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Abstract. This paper explores the utility of a discrete singular convolution (DSC) algorithm for
solving the Schisdinger equation. DSC kernels of Shannon, Dirichlet, modified Dirichlet and de

la Vallee Poussin are selected to illustrate the present algorithm for obtaining eigenfunctions and
eigenvalues. Four benchmark physical problems are employed to test numerical accuracy and
speed of convergence of the present approach. Numerical results indicate that the present approach
is efficient and reliable for solving the Séitinger equation.

1. Introduction

There is an ongoing interest in computational methodology [1-20]. Most efforts are centred
on developing either global or local methods for solving a variety of time-dependent and
time-independent problems. The well known local methods involve finite differences, finite
elements, finite volumes and boundary elements. Local methods are flexible for handling
complex boundary and geometry, but are not as accurate as global methods. Global
approximations to a function and its derivatives are typically realized by a set of truncated
basis expansions which result in a finite approximation. Global methods are highly localized
at their spectral representations and thus they provide high computational accuracy. However,
they are not convenient for complex boundary and geometry such as occur in waveguide
problems. Itis desirable to have methods which combine global methods’ accuracy with local
methods’ flexibility for practical applications.

Discrete singular convolution (DSC) [21] was proposed as a potential numerical approach
for solving many computational problems, including linear and nonlinear dynamics [22],
Hilbert transform, processing of analytic signals, and computational tomography. Based on
the DSC formalism, a unification was achieved [23] for computational methods of the global,
local, finite difference, finite element, finite volume, Galerkin, collocation, subdomain and Ritz
variational types. The underlying mathematical structure of the DSC approach is the theory
of distributions. Heaviside and Dirac had exploited the use of the delta distribution before
Sobolev, Schwartz [24], Korevaar [25] and others put the distribution theory into a rigorous
mathematical form. More general orthogonal series analyses of the delta distribution were
studied by Walter [27] and others [28—-30]. The numerical use of many delta sequences as
probability density estimators was discussed by Walter and Blum [30] and others [29, 32, 33].

The purpose of this paper is to explore the utility of the DSC algorithm for the
numerical solution of the Sctdinger equation. This is illustrated by numerically resolving
eigenfunctions and eigenvalues. This paper is organized as follows. Section 2 gives a brief
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review of the DSC formalism. The reader is referred to the original work [21] for more
details. Numerical eigenvalue results are presented in section 3. Four important problems,
an I, Morse potential, a two-dimensional (2D) harmonic oscillator, a three-dimensional (3D)
harmonic oscillator, and a non-polynomial oscillator (NPO) are selected for illustration. The
paper ends with a conclusion.

2. Discrete singular convolution

Singular convolutions appear in many problems, such as Hilbert transform, Abel transform and
Radon transforms. DSC is a general approach for numerically solving singular convolution
problems. By appropriate realizations of a singular convolution kernel, the DSC can be an
extremely efficient, accurate and reliable algorithm for scientific computations.

Let T be a distribution ang(¢) be an element of the space of test functions. A singular
convolution can be defined as

F@t)=(Txn)@) = f T(t —x)n(x)dx. 1)
HereT (t — x) is a singular kernel. An interesting example is the singular kernels afehe
type

T(x) = 8™ (x), n=0,12..), (2)

where kernell' (x) = §(x) is important for interpolation of surfaces and curves (including
atomic, molecular and biological potential energy surfacesyamg = ™ (x) (n = 1,2, ...)
are essential for numerically solving partial differential equations. However, since these
kernels are singular, they cannot be directly digitized in computers. Hence, the singular
convolution, equation (1), is of little numerical merit. To avoid the difficulty of using singular
expressions directly in computers, sequences of approximatiphsef(the distribution7 can
be constructed

lim T,(x) — T(x), 3)

a—ag
whereag is a generalized limit. Obviously, in the caselofx) = §(x), the sequencd,, (x),
is a delta sequence. Furthermore, with a sufficiently smooth approximation, it makes sense to
consider a DSC

Folt) =Y Tt — x0) f (x0), @)
k

whereF, (¢) is an approximation td () and{x;} is an appropriate set of discrete points on
which the DSC (4) is well defined. Note that the original test functior) has been replaced
by f(x). The mathematical property or requirementf@k) is determined by an approximate
kernelT,.
Shannon’s kernel
sina(x — x’)
T(x —x’)

is a special example for the delta sequence. Other important examples include the Dirichlet
kernel

sin[(Z + 3)(x — x")]

2 sin[% (x—x)]
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the modified Dirichlet (MD) kernel

sin[(/ + 3)(x — x")]
2 tan[% (x —xN]’

and the de la Va#le Poussin (DLVP) kernel

1 cosp(x — x")] — cos[(x — x')]
% ()C _ x/)2 :

For sequences of delta type, an interpolating (or quasi-interpolating) algorithm sampling at
Nyquist frequencyr = ) has advantage over a non-interpolating discretization

sinfa(x — x)] sin% (x — xx)
T(x —x') X —xp)

®)

The uniform, Nyquist rate, interpolating discretization is also used for the Dirichlet kernel:

sin[(Z + 3)(x — x")] L, SInG G —x)

2rsin[f(x —x)] M +Dsin(E )

(6)

In comparison with Shannon’s kernel, the Dirichlet kernel has one more paramietéich

can be optimized to achieve better results in computations. Usually, we set a sufficiently large
M for various numerical applications. Obviously, the Dirichlet kernel converts to Shannon’s
kernel at the limit ofM — oco. This uniform interpolating discretization will also be used for
discretizing the MD kernel

sin[(Z + ) (x — x")] sin(Z (x — x;))
1 - X—Xi \ (7)
27 tan[3 (x — x")] (M + ) tan(% 579)
and for the de la VValle Poussin kernel
1 cosp(x —x)] — cos[av(x —x)]  2C0SF(x —x0) cos¥ (x — xk)’ @

T (x —x")? 3 [%(X —x0)]?

whereA = gA. Sincern /A is proportional to the highest frequency which can be reached
in the Fourier representation, tikeshould be very small for a given problem involving very
oscillatory functions or very high frequency components.

In the DSC approach we choose a grid representation for the coordinate so that the
potential part,V (x), of the Hamiltonian is diagonal. The full DSC matrix representation
for the Hamiltonian operato, is given by

72

h
H(xj, x;) = —%8;2) (xj — x) + V(X))8, 1, )
wherem is the mass of the Hamiltonian system af(x; — x) is analyticallygiven by
d 2
82 (x; — xp) = [(-) Sa(x — xk):| . (10)
dx .

Heresd,(x — x;) is a collective symbol for any of the right-hand sides of equations (5)—(8).
Extending to higher dimensions is obvious. Equation (9) or its multidimensional extension is
referred to as a DSC-Hamiltonian matrix.
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3. Results

In this paper, we limit our attention to DSC kernels of the Shannon, DLVP, Dirichlet and MD
type. Nevertheless, various other DSC kernels can be similarly employed. Note that DSC
kernels of Shannon and DLVP are parameter free, which is convenient for applications. The
2M +1 parameter used for other two kernels is chosen as 71 for all calculations. We note that as
long as the 2 + 1 value is chosen sufficiently larged2+ 1 > W, where 2V + 1 is the matrix
bandwidth), the numerical results are not sensitive to specific values used. When a potential
is given, eigenvalues are obtained by a direct diagonalization of the DSC-Hamiltonian matrix,
equation (9) or its multidimensional generalization.

To illustrate the use of the DSC algorithm and test its accuracy for calculating
eigenfunctions and eigenvalues, we consider four benchmark problems: the Morse potential
for an L, molecule, a 2D harmonic oscillator, a 3D harmonic oscillator and an NPO. A general
form for the Schddinger equation in the coordinate representation is given by

EZ n 82
- — —+V(x, ..., x,) [P s Xy) = E @ e Xn), 11
|: o Zlaxiz (x1 X )] k(X1 Xp) tPr(x1 Xn) (11)

i=

where®, andE; are thekth eigenfunction and eigenvalue respectively.

3.1. Thel, molecule

The Morse potential for the Imolecule is given by
V(x) = D[e"2* — 2e7* +1], (12)

whereD = 0.0224 andx = 0.9374. Here, the reduced mass for the $dimger equation

ism = 119406. The anharmonic character of the Morse potential allows dissociation, hence
it is one of the most popular potentials for modelling the spectroscopy and dynamics of the
I, molecule. The Sclidinger equation of the; IMorse system is actually solvable. Exact
eigenfunctions are well known generalized Laguerre polynomials [34]

b, = NkZLz}eiéL,[:(Z), (13)

wherez = e ", p = B — 2k — 1 andB = 156047 612 535. Herey, is a normalization
constant and is given by [34]

k -1/2
Ny = [M > =y (_”) } : (14)
v Y

Exact eigenvalues of the molecule are [34]

2
Ekzk[“;_%(“;)] (15)

wherex = 5.741837 286x 10~ is calculated according to the physical property,0f3ince
K« is very small, the density of state of this system is obviously very high. Thus it often serves
as a standard problem for testing new numerical algorithms.

In a recent study, Brauet al [18] have used this system to test their efficient Chebyshev—
Lanczos method. They achieve a remarkably high accuracy which ranges from 7 to 9 digits
using 128 grid points. For DSC kernels of Shannon, Dirichlet and MD, we choose 64 grid
points (V = 64) which corresponds to the grid spacing of 0.043 0X7= 0.043077). All
grid pointsx; are equally distributed in the intervat P2, 28] For a comparison, we
list our calculation and those of Braet al [18] in table 1. Our 64 grid point results are 200
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Table 1. Comparison of errors fof, Morse oscillator.

Braunet al Shannon Dirichlet MD DLVP
k Analytical (N =128) N =64) (N =64) (N =64) (N =96)
0 0.852996 623626 694203) —0.10(10) —0.14(13) —0.14(-13) —0.14(-13) —-0.14(-13)
1 0.141246218462970602) —0.30(-10) -0.42(-13) -0.42(-13) —-0.42(-13) —0.42(-13)
2 0.196456 866 183422402) —0.50(10) -0.70(13) -0.70(-13) —0.70(13) -0.70(-13)
3 0.250931605524024702) —-0.7010) -0.97(-13) -0.97(-13) —-0.97(-13) —-0.97(-13)
4  0.304670436484777702) —-0.89(-10) -0.12(-12) -0.12(-12) -0.12(12) -0.12(-12)
5 0.357673359065681302) —0.11(-09) -0.15(-12) —0.15(-12) -0.15(-12) -0.15(-12)
6  0.409940373266 735402) —0.13(-09) -0.18(-12) -0.18(-12) —0.18(-12) —-0.18(-12)
7 0.461471479087940202) —0.15(-09) -0.20(-12) —0.20(-12) -0.20(12) -—0.20(-12)
8 0.512266 676529295502) —0.16(-09) -0.23(-12) -0.23(-12) -0.23(-12) -0.23(-12)
9 0.562325965590801402) -0.18(-09) -0.25(-12) -0.28(-12) -0.25(-12) -0.25(-12)
10 0.611649346272457902) —0.20(-09) -0.28(-12) -0.28(-12) -0.28(-12) -0.28(-12)
11  0.660236818574265002) -0.22(-09) -0.30(12) -0.30(-12) -0.30(12) -0.30(-12)
12 0.708088382496 222702) —0.23(-09) —-0.3312) —-0.33(-12) —0.33(12) -0.33(-12)
13  0.755204038038331002) —0.25(-09) —-0.35(-12) —-0.35(-12) —-0.35(12) -0.35(12)
14  0.801583785200589902) —0.27(-09) -0.37(-12) -0.37(-12) —0.37(-12) -0.37(-12)
15 0.847227623982999302) —0.28(-09) —-0.39(-12) —-0.39(-12) —-0.39(-12) -0.40(-12)
16  0.892135554385559502) —0.30(-09) -0.41(12) -0.41(-12) -0.41(-12) -0.41(12)
17 0.936307576408270202) —0.32(-09) —-0.42(-12) —-0.42(-12) -0.42(-12) -0.43(12)
18 0.979743690051131402) —0.33(-09) -0.42(-12) -0.42(-12) -0.42(-12) -0.43(12)
19 0.102244389531414301) —0.35(-09) —0.39(-12) —0.39(-12) —0.39(-12) —0.39(-12)
20 0.106440819219730601) —0.36(-09) —0.29(-12) -0.30(12) -0.29(-12) -0.28(-12)
21  0.110563658070061901) —0.38(-09) 0.13¢12) 0.13¢12) 0.13¢12) —0.10(-13)
22 0.114612906 082408201) —0.39(-09) 0.14¢11) 0.14¢11) 0.14¢11) 0.61¢12)
23  0.118588563256 769701) —0.41(-09) 0.29¢11) 0.29¢11) 0.29¢11) 0.19¢11)
24  0.122490629593146101) —0.42(-09) 0.17¢11) 0.17¢11) 0.18¢11) 0.46(11)

to 1000 times more accurate than those of Braual, obtained by using 128 grid points. It
requires about 1.5 times as many grid poim¥s=£ 96) for the DLVP delta sequence kernel to
achieve the same level of accuracy as those obtained by using other kernels.

3.2. A 2D harmonic oscillator

To illustrate further the accuracy and robustness of the DSC algorithm, we consider the 2D
Schibdinger equation with a harmonic oscillator potential

Vi, y) = 32 +y2). (16)
One of most important reasons for this choice is the analytical solvability of the model. By
settingh = m = 1 in the Schodinger equation, analytical eigenvalues are given by

Eyn, =14n,+n,=1+n, a7
with the degree of degeneracyd)f = n + 1 in thenth energy level.

For DSC kernels of Shannon, Dirichlet and MD, the number of grid points used in each

dimension is 26 §, = N, = 26, A, = A, = 0.4814815). As listed in table 1, the first
21 eigenvalues are all accurate to at least ten significant figures. This calculation demonstrates
that the DSC algorithm is extremely accurate for handling degenerate eigenvalue problems.
Calculations obtained by using the DLVP delta sequence kernel are slightly less accurate. It
requires 39 grid points in each dimension to reach the same accuracy as those obtained by
using other kernels (26 grid points in each dimension). These results have also been presented
in table 2 for a comparison of different kernels.
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Table 2. Errors for the eigenvalues of the 2D harmonic oscillator.

Shannon Dirichlet MD DLVP
n d, Exact (Ny=N,=26) (N.=N,=26) (Nx=N,=26) (N.=N,=239)
0 1 1 0.71¢14) 0.30¢12) 0.24¢12) 0.92¢12)
1 2 2 0.25¢12) 0.21¢12) 0.27¢12) 0.64(12)
0.2112) 0.64¢13) 0.29¢12) 0.38¢12)
2 3 3 0.33¢12) 0.37¢12) 0.31¢12) 0.57¢12)
0.26(-12) 0.23¢12) 0.50¢13) 0.19¢12)
0.51(13) —0.89(-15) —0.14(-12) —0.41(-12)
3 4 4 0.18¢12) 0.36(12) 0.38¢12) 0.15¢11)
0.70(-13) 0.20¢12) 0.34¢13) 0.36¢12)
0.19(-12) —-0.17-12) 0.10¢12) 0.10¢12)
—0.25(-12) —0.25(12) —0.27(-13) —0.31(-12)
4 5 5 0.46(13) 0.31¢12) 0.33¢12) 0.13¢11)
—0.22(-12) —0.27(-12) —0.40(=12) 0.51¢12)
—0.40(12) —0.37¢12) —0.40(12) 0.20¢13)
—0.14(10) —0.14(10) —0.14(10) —0.76(-11)
—0.14(10) —0.14(-10) —0.14(-10) —0.85(-11)
5 6 6 —-0.17¢12) 0.13¢12) —0.90(-13) 0.58(13)
—0.33(-12) —0.19(-12) —0.22(-12) —0.14(-12)
—0.14(10) —0.14(10) —0.14(10) —-0.76(-11)
—0.14(10) —0.14(10) —0.14(10) —0.86(-11)
—0.84(-10) —0.83(10) —0.85(10) —0.13(09)
—0.84(-10) —0.84(-10) —0.85(10) —0.13(09)

3.3. A 3D harmonic oscillator

As an example for solving highly degenerate eigenvalue problems, we consider an isotropic
3D harmonic oscillator with a potential

V(x,y,2) = 32 +y*+ 7). (18)
Eigenvalues of this case are given by

En nym, = % tny+n,+n, = % +n, (29)
with the degree of degeneracydyf = w for nth energy level. The present computations
use a grid of 22« 22 x 22 compared to 3% 32 x 32 used by Brauet al [18]. Both results
are listed in table 3. Obviously two sets of results reach the same level of accuracy, while the
present ones require less than a third of the grid points used by Btalfi8].

Since DSC kernels of Shannon, Dirichlet and MD have very similar behaviour, only the
result obtained by the Dirichlet kernel is listed in table 3. The grid points required for the
DLVP kernel is still 50% more in each dimension.

3.4. A non-polynomial oscillator

Finally, we consider an NPO model

d? ,  Ax?
—— tx°+ O, = Er Dy, 20
gt s | e = B (20)
where A and g are two parameters. This model has received much attention in the last
20 years for its connection to nonlinear optics, elementary particle physics, and nonlinear
Lagrangian field theory. Mitra calculated the ground state and the first excited state using
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Table 3. Errors for the eigenvalues of the 3D harmonic oscillator.

Braunet al Present
n d, Exact (N,=N,=N,=32) (N,=N,=N,=22)

0 1 15 0.59¢13) —0.27(-11)
1 3 25 0.71¢13) —0.27(-11)
0.87(-13) —0.25(-11)
0.94(-13) —0.23¢11)
2 6 35 0.20¢12) —0.27(-11)
0.23(-12) ~0.20(-11)
0.36(-11) —0.19(-11)
0.36(-11) 0.74(¢11)
0.49¢11) 0.79¢11)
0.56(-11) 0.79¢-11)
3 10 45 0.15¢11) —0.21(-11)
0.37¢-11) 0.57¢11)
0.37¢-11) 0.64(11)
0.10(-10) 0.67¢11)
0.12(-10) 0.72¢-11)
0.27(-10) 0.75¢11)
0.45(-10) 0.80(11)
0.60(-10) 0.83(-10)
0.68(-10) 0.83¢10)
0.76(-10) 0.84(-10)

the Ritz variational method in combination with the Givens—Householder matrix eigenvalue
algorithm [35]. Finite difference methods are applied to obtain numerical eigenvalues [36,37].
Kaushal studied asymptotic expansions in termséf38]. Two-parameter scaling transform

was employed by Bessis and Bessis [39]. Lai and Lin applied the Hellmann—Feynman and
hypervirial theory [40] to calculate eigenvalues from a perturbation series. Flessas showed that
exact solutions exist for some special parameters [41]. Varshni [42] and Witwit [43] extended
this 1D model to three dimensions. Schememl obtained very accurate ground states by
using a matrix-continued-fraction algorithm [44] and compared their results with those of
other authors.

In general, this model does not have an exact solution. High-accuracy numerical solution
to this problem is nontrivial. This can be noted from the potential plot in figure 1. The ground
state is extremely sensitive to the bottom shape of the potential. In particular, convergent
eigenvalues of largke andg parameters are difficult to attain. In the present work we employ
the DSC algorithm to calculate various ground states associated with a variety of parameters
(r, g =1, 10,100, and 500). The DSCresults are attained by using the MD kernel on a uniform
grid. Other kernels perform similarly. Table 4 provides a comparison of the DSC results and
results reported in the literature. There are a number of discrepancies among the results of
different authors. Our results are in excellent agreement with those of Schiest@t4]. The
DSC results converge to at least 11 significant figures for all parameters calculated. A potential
adapted DSC algorithm is under consideration to achieve better convergence.

4. Conclusion

This paper explores the utility of a DSC algorithm for solving the 8dhrger equation.
DSC kernels of Shannon, Dirichlet, MD and DLVP are employed for this application. Four
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Figure 1. The NPO potential. Values of parameterandg are: @) 10, 10; f) 500, 500; ¢) 10,
500. The dotted curve is the harmonic potentigk) = x2 + 1 /g.

benchmark problems are utilized to illustrate the robustness and accuracy of the present
approach.

Inthe first example, a Morse oscillator for thamolecule is examined. The corresponding
Schibdinger equation is analytically solvable. The DSC algorithm performs extremely well
for this model. The first 25 eigenvalues are accurate to 12 significant figures obtained by using
64 grid points, which is 200 to 1000 times better than those of an efficient Chebyshev—Lanczos
method [18], obtained by using 128 grid points. These results are the best to date as far as the
author is aware (as produced by using a local approach). The DLVP kernel requires 1.5 times
grid points (96 points) to achieve the same level of accuracy as that of other DSC kernels. This
result, however, is still about 100 to 1000 times more accurate than those of &ralji8]
obtained using 128 grid points.

The next example is a 2D harmonic oscillator potential. This example is very valuable
becauseitis also analytically solvable. The performances of DSC kernels of Shannon, Dirichlet
and MD are excellent: only 26 grid points in each dimension are required to achieve the
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Table 4. Ground state eigenvalues of the NPO: (a) Schetrai{44], (b) Hautot [46], (c) Mitra [35],
(d) Bessiset al[39], (e) Chaudhuri and Mukherjee [45], (f) Lai and Lin [40], (g) Kaushal [38], (h)
Galacia and Killingbeck [36].

A
g 1 10 100 500
1 DSC 123235072332 2.78233051589 9.35941802628 21.6587477000
1 (a)  1.23235072 2.78233052 9.35941803
1 (b)) 123235 2.78233 9.3542
1 (c) 123235 2.78233 9.354
1 (d 123237205 2.782330 9.35941803 21.6587477
1 (e) 1.2413
1 ()  1.23235353 2.78233054 9.35941803
1 (g 1227 2.754 9.3567

10 DSC 1.05929688081 1.58002232743 5.79394230020 16.7327473820

10 (a) 1.059296 88 1.580022 33 5.793942 30

10 (b) 1.05930 1.58002 5.79394

10 (o) 1.05929 1.58002 5.794

10 (d) 1.05929700 1.5800249 5.793947 16.73919

100 DSC 1.00841059789 1.08406333555 1.83633583344 5.08368391346

100 (a)  1.00841060 1.08406334 1.83633583

100 (b)  1.00841 1.084 06 1.83634

100 (c)  1.00841 1.08406 1.8364

100 (d)  1.0084106 1.084 0643 1.8363850 5.0840857
100  (e) 1.08411 1.8411

100  (h) 1.8363373

500 DSC 1.0018491547  1.01849104511 1.1848602397  1.9231762554
500 (d)  1.0018491 1.0184910 1.1848632 1.9232260
500 (e) 1.18451 1.92255

accuracy of 11 significant figures for the first 21 eigenvalues. The same level of accuracy is
attained by the DLVP kernel using 39 grid points in each dimension.

The third example considered is a 3D harmonic oscillator potential. This is a problem
for objectively testing the ability of handling highly degenerate eigenvalues. As in the first
example, the present algorithm performs much better than the efficient Chebyshev—Lanczos
method [18]. We choose only a grid of 2222 x 22 to achieve the same accuracy as those
of Braunet al obtained by using a grid of 38 32 x 32 (the ratio of the two grid points is
1:308).

The lastexample consideredis an NPO. In general, this problem does not have an analytical
solution. For a certain parameter region, the low-lying eigenvalues are very sensitive to the
sharp variation of the bottom curve in the potential and difficult to converge. There are a lot of
discrepancies among the results of different authors in the literature. The present calculation
helps to clarify the matter. In particular, our results are in excellent agreement with results
of Scherreret al obtained by using a matrix-continued-fraction algorithm [44]. We calculate
a number of ground states with at least 11 significant figures. These studies indicate that the
DSC algorithm is efficient and reliable for numerically solving the $diimger equation.
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