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Abstract. This paper explores the utility of a discrete singular convolution (DSC) algorithm for
solving the Schr̈odinger equation. DSC kernels of Shannon, Dirichlet, modified Dirichlet and de
la Vallée Poussin are selected to illustrate the present algorithm for obtaining eigenfunctions and
eigenvalues. Four benchmark physical problems are employed to test numerical accuracy and
speed of convergence of the present approach. Numerical results indicate that the present approach
is efficient and reliable for solving the Schrödinger equation.

1. Introduction

There is an ongoing interest in computational methodology [1–20]. Most efforts are centred
on developing either global or local methods for solving a variety of time-dependent and
time-independent problems. The well known local methods involve finite differences, finite
elements, finite volumes and boundary elements. Local methods are flexible for handling
complex boundary and geometry, but are not as accurate as global methods. Global
approximations to a function and its derivatives are typically realized by a set of truncated
basis expansions which result in a finite approximation. Global methods are highly localized
at their spectral representations and thus they provide high computational accuracy. However,
they are not convenient for complex boundary and geometry such as occur in waveguide
problems. It is desirable to have methods which combine global methods’ accuracy with local
methods’ flexibility for practical applications.

Discrete singular convolution (DSC) [21] was proposed as a potential numerical approach
for solving many computational problems, including linear and nonlinear dynamics [22],
Hilbert transform, processing of analytic signals, and computational tomography. Based on
the DSC formalism, a unification was achieved [23] for computational methods of the global,
local, finite difference, finite element, finite volume, Galerkin, collocation, subdomain and Ritz
variational types. The underlying mathematical structure of the DSC approach is the theory
of distributions. Heaviside and Dirac had exploited the use of the delta distribution before
Sobolev, Schwartz [24], Korevaar [25] and others put the distribution theory into a rigorous
mathematical form. More general orthogonal series analyses of the delta distribution were
studied by Walter [27] and others [28–30]. The numerical use of many delta sequences as
probability density estimators was discussed by Walter and Blum [30] and others [29,32,33].

The purpose of this paper is to explore the utility of the DSC algorithm for the
numerical solution of the Schrödinger equation. This is illustrated by numerically resolving
eigenfunctions and eigenvalues. This paper is organized as follows. Section 2 gives a brief
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review of the DSC formalism. The reader is referred to the original work [21] for more
details. Numerical eigenvalue results are presented in section 3. Four important problems,
anI2 Morse potential, a two-dimensional (2D) harmonic oscillator, a three-dimensional (3D)
harmonic oscillator, and a non-polynomial oscillator (NPO) are selected for illustration. The
paper ends with a conclusion.

2. Discrete singular convolution

Singular convolutions appear in many problems, such as Hilbert transform, Abel transform and
Radon transforms. DSC is a general approach for numerically solving singular convolution
problems. By appropriate realizations of a singular convolution kernel, the DSC can be an
extremely efficient, accurate and reliable algorithm for scientific computations.

Let T be a distribution andη(t) be an element of the space of test functions. A singular
convolution can be defined as

F(t) = (T ∗ η)(t) =
∫ ∞
−∞

T (t − x)η(x) dx. (1)

HereT (t − x) is a singular kernel. An interesting example is the singular kernels of thedelta
type

T (x) = δ(n)(x), (n = 0, 1, 2, . . .), (2)

where kernelT (x) = δ(x) is important for interpolation of surfaces and curves (including
atomic, molecular and biological potential energy surfaces) andT (x) = δ(n)(x) (n = 1, 2, . . .)
are essential for numerically solving partial differential equations. However, since these
kernels are singular, they cannot be directly digitized in computers. Hence, the singular
convolution, equation (1), is of little numerical merit. To avoid the difficulty of using singular
expressions directly in computers, sequences of approximations (Tα) of the distributionT can
be constructed

lim
α→α0

Tα(x) −→ T (x), (3)

whereα0 is a generalized limit. Obviously, in the case ofT (x) = δ(x), the sequence,Tα(x),
is a delta sequence. Furthermore, with a sufficiently smooth approximation, it makes sense to
consider a DSC

Fα(t) =
∑
k

Tα(t − xk)f (xk), (4)

whereFα(t) is an approximation toF(t) and{xk} is an appropriate set of discrete points on
which the DSC (4) is well defined. Note that the original test functionη(x) has been replaced
by f (x). The mathematical property or requirement off (x) is determined by an approximate
kernelTα.

Shannon’s kernel

sinα(x − x ′)
π(x − x ′)

is a special example for the delta sequence. Other important examples include the Dirichlet
kernel

sin[(l + 1
2)(x − x ′)]

2π sin[1
2(x − x ′)]

,
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the modified Dirichlet (MD) kernel

sin[(l + 1
2)(x − x ′)]

2π tan[12(x − x ′)]
,

and the de la Valĺee Poussin (DLVP) kernel

1

πα

cos[α(x − x ′)] − cos[2α(x − x ′)]
(x − x ′)2 .

For sequences of delta type, an interpolating (or quasi-interpolating) algorithm sampling at
Nyquist frequency(α = π

1
) has advantage over a non-interpolating discretization

sin[α(x − x ′)]
π(x − x ′) → sin π

1
(x − xk)

π
1
(x − xk) . (5)

The uniform, Nyquist rate, interpolating discretization is also used for the Dirichlet kernel:

sin[(l + 1
2)(x − x ′)]

2π sin[1
2(x − x ′)]

→ sin( π
1
(x − xk))

(2M + 1) sin( π
1

x−xk
2M+1)

. (6)

In comparison with Shannon’s kernel, the Dirichlet kernel has one more parameterM which
can be optimized to achieve better results in computations. Usually, we set a sufficiently large
M for various numerical applications. Obviously, the Dirichlet kernel converts to Shannon’s
kernel at the limit ofM →∞. This uniform interpolating discretization will also be used for
discretizing the MD kernel

sin[(l + 1
2)(x − x ′)]

2π tan[12(x − x ′)]
→ sin( π

1
(x − xk))

(2M + 1) tan( π
1

x−xk
2M+1)

, (7)

and for the de la Valĺee Poussin kernel

1

πα

cos[α(x − x ′)] − cos[2α(x − x ′)]
(x − x ′)2 → 2

3

cosπ
1̄
(x − xk)− cos2π

1̄
(x − xk)

[ π
1̄
(x − xk)]2

, (8)

where1̄ = 3
21. Sinceπ/1 is proportional to the highest frequency which can be reached

in the Fourier representation, the1 should be very small for a given problem involving very
oscillatory functions or very high frequency components.

In the DSC approach we choose a grid representation for the coordinate so that the
potential part,V (x), of the Hamiltonian is diagonal. The full DSC matrix representation
for the Hamiltonian operator,H , is given by

H(xj , xk) = − h̄
2

2m
δ(2)α (xj − xk) + V (xj )δj,k, (9)

wherem is the mass of the Hamiltonian system andδ(2)α (xj − xk) is analyticallygiven by

δ(2)α (xj − xk) =
[(

d

dx

)2

δα(x − xk)
]
x=xj

. (10)

Hereδα(x − xk) is a collective symbol for any of the right-hand sides of equations (5)–(8).
Extending to higher dimensions is obvious. Equation (9) or its multidimensional extension is
referred to as a DSC-Hamiltonian matrix.
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3. Results

In this paper, we limit our attention to DSC kernels of the Shannon, DLVP, Dirichlet and MD
type. Nevertheless, various other DSC kernels can be similarly employed. Note that DSC
kernels of Shannon and DLVP are parameter free, which is convenient for applications. The
2M+1 parameter used for other two kernels is chosen as 71 for all calculations. We note that as
long as the 2M + 1 value is chosen sufficiently large (2M + 1> W , where 2W + 1 is the matrix
bandwidth), the numerical results are not sensitive to specific values used. When a potential
is given, eigenvalues are obtained by a direct diagonalization of the DSC-Hamiltonian matrix,
equation (9) or its multidimensional generalization.

To illustrate the use of the DSC algorithm and test its accuracy for calculating
eigenfunctions and eigenvalues, we consider four benchmark problems: the Morse potential
for an I2 molecule, a 2D harmonic oscillator, a 3D harmonic oscillator and an NPO. A general
form for the Schr̈odinger equation in the coordinate representation is given by[
− h̄2

2m

n∑
i=1

∂2

∂x2
i

+ V (x1, . . . , xn)

]
8k(x1, . . . , xn) = Ek8k(x1, . . . , xn), (11)

where8k andEk are thekth eigenfunction and eigenvalue respectively.

3.1. TheI2 molecule

The Morse potential for the I2 molecule is given by

V (x) = D[e−2αx − 2e−αx + 1], (12)

whereD = 0.0224 andα = 0.9374. Here, the reduced mass for the Schrödinger equation
ism = 119 406. The anharmonic character of the Morse potential allows dissociation, hence
it is one of the most popular potentials for modelling the spectroscopy and dynamics of the
I2 molecule. The Schrödinger equation of the I2 Morse system is actually solvable. Exact
eigenfunctions are well known generalized Laguerre polynomials [34]

8k = Nkz
p

2 e−
z
2L

p

k (z), (13)

wherez = βe−αx, p = β − 2k − 1 andβ = 156.047 612 535. Here,Nk is a normalization
constant and is given by [34]

Nk =
[
0(p)

α

k∑
γ=0

(−1)γ
(−p
γ

)]−1/2

. (14)

Exact eigenvalues of the I2 molecule are [34]

Ek = κ
[
k +

1

2
− 1

β

(
k +

1

2

)2
]
, (15)

whereκ = 5.741 837 286× 10−4 is calculated according to the physical property of I2. Since
κ is very small, the density of state of this system is obviously very high. Thus it often serves
as a standard problem for testing new numerical algorithms.

In a recent study, Braunet al [18] have used this system to test their efficient Chebyshev–
Lanczos method. They achieve a remarkably high accuracy which ranges from 7 to 9 digits
using 128 grid points. For DSC kernels of Shannon, Dirichlet and MD, we choose 64 grid
points (N = 64) which corresponds to the grid spacing of 0.043 077 (1 = 0.043 077). All
grid pointsxk are equally distributed in the interval [−1(N+1)

2 , 1(N+1)
2 ]. For a comparison, we

list our calculation and those of Braunet al [18] in table 1. Our 64 grid point results are 200
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Table 1. Comparison of errors forI2 Morse oscillator.

Braunet al Shannon Dirichlet MD DLVP
k Analytical (N = 128) (N = 64) (N = 64) (N = 64) (N = 96)

0 0.852 996 623 626 6942(−03) −0.10(−10) −0.14(−13) −0.14(−13) −0.14(−13) −0.14(−13)
1 0.141 246 218 462 9706(−02) −0.30(−10) −0.42(−13) −0.42(−13) −0.42(−13) −0.42(−13)
2 0.196 456 866 183 4224(−02) −0.50(−10) −0.70(−13) −0.70(−13) −0.70(−13) −0.70(−13)
3 0.250 931 605 524 0247(−02) −0.70(−10) −0.97(−13) −0.97(−13) −0.97(−13) −0.97(−13)
4 0.304 670 436 484 7777(−02) −0.89(−10) −0.12(−12) −0.12(−12) −0.12(−12) −0.12(−12)
5 0.357 673 359 065 6813(−02) −0.11(−09) −0.15(−12) −0.15(−12) −0.15(−12) −0.15(−12)
6 0.409 940 373 266 7354(−02) −0.13(−09) −0.18(−12) −0.18(−12) −0.18(−12) −0.18(−12)
7 0.461 471 479 087 9402(−02) −0.15(−09) −0.20(−12) −0.20(−12) −0.20(−12) −0.20(−12)
8 0.512 266 676 529 2955(−02) −0.16(−09) −0.23(−12) −0.23(−12) −0.23(−12) −0.23(−12)
9 0.562 325 965 590 8014(−02) −0.18(−09) −0.25(−12) −0.28(−12) −0.25(−12) −0.25(−12)

10 0.611 649 346 272 4579(−02) −0.20(−09) −0.28(−12) −0.28(−12) −0.28(−12) −0.28(−12)
11 0.660 236 818 574 2650(−02) −0.22(−09) −0.30(−12) −0.30(−12) −0.30(−12) −0.30(−12)
12 0.708 088 382 496 2227(−02) −0.23(−09) −0.33(−12) −0.33(−12) −0.33(−12) −0.33(−12)
13 0.755 204 038 038 3310(−02) −0.25(−09) −0.35(−12) −0.35(−12) −0.35(−12) −0.35(−12)
14 0.801 583 785 200 5899(−02) −0.27(−09) −0.37(−12) −0.37(−12) −0.37(−12) −0.37(−12)
15 0.847 227 623 982 9993(−02) −0.28(−09) −0.39(−12) −0.39(−12) −0.39(−12) −0.40(−12)
16 0.892 135 554 385 5595(−02) −0.30(−09) −0.41(−12) −0.41(−12) −0.41(−12) −0.41(−12)
17 0.936 307 576 408 2702(−02) −0.32(−09) −0.42(−12) −0.42(−12) −0.42(−12) −0.43(−12)
18 0.979 743 690 051 1314(−02) −0.33(−09) −0.42(−12) −0.42(−12) −0.42(−12) −0.43(−12)
19 0.102 244 389 531 4143(−01) −0.35(−09) −0.39(−12) −0.39(−12) −0.39(−12) −0.39(−12)
20 0.106 440 819 219 7306(−01) −0.36(−09) −0.29(−12) −0.30(−12) −0.29(−12) −0.28(−12)
21 0.110 563 658 070 0619(−01) −0.38(−09) 0.13(−12) 0.13(−12) 0.13(−12) −0.10(−13)
22 0.114 612 906 082 4082(−01) −0.39(−09) 0.14(−11) 0.14(−11) 0.14(−11) 0.61(−12)
23 0.118 588 563 256 7697(−01) −0.41(−09) 0.29(−11) 0.29(−11) 0.29(−11) 0.19(−11)
24 0.122 490 629 593 1461(−01) −0.42(−09) 0.17(−11) 0.17(−11) 0.18(−11) 0.46(−11)

to 1000 times more accurate than those of Braunet al, obtained by using 128 grid points. It
requires about 1.5 times as many grid points (N = 96) for the DLVP delta sequence kernel to
achieve the same level of accuracy as those obtained by using other kernels.

3.2. A 2D harmonic oscillator

To illustrate further the accuracy and robustness of the DSC algorithm, we consider the 2D
Schr̈odinger equation with a harmonic oscillator potential

V (x, y) = 1
2(x

2 + y2). (16)

One of most important reasons for this choice is the analytical solvability of the model. By
settingh̄ = m = 1 in the Schr̈odinger equation, analytical eigenvalues are given by

Enx,ny = 1 +nx + ny = 1 +n, (17)

with the degree of degeneracy ofdn = n + 1 in thenth energy level.
For DSC kernels of Shannon, Dirichlet and MD, the number of grid points used in each

dimension is 26 (Nx = Ny = 26,1x = 1y = 0.481 4815). As listed in table 1, the first
21 eigenvalues are all accurate to at least ten significant figures. This calculation demonstrates
that the DSC algorithm is extremely accurate for handling degenerate eigenvalue problems.
Calculations obtained by using the DLVP delta sequence kernel are slightly less accurate. It
requires 39 grid points in each dimension to reach the same accuracy as those obtained by
using other kernels (26 grid points in each dimension). These results have also been presented
in table 2 for a comparison of different kernels.
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Table 2. Errors for the eigenvalues of the 2D harmonic oscillator.

Shannon Dirichlet MD DLVP
n dn Exact (Nx = Ny = 26) (Nx = Ny = 26) (Nx = Ny = 26) (Nx = Ny = 39)

0 1 1 0.71(−14) 0.30(−12) 0.24(−12) 0.92(−12)
1 2 2 0.25(−12) 0.21(−12) 0.27(−12) 0.64(−12)

0.21(−12) 0.64(−13) 0.29(−12) 0.38(−12)
2 3 3 0.33(−12) 0.37(−12) 0.31(−12) 0.57(−12)

0.26(−12) 0.23(−12) 0.50(−13) 0.19(−12)
0.51(−13) −0.89(−15) −0.14(−12) −0.41(−12)

3 4 4 0.18(−12) 0.36(−12) 0.38(−12) 0.15(−11)
0.70(−13) 0.20(−12) 0.34(−13) 0.36(−12)
0.19(−12) −0.17(−12) 0.10(−12) 0.10(−12)
−0.25(−12) −0.25(−12) −0.27(−13) −0.31(−12)

4 5 5 0.46(−13) 0.31(−12) 0.33(−12) 0.13(−11)
−0.22(−12) −0.27(−12) −0.40(−12) 0.51(−12)
−0.40(−12) −0.37(−12) −0.40(−12) 0.20(−13)
−0.14(−10) −0.14(−10) −0.14(−10) −0.76(−11)
−0.14(−10) −0.14(−10) −0.14(−10) −0.85(−11)

5 6 6 −0.17(−12) 0.13(−12) −0.90(−13) 0.58(−13)
−0.33(−12) −0.19(−12) −0.22(−12) −0.14(−12)
−0.14(−10) −0.14(−10) −0.14(−10) −0.76(−11)
−0.14(−10) −0.14(−10) −0.14(−10) −0.86(−11)
−0.84(−10) −0.83(−10) −0.85(−10) −0.13(−09)
−0.84(−10) −0.84(−10) −0.85(−10) −0.13(−09)

3.3. A 3D harmonic oscillator

As an example for solving highly degenerate eigenvalue problems, we consider an isotropic
3D harmonic oscillator with a potential

V (x, y, z) = 1
2(x

2 + y2 + z2). (18)

Eigenvalues of this case are given by

Enx,ny ,nz = 3
2 + nx + ny + nz = 3

2 + n, (19)

with the degree of degeneracy ofdn = (n+1)(n+2)
2 for nth energy level. The present computations

use a grid of 22× 22× 22 compared to 32× 32× 32 used by Braunet al [18]. Both results
are listed in table 3. Obviously two sets of results reach the same level of accuracy, while the
present ones require less than a third of the grid points used by Braunet al [18].

Since DSC kernels of Shannon, Dirichlet and MD have very similar behaviour, only the
result obtained by the Dirichlet kernel is listed in table 3. The grid points required for the
DLVP kernel is still 50% more in each dimension.

3.4. A non-polynomial oscillator

Finally, we consider an NPO model[
− d2

dx2
+ x2 +

λx2

1 +gx2

]
8k = Ek8k, (20)

whereλ and g are two parameters. This model has received much attention in the last
20 years for its connection to nonlinear optics, elementary particle physics, and nonlinear
Lagrangian field theory. Mitra calculated the ground state and the first excited state using
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Table 3. Errors for the eigenvalues of the 3D harmonic oscillator.

Braunet al Present
n dn Exact (Nx = Ny = Nz = 32) (Nx = Ny = Nz = 22)

0 1 1.5 0.59(−13) −0.27(−11)
1 3 2.5 0.71(−13) −0.27(−11)

0.87(−13) −0.25(−11)
0.94(−13) −0.23(−11)

2 6 3.5 0.20(−12) −0.27(−11)
0.23(−12) −0.20(−11)
0.36(−11) −0.19(−11)
0.36(−11) 0.74(−11)
0.49(−11) 0.79(−11)
0.56(−11) 0.79(−11)

3 10 4.5 0.15(−11) −0.21(−11)
0.37(−11) 0.57(−11)
0.37(−11) 0.64(−11)
0.10(−10) 0.67(−11)
0.12(−10) 0.72(−11)
0.27(−10) 0.75(−11)
0.45(−10) 0.80(−11)
0.60(−10) 0.83(−10)
0.68(−10) 0.83(−10)
0.76(−10) 0.84(−10)

the Ritz variational method in combination with the Givens–Householder matrix eigenvalue
algorithm [35]. Finite difference methods are applied to obtain numerical eigenvalues [36,37].
Kaushal studied asymptotic expansions in terms ofgx2 [38]. Two-parameter scaling transform
was employed by Bessis and Bessis [39]. Lai and Lin applied the Hellmann–Feynman and
hypervirial theory [40] to calculate eigenvalues from a perturbation series. Flessas showed that
exact solutions exist for some special parameters [41]. Varshni [42] and Witwit [43] extended
this 1D model to three dimensions. Scherreret al obtained very accurate ground states by
using a matrix-continued-fraction algorithm [44] and compared their results with those of
other authors.

In general, this model does not have an exact solution. High-accuracy numerical solution
to this problem is nontrivial. This can be noted from the potential plot in figure 1. The ground
state is extremely sensitive to the bottom shape of the potential. In particular, convergent
eigenvalues of largeλ andg parameters are difficult to attain. In the present work we employ
the DSC algorithm to calculate various ground states associated with a variety of parameters
(λ, g = 1, 10, 100, and 500). The DSC results are attained by using the MD kernel on a uniform
grid. Other kernels perform similarly. Table 4 provides a comparison of the DSC results and
results reported in the literature. There are a number of discrepancies among the results of
different authors. Our results are in excellent agreement with those of Scherreret al [44]. The
DSC results converge to at least 11 significant figures for all parameters calculated. A potential
adapted DSC algorithm is under consideration to achieve better convergence.

4. Conclusion

This paper explores the utility of a DSC algorithm for solving the Schrödinger equation.
DSC kernels of Shannon, Dirichlet, MD and DLVP are employed for this application. Four
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Figure 1. The NPO potential. Values of parametersλ andg are: (a) 10, 10; (b) 500, 500; (c) 10,
500. The dotted curve is the harmonic potentialV (x) = x2 + λ/g.

benchmark problems are utilized to illustrate the robustness and accuracy of the present
approach.

In the first example, a Morse oscillator for the I2 molecule is examined. The corresponding
Schr̈odinger equation is analytically solvable. The DSC algorithm performs extremely well
for this model. The first 25 eigenvalues are accurate to 12 significant figures obtained by using
64 grid points, which is 200 to 1000 times better than those of an efficient Chebyshev–Lanczos
method [18], obtained by using 128 grid points. These results are the best to date as far as the
author is aware (as produced by using a local approach). The DLVP kernel requires 1.5 times
grid points (96 points) to achieve the same level of accuracy as that of other DSC kernels. This
result, however, is still about 100 to 1000 times more accurate than those of Braunet al [18]
obtained using 128 grid points.

The next example is a 2D harmonic oscillator potential. This example is very valuable
because it is also analytically solvable. The performances of DSC kernels of Shannon, Dirichlet
and MD are excellent: only 26 grid points in each dimension are required to achieve the
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Table 4. Ground state eigenvalues of the NPO: (a) Scherreret al[44], (b) Hautot [46], (c) Mitra [35],
(d) Bessiset al [39], (e) Chaudhuri and Mukherjee [45], (f) Lai and Lin [40], (g) Kaushal [38], (h)
Galacia and Killingbeck [36].

λ

g 1 10 100 500

1 DSC 1.232 350 723 32 2.782 330 515 89 9.359 418 026 28 21.658 747 700 0
1 (a) 1.232 350 72 2.782 330 52 9.359 418 03
1 (b) 1.232 35 2.782 33 9.354 2
1 (c) 1.232 35 2.782 33 9.354
1 (d) 1.232 372 05 2.782 330 9.359 418 03 21.658 747 7
1 (e) 1.241 3
1 (f) 1.232 353 53 2.782 330 54 9.359 418 03
1 (g) 1.227 2.754 9.356 7

10 DSC 1.059 296 880 81 1.580 022 327 43 5.793 942 300 20 16.732 747 382 0
10 (a) 1.059 296 88 1.580 022 33 5.793 942 30
10 (b) 1.059 30 1.580 02 5.793 94
10 (c) 1.059 29 1.580 02 5.794
10 (d) 1.059 297 00 1.580 024 9 5.793 947 16.739 19

100 DSC 1.008 410 597 89 1.084 063 335 55 1.836 335 833 44 5.083 683 913 46
100 (a) 1.008 410 60 1.084 063 34 1.836 335 83
100 (b) 1.008 41 1.084 06 1.836 34
100 (c) 1.008 41 1.084 06 1.836 4
100 (d) 1.008 410 6 1.084 064 3 1.836 385 0 5.084 085 7
100 (e) 1.084 11 1.841 1
100 (h) 1.836 337 3

500 DSC 1.001 849 1547 1.018 491 045 11 1.184 860 239 7 1.923 176 255 4
500 (d) 1.001 8491 1.018 491 0 1.184 863 2 1.923 226 0
500 (e) 1.184 51 1.922 55

accuracy of 11 significant figures for the first 21 eigenvalues. The same level of accuracy is
attained by the DLVP kernel using 39 grid points in each dimension.

The third example considered is a 3D harmonic oscillator potential. This is a problem
for objectively testing the ability of handling highly degenerate eigenvalues. As in the first
example, the present algorithm performs much better than the efficient Chebyshev–Lanczos
method [18]. We choose only a grid of 22× 22× 22 to achieve the same accuracy as those
of Braunet al obtained by using a grid of 32× 32× 32 (the ratio of the two grid points is
1 : 3.08).

The last example considered is an NPO. In general, this problem does not have an analytical
solution. For a certain parameter region, the low-lying eigenvalues are very sensitive to the
sharp variation of the bottom curve in the potential and difficult to converge. There are a lot of
discrepancies among the results of different authors in the literature. The present calculation
helps to clarify the matter. In particular, our results are in excellent agreement with results
of Scherreret al obtained by using a matrix-continued-fraction algorithm [44]. We calculate
a number of ground states with at least 11 significant figures. These studies indicate that the
DSC algorithm is efficient and reliable for numerically solving the Schrödinger equation.
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