ≤ N} is the

edge set. Denote deg(v) the degree of each vertex vi ∈ V , i.e., the number of edges that connects to v. A

specific Laplacian matrix LG can be given by

LG =


deg(v), if vi = vj ,

−1, if vi and vj are adjacent,

0, otherwise,

(2)

where “adjacent” is subject to a specific definition or connection rule.

Let order the eigenvalues of the graph Laplacian matrix as

λmin = λ1 ≤ λ2 ≤ · · · ≤ λN = λmax. (3)

The kernel dimension of LG is the multiplicity of 0 eigenvalues, indicating the number of connected compo-

nents of G(V,E), which is the topological property of the graph. The non-zero eigenvalues of LG contain

the graph properties. In particular, λ2 is called the algebraic connectivity.

3.1.2 Simplicial complex

To construct a topological description of a graph, simplicial complex is used. For a set of q + 1 points,

{v0, v1, ..., vq}, a q-plane is well defined if the q + 1 points are affinely independent, i.e., v1 − v0, v2 − v0,

..., vq − v0 are linearly independent. Thus, one can have at most n linearly independent vectors with at

most n+ 1 affinely independent points in Rn. An affine hull is the set of affine combinations, v =
∑q

i=0 civi,

ci ∈ R, and
∑q

i=0 ci = 1. Such an affine combination is a convex combination if all ci are non-negative. The

convex hull is the set of convex combinations. A q-simplex denoted as σq is the convex hull of q + 1 affinely

independent points. For example, 0-, 1-, 2-, and 3-simplex are vertexes, edges, triangles, and tetrahedrons.

A simplicial complex K is a collection of simplices in Rn satisfying the following conditions such as the Cech

complexes, Vietoris-Rips complexes, and alpha shapes. For example, the Vietoris-Rips complex of K with

radius r consists of all subsets of radius R(σ) at most r as

VR(r) = {σ ⊆ K|R(σ) ≤ r}. (4)

For σq ∈ K, its face σq−1 is also in K. The non-empty intersection of any two simplices σq, σp ∈ K is a face

of them. The dimension of simplicial complex is defined as the maximum dimension of its simplex.

A q-chain is a finite sum of simplices as Σiciσ
k
i with Z2 field of the coefficients ci for the sum, and the

set of all chains in a group Cq(K). The boundary operator ∂k maps Cq(K)→ Cq−1(K) defined as

∂qσq =

q∑
i=0

(−1)i[v0, ..., v̂i, ..., vk] =

q∑
i=0

(−1)iσi
q−1, (5)

7



where σq = [v0, v1, ..., vk] and v̂i stands for vi being omitted. A q-chain is called q-cycle if its boundary is

zero. A chain complex is the sequence of chain groups connected by boundary operators

· · · ∂q+2−→ Cq+1(K)
∂q+1−→ Cq(K)

∂q−→ Cq−1(K)
∂q−1−→ · · · (6)

and the k-th homology group Hk is defined by Hk = Zk/Bk where Zk = ker ∂k = {c ∈ Ck | ∂kc = 0}
and Bk = im ∂k+1 = {∂k+1c | c ∈ Ck+1}. The Betti numbers are defined by the ranks of k-th homology

group Hk. This, in practice, is counting holes in k-dimension, such as β0 reflects the number of connected

components, β1 gives the number of loops, and β2 is the number of cavities. In a nutshell, the Betti number

sequence {β0, β1, β2, · · · } reveals the intrinsic topological property of the system.

Recall that in graph theory, the degree of a vertex (0-simplex) v is the number of edges that are adjacent

to the vertex, denoted as deg(v). However, once we generalize this notion to q-simplex, problem aroused

since q-simplex can have (q − 1)-simplices and (q + 1)-simplices adjacent to it at the same time. Therefore,

the upper adjacency and lower adjacency are required to define the degree of a q-simplex for q > 0 [29,43].

Defination 3.1. Given two q-simplices σi
q and σj

q of a simplicial complex K. We say they are lower adjacent

if they share a common (q − 1)-face, denoted as σi
q

L∼ σj
q. The lower degree of q-simplex is the number of

nonempty (q − 1)-simplices in K that are faces of σq, which is denoted as degL(σq) and is always q + 1.

Defination 3.2. Given two q-simplices σi
q and σj

q of a simplicial complex K. We say they are upper adjacent

if they share a common (q + 1)-face, denoted as σi
q

U∼ σj
q. The upper degree of q-simplex is the number of

(q + 1)-simplices in K of which σq is a face, which is denoted degU (σq).

Then, the degree of a q-simplex (q > 0) is defined as:

deg(σq) = degL(σq) + degU (σq) = degU (σq) + q + 1. (7)

3.1.3 Graph Laplacian

The graph Lapalcian was introduced to enrich topological and geometric information of simplicial com-

plexes via a filtration process. The preliminary concepts are about the oriented simplicial complex and

q-combinatorial Laplacian. More detail information can be found elsewhere [17,19,21,29]. The properties of

the q-combinatorial Laplacian matrix with its spectra are discussed in the following.

A q-combinatorial Laplacian is defined based on oriented simplicial complexes, and its lower- and higher-

dimensional simplexes can be employed to study a specifically oriented simplicial complex. An oriented

simplicial complex K is defined if all of its simplices are oriented. If σi
q and σj

q are upper adjacent with a

common upper (q+1)-simplex τq+1, they are similarly oriented if both have the same sign in ∂q+1(τq+1) and

dissimilarly oriented if the signs are opposite. Additionally, if σi
q and σj

q are lower adjacent with a common

lower (q − 1)-simplex ηq−1, they are similarly oriented if ηq−1 has the same sign in ∂q(σi
q) and ∂q(σj

q), and

dissimilarly oriented if the signs are opposite. Similarly, q-chains can be defined on the oriented simplicial

complex K, as well as q-boundary operator.

The q-combinatorial Laplacian is a linear operator ∆q : Cq(K) −→ Cq(K) for integer q ≥ 0

∆q := ∂q+1∂
∗
q+1 + ∂∗q∂q (8)

where ∂∗q is the coboundary operator mapping ∂∗q : Cq−1(K) −→ Cq(K). One property ∂q∂q+1 = 0 is

preserved, which implies Im(∂q+1) ⊂ ker(∂q). The q-combinatorial Laplacian matrix, denoted Lq, is the

matrix representation.

Lq = Bq+1BTq+1 + BTq Bq (9)

of operator ∆q, where Bq and BTq be the matrix representation of a q-boundary operator and q-coboundary

operator, respectively, with respect to the standard basis for Cq(K) and Cq−1(K) with some assigned or-

derings. Then, the number of rows in Bq corresponds to the number of (q − 1)-simplices and the number of

8



columns shows the number of q-simplices in K, respectively. In addition, the upper and lower q-combinatorial

Laplacian matrices are denoted by LU
q = Bq+1BTq+1 and LL

q = BTq Bq, respectively. Note that ∂0 is the zero

map which leads to B0 being a zero matrix. Therefore, L0(K) = B1BT1 + BT0 B0, with K the (oriented)

simplicial complex of dimension 1, which is actually a simple graph. Especially, 0-combinatorial Laplacian

matrix L0(K) is actually the Laplacian matrix defined in the spectral graph theory.

Given an oriented simplicial complex K with 0 ≤ q ≤ dim(K), the entries of q-combinatorial Laplacian

matrices are given by [17]

q > 0, (Lq)ij =


deg(σi

q), if i = j.

1, if i 6= j, σi
q

U� σj
q and σi

q
L∼ σj

q with similar orientation.

−1, if i 6= j, σi
q

U� σj
q and σi

q
L∼ σj

q with dissimilar orientation.

0, if i 6= j and either , σi
q

U∼ σj
q or σi

q
L� σj

q .

(10)

q = 0, (Lq)ij =


deg(σi

0), if i = j.

−1, if σi
0

U∼ σj
0.

0, otherwise.

(11)

3.1.4 Persistent spectral graphs

Persistent spectral graphs were introduced by integrating graph Laplacian and multiscale filtration [54]. Both

topological and geometric information (i.e. connectivity and robustness of simple graphs) can be derived

from analyzing the spectra of q-combinatorial Laplacian matrix. However, this method is genuinely free of

metrics or coordinates, which induced too little topological and geometric information that can be used to

describe a single configuration. Therefore, persistent spectral graphs (PSG) is proposed to create a sequence

of simplicial complexes induced by varying a filtration parameter, which is inspired by the idea of persistent

homology and our earlier work in multiscale graphs. This section mainly introduce the construction of

persistent spectral graphs.

First, a q-combinatorial Laplacian matrix is symmetric and positive semi-definite. Therefore, its eigen-

values are all real and non-negative. The multiplicity of zero spectra (also called harmonic spectra) reveals

the topological information, and the geometric information will be preserved in the non-harmonic spectra.

More specifically, the multiplicity of zero spectra of Lq(K) is denoted by βq which is actually the q-th Betti

number defined in the homology:

βq = dim(Lq(K))− rank(Lq(K)) = nullity(Lq(K)) = # of zero eigenvalues of Lq(K). (12)

Naturally, persistent spectral theory creates a sequence of simplicial complexes induced by varying a

filtration parameter [54]. A filtration of an oriented simplicial complex K is a sequence of sub-complexes

(Kt)
m
t=0 of K

∅ = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Km = K. (13)

9



It induces a sequence of chain complexes

· · · C1
q+1

∂1
q+1−−−⇀↽−−−
∂1∗
q+1

C1
q

∂1
q−−⇀↽−−

∂1∗
q

· · ·
∂1
3−−⇀↽−−

∂1∗
3

C1
2

∂1
2−−⇀↽−−

∂1∗
2

C1
1

∂1
1−−⇀↽−−

∂1∗
1

C1
0

∂1
0−−⇀↽−−

∂1∗
0

C1
−1

⊆ ⊆ ⊆ ⊆ ⊆

· · · C2
q+1

∂2
q+1−−−⇀↽−−−
∂2∗
q+1

C2
q

∂2
q−−⇀↽−−

∂2∗
q

· · ·
∂2
3−−⇀↽−−

∂2∗
3

C2
2

∂2
2−−⇀↽−−

∂2∗
2

C2
1

∂2
1−−⇀↽−−

∂2∗
1

C2
0

∂2
0−−⇀↽−−

∂2∗
0

C1
−1

⊆ ⊆ ⊆ ⊆ ⊆

···

···

···

···

···

⊆ ⊆ ⊆ ⊆ ⊆

· · · Cm
q+1

∂m
q+1−−−⇀↽−−−
∂m∗
q+1

Cm
q

∂m
q−−−⇀↽−−−

∂m∗
q

· · ·
∂m
3−−−⇀↽−−−

∂m∗
3

Cm
2

∂m
2−−−⇀↽−−−

∂m∗
2

Cm
1

∂m
1−−−⇀↽−−−

∂m∗
1

Cm
0

∂m
0−−−⇀↽−−−

∂m∗
0

C1
−1

(14)

For each sub-complexes Kt, we define its corresponding chain group to be Cq(Kt), and the q-boundary

operator will be denoted by ∂tq : Cq(Kt) → Cq−1(Kt). We say that if q < 0. then Cq(Kt) is an empty set

and ∂tq is a zero map. If 0 < q ≤ dim(Kt), then

∂tq(σq) =

q∑
i

(−1)iσi
q−1, σq ∈ Kt, (15)

with σq = [v0, · · · , vq] being the q-simplex, and σi
q−1 = [v0, · · · , v̂i, · · · , vq] being the (q−1)-simplex for which

its vertex vi is removed. Additionally, the adjoint operator is ∂t
∗

q : Cq−1(Kt)→ Cq(Kt). The topological and

spectral information of Kt can be analyzed from Lq(Kt) along with the filtration parameter by diagonalizing

the q-combinatorial Laplacian matrix. We call the multiplicity of zero spectra of Lt
q as its persistent Betti

number βt
q, which counts the number of q-dimensional holes in Kt:

βt
q = dim(Lt

q)− rank(Lt
q) = nullity(Lt

q) = #of harmonic spectra of Lt
q. (16)

Specifically, βt
0 represents the number of connected components in Kt, β

t
1 reveals the number of one-

dimensional loops or circles in Kt, and βt
2 shows the number of two-dimensional voids or cavities in Kt.

Moreover, the set of spectra of Lt
q is given by:

Spectra(Lt
q) = {(λ1)tq, (λ2)tq, · · · , (λN )tq}, (17)

where Lt
q has dimension N×N and spectra are arranged in ascending order. The smallest non-zero eigenvalue

of Lt
q is defined as (λ̃2)tq. The p-persistent q-combinatorial Laplacian operator is defined by extending the

boundary operator. Detailed descriptions can be found in Ref. [54].

3.2 Predictive models for mutation-induced protein-protein binding free energy

changes

Since the harmonic spectra produced by the kernel of a persistent Laplacian contain exact topological

information as that of persistent homology. As such, we utilize a persistent homology software, GUDHI,

to generate purely topological representations of PPIs in dimensions 0, 1, and 2. Additionally, persistent

Laplacian spectra, including both harmonic and non-harmonic parts, are coded in Python. Machine learning

and deep learning algorithms are implemented in Pytorch [36].

3.2.1 Persistent Laplacian representation of PPIs

To facilitate topological and shape analysis of PPIs via persistent Laplacians, we first composite the atoms

in a protein-protein complex into various subsets.
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1. Am: atoms of the mutation sites.

2. Amn(r): atoms in the neighbourhood of the mutation site within a cut-off distance r.

3. AA(r): protein A atoms within r of the binding site.

4. AB(r): protein B atoms within r of the binding site.

5. Aele(E): atoms in the system that has atoms of element type E. The distance matrix is specially

designed such that it excludes the interactions between the atoms form the same set. For interactions

between atoms ai and aj in set A and/or set B, the modified distance is defined as

Dmod(ai, aj) =

{
∞, if ai, aj ∈ A, or ai, aj ∈ B,
De(ai, aj), if ai ∈ A and aj ∈ B,

(18)

where De(ai, aj) is the Euclidian distance between ai and aj .

Molecular atoms of different can be constructed as points presented by v0, v1, v2, ..., vk as k+1 affinely inde-

pendent points in simplicial complex. Persistent spectral graph is devised to track the multiscale topological

and geometrical information over different scales along a filtration [54], resulting in significant important

feature vectors for the machine learning method. Features generated by binned barcode vectorization can

reflect the strength of atom bonds, van der Waals interactions, and can be easily incorporated into a ma-

chine learning model, which captures and discriminates local patterns. Using the atom subsets, for example

AA(r) and AB(r), simplicial complexes are constructed by only considering the edges from AA(r) to AB(r)

for Vietoris-Rips complexes. Then from the Vietoris-Rips complex filtration, barcodes generated from per-

sistent homology are enumerated by bar lengths in certain intervals with number 0 or 1. Meanwhile, for

each complexes in the filtration, eigenvalues are calculated according to the graph Laplacian analysis. The

statistics of eigenvalues such as sum, maximum, minimum, mean, and standard deviation are collected to

have a normalized features for machine learning methods. Another method of vectorization is to get the

statistics of bar lengths, birth values, and death values, such as sum, maximum, minimum, mean, and stan-

dard deviation. This method is applied to vectorize Betti-1 (H1) and Betti-2 (H2) barcodes obtained from

alpha complex filtration based on the facts that higher-dimensional barcodes are sparser than H0 barcodes.

3.2.2 Machine learning and deep learning algorithms

The features generated from the persistent spectral graph are tested by the gradient boosting tree (GBT)

method and the deep neural network (Net) method. The validations are performed on the datasets discussed

in the results section. The accurate prediction of the mutation-induced binding affinity changes of protein-

protein complexes is very challenging. After effective feature-generations, a machine learning or deep learning

model is also required for validations and real applications. The gradient boosting tree is a popular ensemble

method for regression and classification problems. It builds a sequence of weak learners to correct training

errors. By the assumption that the individual learners are likely to make different mistakes, the method

combines weak learners to eliminate the overall error. Furthermore, a decision tree is added to the ensemble

depending on the present prediction error on the training dataset. Therefore, this method is relatively robust

against hyperparameter tuning and overfitting, especially for a moderate number of features. The GBT is

shown for its robustness against overfitting, good performance for moderately small data sizes, and model

interpretability. The present work uses the package provided by scikit-learn (v 0.23.0) [37]. The number of

estimators and the learning rate are optimized for ensemble methods as 20000 and 0.01, respectively. For

each set, ten runs (with different random seeds) were done, and the average result is reported in this work.

Considering a large number of features, the maximum number of features to consider is set to the square root

of the given descriptor length for GBT methods to accelerate the training process. The parameter setting

shows that the performance of the average of sufficient runs is decent.
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A deep neural network is a network of neurons that maps an input feature layer to an output layer. The

neural network mimics the human brain to solve problems with numerous neuron units with backpropagation

to update weights on each layer. To reveal the facts of input features at different levels and abstract

more properties, one can construct more layers and more neurons in each layer, known as a deep neural

network. Optimization methods for feedforward neural networks and dropout methods are applied to prevent

overfitting. The network layers and the number of neurons in each layer are determined by gird searches

based on 10-fold cross-validations. Then, the hyperparameters of stochastic gradient descent (SGD) with

momentum are set up based on the network structure. The network has 7 layers with 10000 neurons in

each layer. For SGD with momentum, the hyperparameters are momentum = 0.9 and weight decay=0. The

learning rate is 0.002 and the epoch is 400. The Net is implemented on Pytorch [36].

3.2.3 Predictive models

In our previous work, topology-based deep neural network trained with mAbs (TopNetmAb) was introduced

to predict mAb binding free energy changes [8]. Persistent homology is the main workhorse for TopNetmAb,

but auxiliary features inherited from our earlier TopNetTree [49] are utilized.

In this work, we construct a TopNet model from TopNetmAb by excluding mAb training data. A

topology-based GBT model (TopBGT) is also developed in the present work by replacing Net in the TopNet

model with GBT. Both TopNet and TopGBT include a set of auxiliary features inherited from our earlier

TopNetTree [49] and TopNetmAb [8] to enhance their performance.

Additionally, to evaluate the performance of persistent Laplacian (Lap) for PPIs, we construct persistent

Laplacian-based GBT (LapGBT) and persistent Laplacian-based deep neural network (LapNet). Note that

unlike TopNet and TopGBT, LapGBT and LapNet employ only persistent Laplacian features extracted from

protein structures. Therefore, their performance depends purely on persistent Laplacian.

Moreover, TopLapGBT and TopLapNet are constructed by adding persistent Laplacian features to

TopGBT and TopNet, respectively. Furthermore, the consensus of GBT and Net predictions are also used

for validations, denoted as TopNetGBT and LapNetGBT, respectively. Finally, the consensus of TopLapNet

and TopLapGBT is called TopLapNetGBT.

4 Conclusion

Due to natural selection, emerging SARS-CoV-2 variants are spreading worldwide with their increased trans-

missibility as a result of higher infectivity and/or stronger antibody resistance. The increase in antibody

resistance also leads to vaccine breakthrough infections and jeopardizes the existing monoclonal antibody

drugs. The spike protein plays the most important role in viral transmission because its receptor binding do-

main (RBD) binds to human ACE2 to facilitate the viral entry of host cells. Topological data analysis (TDA)

of RBD-ACE2 binding free energy changes induced by RBD mutations enables the accurate forecasting of

emerging SARS-CoV-2 variants [9–11,51].

However, the earlier TDA method is not sensitive to homotopic shape evolution, which is important for

protein-protein interactions (PPIs). To overcome this obstacle, persistent Laplacian, which characterizes the

topology and shape of data, is introduced in this work for analyzing PPIs. Paired with advanced machine

learning and deep learning algorithms, the proposed persistent Laplacian method outperforms the state-of-art

approaches in validation with mutation-induced binding free energy changes of PPIs using major benchmark

datasets. An important forecasting from the present work is that Omicron subvariants BA.2.11, BA.212.1,

BA.4, and BA.5 have high potential to become new dominating variants in the world.
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[19] D. Hernández Serrano and D. Sánchez Gómez. Higher order degree in simplicial complexes, multi

combinatorial laplacian and applications of tda to complex networks. arXiv preprint arXiv:1908.02583,

2019.

14

https://www.timesofisrael.com/several-cases-of-omicron-reinfection-said-detected-in-israel-with-new-ba2-strain/
https://www.timesofisrael.com/several-cases-of-omicron-reinfection-said-detected-in-israel-with-new-ba2-strain/


[20] M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T. S. Schiergens,
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[22] J. Jankauskaitė, B. Jiménez-Garćıa, J. Dapkūnas, J. Fernández-Recio, and I. H. Moal. SKEMPI 2.0: an

updated benchmark of changes in protein–protein binding energy, kinetics and thermodynamics upon

mutation. Bioinformatics, 35(3):462–469, 2019.

[23] S. Jemimah, K. Yugandhar, and M. Michael Gromiha. Proximate: a database of mutant protein–protein

complex thermodynamics and kinetics. Bioinformatics, 33(17):2787–2788, 2017.

[24] C. Li, X. Tian, X. Jia, J. Wan, L. Lu, S. Jiang, F. Lan, Y. Lu, Y. Wu, and T. Ying. The impact of

receptor-binding domain natural mutations on antibody recognition of SARS-CoV-2. Signal Transduct.

Target. Ther, 6(1):1–3, 2021.

[25] W. Li, Z. Shi, M. Yu, W. Ren, C. Smith, J. H. Epstein, H. Wang, G. Crameri, Z. Hu, H. Zhang, et al.

Bats are natural reservoirs of SARS-like coronaviruses. Science, 310(5748):676–679, 2005.

[26] T. W. Linsky, R. Vergara, N. Codina, J. W. Nelson, M. J. Walker, W. Su, C. O. Barnes, T.-Y. Hsiang,

K. Esser-Nobis, K. Yu, et al. De novo design of potent and resilient hACE2 decoys to neutralize

SARS-CoV-2. Science, 370(6521):1208–1214, 2020.

[27] Q. Liu, P. Chen, B. Wang, J. Zhang, and J. Li. dbmpikt: a database of kinetic and thermodynamic

mutant protein interactions. Bmc Bioinformatics, 19(1):1–7, 2018.

[28] F. P. Lyngse, C. T. Kirkeby, M. Denwood, L. E. Christiansen, K. Mølbak, C. H. Møller, R. L. Skov,

T. G. Krause, M. Rasmussen, R. N. Sieber, et al. Transmission of sars-cov-2 omicron voc subvariants

ba. 1 and ba. 2: Evidence from danish households. medRxiv, 2022.
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