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High resolution conjugate filters for the simulation of flows
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Abstract

This paper proposes a Hermite-kernel realization of the conjugate filter oscillation reduction (CFOR) scheme for the

simulation of fluid flows. The Hermite kernel is constructed by using the discrete singular convolution (DSC) algorithm,

which provides a systematic generation of low-pass filter and its conjugate high-pass filters. The high-pass filters are

utilized for approximating spatial derivatives in solving flow equations, while the conjugate low-pass filter is activated

to eliminate spurious oscillations accumulated during the time evolution of a flow. As both low-pass and high-pass

filters are derived from the Hermite kernel, they have similar regularity, time-frequency localization, effective frequency

band and compact support. Fourier analysis indicates that the CFOR-Hermite scheme yields a nearly optimal reso-

lution and has a better approximation to the ideal low-pass filter than previous CFOR schemes. Thus, it has better

potential for resolving natural high frequency oscillations from a shock. Extensive one- and two-dimensional numerical

examples, including both incompressible and compressible flows, with or without shocks, are employed to explore the

utility, test the resolution, and examine the stability of the present CFOR-Hermite scheme. Small ratio of point-per-

wavelength (PPW) is achieved in advancing a wavepacket and resolving a shock/entropy wave interaction. The present

results for the advection of an isentropic vortex compare very favorably to those in the literature.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The rapid progress in constructing high performance computers gives great impetus to the development

of innovative high-order computational methods for solving problems in computational fluid dynamics

(CFD). With high-order numerical methods, complex flow structures are expected to be resolved more

accurately in both space and time. For flow problems with sophisticate structures, high resolution is a must

in order for the structural information to be correctly extracted. High-order numerical resolution is of

crucial importance in all kinds of simulations of turbulence. For example, direct numerical simulation

(DNS) of turbulence is one of typical situations where high resolution schemes are definitely required
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because the amplitude of the Fourier response of the velocity field is continuously distributed over a wide

range of wavenumber. The situation is more complex in the large eddy simulation (LES), where the energy

spectrum is not only continuous, but also slow decaying at sufficiently high wavenumber. Unlike a linear

problem, the numerical error of the qth order finite difference scheme is not linearly scaled with the qth
power of grid size Dq. Thus numerical errors have to be strictly controlled by choosing a grid which is much

smaller than the smallest spatial structure in turbulent motion [1]. The simulation becomes more difficult as

the Reynolds number increases. For incompressible Euler flows, although the total kinetic energy is con-

served, its spectral distribution of the solution could move towards the high frequency end with respect to
the time evolution. As a consequence, the integration will collapse at a sufficiently long time with a finite

computational grid due to the limited high frequency resolution of a given scheme. Nevertheless, a higher

resolution scheme can dramatically improve the stability of the numerical iterations compared with a lower

resolution one because of its ability to better resolve the high frequency components. Using three candidate

schemes, i.e., a second-order finite difference scheme, a fourth-order finite difference scheme and a

pseudospectral scheme, Browning and Kreiss [2] demonstrated that in the long-time DNS of turbulence,

only the fourth-order scheme can yield results comparable with those of a pseudospectral scheme.

Apart from the DNS and LES of turbulence, computational aeroacoustics (CAA) is another area where
high resolution schemes are highly demanded for the simulation of waves with large spectral bandwidth and

amplitude disparity [3]. For an imperfectly expanded supersonic jet, the Strouhal number ranges from 10�2

to 101. The velocity fluctuation of the radiated sound wave can be four orders of magnitude smaller than

that of the mean flow. Therefore, the real space and time numerical simulation of turbulence flow and

sound wave interaction in an open area and long-time process is still a severe challenge to practitioners of

CAA. Obviously, high resolution schemes can be used to alleviate the demanding on a dense mesh in this

situation.

The concept of high resolution is subjective. For a given scheme, it might provide a relatively high
resolution for one problem but fail doing so for another problem. Yang et al. [4] show that for the heat

equation, a local scheme delivers higher accuracy than the Fourier pseudospectral method, while the latter

achieves better accuracy in solving the wave equation. Essentially, the pseudospectral method possesses the

highest numerical resolution for approximating bandlimited periodic L2 functions. However, it might not

be the most accurate method for other problems. It is noted that much argument given to the numerical

resolution of computational schemes in the literature is analyzed with respect to the discrete Fourier

transform. Such a resolution should be called Fourier resolution and differs much from the numerical

resolution in general. It is commonly believed that a scheme of high Fourier resolution, i.e., it provides a
good approximation to the Fourier transform of the derivative operators over a wider range of wave-

number, will perform well in numerical computations. Although the results of discrete Fourier analysis

might be consistent with the numerical resolution and be useful for a large class of problems, they are

strictly valid only for bandlimited periodic L2 functions. For example, the Fourier resolution of the stan-

dard finite difference schemes is not very high as given by the Fourier analysis. However, the standard finite

difference schemes are the exact schemes for approximating appropriate polynomials.

There are two approaches to obtain high resolutions in a numerical computation. One is to employ a

spectral method. In general spectral methods provide very high numerical resolution for a wide variety of
physical problems. However, they often have stringent constraints on applicable boundary conditions and

geometries. The other approach is to modified the coefficients of the standard finite difference scheme so

that the high frequency components of a function are better approximated under the cost of the approx-

imation accuracy for the low wavenumber. Typical examples include the compact scheme with spectral-like

resolution [5] and dispersion relation preserving (DRP) scheme [6]. Fourier analysis of the both schemes

indicates that they can give a better representation in a broader wavenumber range than their central

difference counterparts. Therefore, they might yield a better resolution for small flow structures. These

modified finite difference schemes are very popular in solving many physical problems.
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The presence of shock waves adds an extra level of difficulty to the seeking of high resolution solutions.

Formally, a shock will lead to a first-order error which will propagate to the region away from the dis-

continuity in a solution obtained by using a high-order method [7]. Therefore, the attainable overall order

of resolution is limited. However, for a given problem, the approximation accuracy achieved by using a

high resolution scheme can be much higher than that obtained by using a low resolution scheme. In the

context of shock-capturing, high resolution refers this property not only in smooth regions but also in

regions as close to a discontinuity as possible. One of popular high-order shock-capturing schemes is an

essential non-oscillatory (ENO) scheme [8–10]. This approach was further extended into a weighted es-
sentially non-oscillatory (WENO) scheme [11]. The WENO approach takes a linear combination of a

number of high-order schemes of both central difference and upwind type. The central difference type of

schemes has a larger weight factor at the smooth region while the upwind type of schemes plays a major

role near the shock or discontinuity. The high-order central schemes [12,13], arbitrarily high-order schemes

which utilize the hyperbolic Riemann problem for the advection of the higher order derivatives (ADER)

[14] and monotonicity preserving WENO scheme [15], are the most recent attempts in developing higher

order shock-capturing schemes. These schemes are some of the best for many hyperbolic conservation law

systems.
One of the most difficult situations in the CFD is the interaction of shock waves and turbulence, which

occurs commonly in high speed flows such as buffeting, air intaking and jet exhaust. Many high-order

shock-capturing schemes are found to be too dissipative to be applicable for the long-time integration of

such flows [16,17]. In the framework of free decaying turbulence, the effect of a subgrid-scale model was

masked by some high-order shock-capturing schemes. Excessive dissipation degrades the numerical reso-

lution and smears small-scale structures. Typically, there are two ways to reduce the excessive numerical

dissipation. One is to rely on shock sensors for switching on-off dissipative terms locally. The spatial lo-

calization of the sensors is crucial to the success of the approach [18]. In the framework of synchronization,
a set of interesting nonlinear sensors was proposed [19] for achieving optimal localization automatically.

The other approach is to develop low dissipation schemes, such as filter schemes. In fact, a filter, or a

dissipative term, can be extracted from a regular scheme, such as the ENO. Such a term can be combined

with another high-order non-dissipative scheme, such as a central difference scheme, to construct a new

shock-capturing scheme [20,21]. The overall dissipation of the new scheme can be controlled by using an

appropriate switch. Numerical experiments have shown that these schemes can be of higher accuracy and

less dissipative than the original shock-capturing schemes [21]. A similar approach using spectral bases was

proposed by Don [22]. Spectral filter approaches were carefully studied by Gottlieb and Shu [23]. Obvi-
ously, numerical filtering is a promising approach for hyperbolic conservation laws. However, at present,

there is no general criterion for the selection of effective filters.

A conjugate filter oscillation reduction (CFOR) scheme has recently been proposed as a nearly optimal

filter approach for treating hyperbolic conservation laws [24,25]. The CFOR seeks a uniform high reso-

lution both in approximating derivatives and in filtering spurious oscillations. The conjugated filters are

constructed by using the discrete singular convolution (DSC) algorithm [26], which provides a spectral-like

resolution in a smooth region [4]. The accuracy of the DSC algorithm is controllable by adjusting the width

of the computational support. The mathematical foundation of the DSC algorithm is the theory of dis-
tributions [27] and theory of wavelets, including frames and filter banks. It also involves the theory of

reproducing kernels and sampling theory [28]. We refer the reader to [26,29] for details and related ref-

erences. Error analysis of some DSC kernels is accounted in [30]. From the point view of signal processing,

the DSC approximations of derivatives are high-pass filters, whereas, spurious oscillations are removed by

using a conjugate low-pass filter, without resort to upwind type of dissipative terms. The low-pass and high-

pass filters are conjugated in the sense that they are generated from the same DSC kernel expression. The

resolution of the CFOR scheme is therefore determined by the common effective frequency band of the

high-pass and low-pass filters. The effective frequency band is the wavenumber region on which both low-
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pass and high-pass filters have correct frequency responses. Although, the errors produced at a disconti-

nuity are still of the first order, their absolute values are very small due to the use of the high resolution

CFOR scheme.

There are a variety of DSC kernels that can be used for realizing the CFOR scheme [26,29]. In fact, these

kernels might exhibit very different characteristic in numerical computations, in particular, for shock-

capturing. The latter is very sensitive to the property of DSC kernels. So far, the most widely used kernels is

the regularized Shannon kernel (RSK) [24,25]. The success of the RSK in numerical computations, par-

ticularly, in shock-capturing, motivates us to search for new DSC kernels that might have more desirable
features for certain aspects of shock-capturing. Indeed, Hermite kernel (HK) is a very special candidate

[31–33]. Compared with the RSK, the Hermite kernel has a narrow effective frequency band but its low-

pass filter better approximates the idea low-pass filter. As such, we speculate that the Hermite kernel should

have a resolution similar to the RSK in the smooth flow region and might have better overall performance

in the presence of shock. Extensive numerical tests are given in this paper to explore the utility and potential

of the CFOR-Hermite scheme.

The rest of this paper is organized as follows. In Section 2, we give a brief introduction to the DSC

algorithm and Hermite kernel. The CFOR scheme based on the Hermite kernel is also described in this
section. The time marching schemes are discussed. Extensive numerical results are presented in Section 3 to

demonstrate the use of the CFOR-Hermite and to explore its resolution limit. Concluding remarks are

given in Section 4.
2. Theory and algorithm

This section presents the spatiotemporal discretizations of flow equations. Fourier analysis is carried out
for both the low-pass and high-pass filters generated from the Hermite kernel. Time marching schemes are

described after the introduction to the discrete singular convolution (DSC) and conjugate filter oscillation

reduction (CFOR) scheme.
2.1. DSC-Hermite algorithm and CFOR scheme

Discrete singular convolution (DSC) is an effective approach for the numerical realization of singular

convolutions, which occur commonly in science and engineering. The DSC algorithm has been widely used

in scientific computations in recent years. In this section we will give a brief review of the DSC algorithm

before introducing a new kernel, the Hermite kernel (HK). For more details of the background and

application of the DSC algorithm in solving partial differential equations, the reader is referred to [26,29,

33–37].
In the context of distribution theory, a singular convolution can be defined by

F ðtÞ ¼ ðT � gÞðtÞ ¼
Z 1

�1
T ðt � xÞgðxÞ dx; ð1Þ

where T is a singular kernel and gðxÞ is an element of the space of test functions. Interesting examples

include singular kernels of Hilbert type, Abel type and delta type. The former two play important roles in

the theory of analytical functions, processing of analytical signals, theory of linear responses and Radon

transform. Since delta type kernels are the key element in the theory of approximation and the numerical

solution of differential equations, we focus on the singular kernels of delta type

T ðxÞ ¼ dðqÞðxÞ ðq ¼ 0; 1; 2; . . .Þ; ð2Þ
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where superscript ðqÞ denotes the qth-order ‘‘derivative’’ of the delta distribution, dðxÞ, with respect to x,
which should be understood as generalized derivatives of distributions. When q ¼ 0, the kernel,

T ðxÞ ¼ dðxÞ, is important for the interpolation of surfaces and curves, including applications to the design

of engineering structures. For hyperbolic conservation laws and Euler systems, two special cases, q ¼ 0 and

q ¼ 1, are involved, whereas for the full Naiver–Stokes equations, the case of q ¼ 2 will be also invoked.

Because of its singular nature, the singular convolution of Eq. (1) cannot be directly carried out in nu-

merical computations. In addition, the restriction to the test function is too strict for most practical ap-

plications. To avoid the difficulty of using singular expressions directly in numerical computations, we
consider a sequence of approximations of the form

lim
a!a0; or b!b0;...

dðqÞ
a;b;...ðxÞ ¼ dðqÞðxÞ ðq ¼ 0; 1; 2; . . .Þ; ð3Þ

where a; b; . . . are a family of parameters which characterize the approximation and a0; b0 are generalized

limits. At least one of the parameters in Eq. (3) has to take a limit. One of the most commonly used ap-

proximation kernels is the Shannon kernel

dDðxÞ ¼
sin p

D x
� �
p
D x
� � ; ð4Þ

where D is the grid spacing. With this approximation, the singular convolution of the delta distribution in

Eq. (2) can be replaced by a summation of discrete terms, which can be realized by computers and the test

function can by replaced by commonly occurring functions. Moreover, the differentiations as prescribed in

Eq. (3) can be carried out analytically on the Shannon kernel. The latter converges to the delta distribution

d as D ! 0. The regularity of the Shannon kernel and can be improved by using a Gaussian regularizer

expð�ððx� xkÞ2=2r2ÞÞ, where r characterizes the width of the Gaussian envelope. Most importantly, the
regularized Shannon kernel (RSK)

dr;Dðx� xkÞ ¼
sin p

D ðx� xkÞ
� �
p
D ðx� xkÞ
� � exp

 
� ðx� xkÞ2

2r2

!
ð5Þ

delivers very small truncation errors when it is used in the following convolution algorithm:

f ðqÞðxÞ �
XW
k¼�W

dðqÞ
r;Dðx� xkÞf ðxkÞ; ðq ¼ 0; 1; 2; . . .Þ; ð6Þ

where fxkgWk¼�W are a set of discrete grid points which are centered around x, and 2W þ 1 is the compu-

tational bandwidth, or effective kernel support, which is usually smaller than the entire computational

domain. Eq. (6) is often referred as discrete singular convolution (DSC) and it can be used to solve dif-

ferential equations via the standard collocation algorithm.

In this work, we consider the Hermite function expansion of the delta distribution [31–33]

dr;Dðx� xkÞ ¼
1

r
exp

 
� ðx� xkÞ2

2r2

!Xn=2
k¼0

	
� 1

4


k
1ffiffiffiffiffiffi
2p

p
k!
H2k

x� xkffiffiffi
2

p
r

	 

; ð7Þ

where H2kðxÞ is the usual Hermite polynomial. The delta distribution is recovered by taking the limit n ! 1
for a given r 6¼ 0. The Hermite function expansion of the Dirac delta distribution was proposed by Ko-

reevar [31] over 40 years ago and was considered by Hoffman et al. [32] for wave propagations. Further

discussion of its connections to wavelets and the DSC algorithm can be found in [33]. Just like other DSC

kernels, the expression (7) is a low-pass filter because its Fourier frequency response at the zero frequency is



Fig. 1. Frequency responses, in the unit of 1=D, of the conjugate DSC filters. Low-pass filters: dr;D; high-pass filters: d
ðqÞ
r;D ðq ¼ 1; 2; . . .Þ.

The maximum amplitude of the filters is normalized to unit. For HK: W ¼ 32; r ¼ 3:05 for high-pass filters; r ¼ 2:5 for the left low-

pass filter; r ¼ 3:05 for the right low-pass filter. For RSK: W ¼ 32; r ¼ 5:4 for high-pass filters; r ¼ 2:0 for the left low-pass filter;

r ¼ 3:2 for the right low-pass filter.
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almost unit, see Fig. 1. Its approximation to the idea low-pass filter is effectively controlled by the pa-

rameter r. The qth order derivative is readily given by the analytical differentiation of expression (7) with

the use of recursion relations

H ð2Þ
k ðxÞ � 2xH ð1Þ

k ðxÞ þ 2kHkðxÞ ¼ 0; ð8Þ
H ð1Þ
k ðxÞ ¼ 2kHk�1ðxÞ: ð9Þ

These high-order derivatives, dðqÞ
r;Dðx� xkÞ; ðq ¼ 1; 2; . . .Þ, are referred as high-pass filters in the sense of

signal processing because their Fourier frequency responses vanish at the origin, see Fig. 1. In numerical
applications, optimal results are usually obtained if the Gaussian window size r varies as a function of the

central frequency p=D, such that r ¼ r=D is a parameter chosen in computations. The precision of the

numerical scheme therefore is determined by the stencil, the grid space and the width of the Gaussian

window.

We implement expression (7) and its derivatives on a uniform grid by taking the advantage of the fact

that the set of roots of the Hermite kernel is almost uniformly distributed for appropriate r and n. This
choice of the grid is in contrast to that of standard spectral methods in which the set of roots of the highest

order polynomial is utilized. Obviously, by using a uniform grid, one does not need to find the roots of the
polynomial and can have the best stability in a time integration.

In Fig. 1, we plot the (Fourier) frequency responses of both the regularized Shannon kernel (RSK) and

Hermite kernel (HK). It is seen that the effective frequency band of the RSK is slightly wider than that of

the HK. The most distinctive difference of these two kernels occurs in their low-pass filters. Compared
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with the RSK, the HK low-pass filters decay fast at high wavenumbers and thus better approximate the

ideal low-pass filter. As a result, they are expected to remove high-frequency errors much more efficiently.

The ramification of these differences in numerical computations is examined extensively in the next

section.

The essence of the CFOR scheme is the following. Since the DSC high-pass filters have a limited effective

frequency band, short wavelength numerical errors will be produced when these high-pass filters are used

for numerical differentiations. Conjugate low-pass filters are designed to remove such errors because their

Fourier frequency responses decay exponentially as the wavenumber increases, see Fig. 1. The resulting
solution should be reliable over the effective frequency band, i.e., the low wavenumber region on which

both high-pass and low-pass filters are very accurate. A total variation diminishing (TVD) switch is used to

activate the low-pass filter whenever the total variation of the approximate solution exceeds a prescribed

criteria [24]. By adjusting the parameter r in the low-pass filter which determines the effective frequency

band with a given DSC kernel, the oscillation near the shock can be reduced efficiently. Since the DSC-

Hermite kernel is nearly interpolative, the low-pass filter in the CFOR scheme is implemented via pre-

diction (uðxiÞ ! uðxiþ1
2
Þ) and restoration (uðxiþ1

2
Þ ! uðxiÞ) [24,25]. The CFOR scheme with the RSK has

been successfully applied to a variety of standard problems, such as inviscid Burgers� equation, Sod and Lax
problems, shock-tube problems, flow past a forward facing step and the shock/entropy wave interaction

[24,25].

2.2. Time marching schemes

In this work, we study four types of systems: 2D incompressible Euler system, 1D linear advective

equation, 1D compressible Euler system and 2D compressible Euler system. For the incompressible Euler

system, we adopt a third-order Runge–Kutta scheme, where a potential function is introduced to update
the pressure in each stage and the bi-conjugate gradient square (BiCGS) method is used to solve the Poisson

equation of the potential function for the pressure difference. More details of the scheme can be found

in [35,36]. For all the other systems, a standard fourth-order Runge–Kutta scheme is employed for time

integrations.

The choice of the time increment needs special care to assure that the solution is not only stable but also

time accurate. To ensure the iteration of the 2D incompressible Naiver–Stokes system to be stable under a

third-order Runge–Kutta scheme, the following CFL condition should be satisfied [10]:

Dt max
i;j

juijj
Dx

	�
þ jvijj

Dy



þ 2

Re

1

Dx2

	
þ 1

Dy2



6 1: ð10Þ

For the time integration of the linear advection equation, Hu et al. [38] demonstrated that a stricter

restraint should be posed on Dt to guarantee the solution to be time accurate. In this work, we test the

numerical resolution of the proposed CFOR-Hermite scheme by using different time increments Dt to
ensure the overall numerical error is dominated by the spatial discretization.
3. Numerical experiments

In this section, a few benchmark numerical problems, including the incompressible 2D Euler flow, a 1D

wave equation, 1D and 2D compressible Euler systems, are employed to test shock-capturing capability of

the proposed CFOR-Hermite scheme and to examine the numerical resolution of the scheme. We choose
the CFOR-Hermite parameters of n ¼ 88 and W ¼ 32 for all the computations. The parameter of r ¼ 3:05
is used for high-pass filtering and prediction. For restoration, r < 3:05 is used.
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Example 1. Double shear layers. This problem is governed by the 2D incompressible Euler equations with

periodic boundary conditions [10]. It is not analytically solvable due to the following initial conditions:

uðx; y; tÞ ¼
tanh 2y�p

2q

� �
if y6 p;

tanh 3p�2y
2q

� �
if y > p;

8><
>: ð11Þ

vðx; y; tÞ ¼ d sinðxÞ; ð12Þ

where q represents the thickness of the shear layer. Such initial conditions describe a thin horizontal shear
layer disturbed by a small vertical velocity. The initial flow quickly evolves into roll-ups with smaller and

smaller scales until the full resolution is lost [10]. A small q speeds up the formation of small-scale roll-ups.

The initial shear layers become discontinuous as q approaches zero. In order to resolve the fine structures of

roll-ups, high-order schemes are necessary. However, the use of high-order schemes along is not sufficient

for achieving high resolution. The shock-capturing ability is required for solving this problem. Bell et al.

[39] introduced a second-order Godunov-type shock-capturing scheme to simulate this incompressible flow.

E and Shu [10] considered an ENO scheme for handling this case. Recently, Liu and Shu [40] applied a

discontinuous Galerkin method to this problem. In the present work, we examine the performance of the
CFOR-Hermite scheme for this problem. The low-pass filter will be activated whenever spurious oscilla-

tions are generated from the flow fields. The parameter r ¼ 2:6 is used in the restoration.

We consider the case of q ¼ p=15 and d ¼ 0:05 in our simulation. The time increment is fixed as 0:002
and a mesh of 642 is used. We note that a finer mesh was considered in previous work [10,39,40]. One of our

objectives is to demonstrate that the CFOR gives excellent results with a coarse mesh.

Fig. 2 depicts the velocity contours at t ¼ 4; 6; 8 and 10. It is seen that very good resolution is obtained in

such a coarse grid. The present results are very smooth and the integration is very stable. Spurious oscil-

lations are effectively removed by the conjugate low-pass filter. There is no serious distortion occurring to
Fig. 2. Vorticity contours for the double shear layer problem.
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the channels connecting individual vorticity centers. It is worthwhile to stress that if a numerical scheme is

highly dissipative, the vorticity cores which should be skew circle shape (see Fig. 2 for cases t ¼ 4; 6) will be
smeared to a circle shape.

For reference, we use a Fourier pseudospectral code (also with third-order Runge–Kutta) on a 512� 512

grid to generate an �exact solution� to evaluate the L2 error of the DSC solution as shown in Table 1. The

conservation of the kinetic energy is also tabulated in the table. The tiny decreasing on the kinetic energy

over the time highlights the good conservation nature of the DSC algorithm. The quality of the present

solution at early times is comparable to that of the spectral solution given by E and Shu [10]. We also
noticed an increase in the L2 errors, due to the continuous emergence of the small roll-ups which are beyond

the resolution of the current scheme with a coarse mesh.

Example 2. Advective sine-Gaussian wavepacket. This 1D problem is designed to examine the resolution of

the CFOR-Hermite approach with a linear advection equation

ou
ot

þ c
ou
ox

¼ 0

with a smooth solution. The initial data are taken as a wavepacket constructed by using a Gaussian envelop

modulated by a sine wave with a wavenumber k

uðx; t ¼ 0Þ ¼ sin½2pkðx� x0Þ�e�ððx�x0Þ2=2r2Þ; ð13Þ

where x0 is the center of the wavepacket, initially located in the x ¼ 0. The parameter r is chosen such that

tail of the wavepacket will be small enough inside the domain. In the present study, we choose r ¼
ffiffiffi
2

p
=10.

The computational domain is set to ½�1; 1� with periodic boundary conditions. If c ¼ 1, the configuration of

the initial wavepacket repeats itself every 2 time units. We consider a variety of wavenumber k to explore

the resolution limit of the present CFOR-Hermite scheme. The mesh size is chosen as 1=N while N ¼ 100.

Two time increments are selected to ensure that the time discretization error is negligible. As our scheme is

extremely accurate, it requires a very small time increment to fully demonstrate its machine precision when
k ¼ 5. Both the exact solution and numerical approximation at t ¼ 100 are plotted in Fig. 3 for a com-

parison. Obviously, there is no visual difference between them. Our results are listed in Table 2 for a

quantitative evaluation. For a large k value, the wavepacket is highly oscillatory. It is a challenge for a low

resolution scheme to resolve the advective wave. We explore the limitation of the present scheme by

choosing a variety of k values. The performance of the CFOR-Hermite scheme can be well predicted by the

Fourier analysis as shown in Fig. 4. It is noted that the Fourier transform of a Gaussian is still a Gaussian.

The accuracy of the results is limited by the Fourier resolution of the Hermite differentiation, whose errors

are indicated in Fig. 4 for a number of different wavenumber. For example, the case with k ¼ 20 is safely
located to the left of the Dx ¼ 10�10, which is the error of the differentiation. As a result, the CFOR error

for the case of k ¼ 20 is of the order of 10�10 or less, with a small time increment. However, for the case of

k ¼ 30, its Gaussian tail is truncated by the limit Dx ¼ 10�4. Consequently, the highest accuracy will not

exceed this limitation, even with a small time increment.

The long-time behavior of the CFOR-Hermite scheme for this problem is presented in Table 3. We

integrate the system as long as 100 time units to investigate the reliability of the present approach for some
Table 1

The L2 error and kinetic energy (KE) history for the double shear layer problem

Time 2 4 6 8 10

L2 6.4E) 3 2.2E) 2 4.8E) 2 7.1E) 2 8.8E) 2

KE 0.4340 0.4340 0.4339 0.4337 0.4336



Fig. 3. The sine-Gaussian wavepacket at t ¼ 100. Exact solutions are plotted with solid lines and numerical ones are given by circles.

Table 2

L1 errors for advancing the sine-Gaussian wavepacket. The corresponding PPW values are indicated in parentheses

Dt Time k

5 (20) 10 (10) 15 (6.7) 20 (5) 25 (4) 30 (3.3)

10�4 4 4.01E) 11 6.95E) 10 4.53E) 9 1.80E) 8 6.68E) 8 9.41E) 5

10 1.00E) 10 1.74E) 9 1.13E) 8 4.51E) 8 1.67E) 7 2.35E) 4

10�6 4 2.11E) 14 8.86E) 14 8.23E) 14 1.17E) 11 4.43E) 8 9.41E) 5

10 4.01E) 14 2.27E) 13 1.73E) 13 2.93E) 11 1.11E) 7 2.36E) 4
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large k values (k ¼ 20 and 25). The corresponding PPW values are 5 and 4, respectively. Both the long-time

stability and numerical resolution demonstrated in this example are very difficult for most existing shock-

capturing schemes to achieve.

It is noted that the present scheme employs a much wider grid stencil than usual finite difference schemes.

Therefore, it is necessary to justify its computational efficiency. To this end, we utilize a conservative

centered fourth-order scheme (C4) to compare with our scheme. A small time increment (Dt ¼ 10�6) is

chosen so that most errors are due to spatial discretizations. Numerical errors at T ¼ 10 and the CPU time

consumed by both schemes are listed in Table 4 for a comparison. When the grid size is N ¼ 200, with an
extra cost of 5 times more CPU, the CFOR scheme is more than 1010 times more accurate than the C4

scheme. When the grid size of C4 scheme is increased 10 and 100 times, respectively, its accuracy increases



Fig. 4. Fourier analysis for the advective sine-Gaussian wavepacket. Wavenumbers are rescaled such that the maximum is the half of

mesh number, i.e., 50 unit length. Four Gaussian peaks correspond to k ¼ 10; 20; 25 and 30, respectively. Four asterisks indicate the

critical wavenumbers beyond which Dx will be greater than 10�10; 10�6; 10�5 and 10�4, respectively (from the left to the right). Here,

Dx is the difference between the exact first-order derivative (diagonal line) and the kernel approximation (dashed line).

Table 4

Comparison of the L2 error and CPU time of the CFOR-Hermite and C4 schemes for solving the sine-Gaussian wavepacket problem

(t ¼ 10, Dt ¼ 10�6). Corresponding PPW values are given in parentheses

Scheme N k ¼ 1 k ¼ 5 k ¼ 10 CPU

CFOR-Hermite 200 3.45E) 14 (100) 4.01E) 14 (20) 2.27E) 13 (10) 3653

200 1.36E) 3 (100) 6.59E) 2 (20) 4.80E) 1 (10) 608

C4 2000 1.41E) 7 (1000) 7.11E) 6 (200) 1.27E) 4 (100) 6100

20,000 1.42E) 11 (10000) 7.12E) 10 (2000) 1.28E) 8 (1000) 60,983

Table 3

Errors for the long-time integration of the sine-Gaussian wavepacket

Time 10 20 50 80 100

L1 k ¼ 20 4.51E) 8 9.01E) 8 2.25E) 7 3.60E) 7 4.51E) 7

k ¼ 25 1.67E) 7 3.34E) 7 8.35E) 7 1.34E) 6 1.67E) 6

L1 k ¼ 20 2.78E) 7 5.56E) 7 1.39E) 6 2.22E) 6 2.78E) 6

k ¼ 25 1.51E) 6 3.02E) 6 7.55E) 6 1.21E) 5 1.51E) 5
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about 104 and 108 times, as expected. However, the CPU time of the C4 scheme also increases 10 and 100

times, respectively. As a result, the CFOR scheme is still much more accurate than the C4 scheme, while

using a much smaller CPU time.

Example 3. Advective 2D isentropic vortex. In this case, an isentropic vortex is introduced to a uniform

mean flow, by small perturbations in the velocity, density and temperature. These perturbations involve all

the three types of waves, i.e., vorticity, entropy and acoustic waves. The background flow and the per-

turbation parameters are given, respectively, by

ðu1; v1; p1; T1Þ ¼ ð1; 1; 1; 1Þ; ð14Þ
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and

u0 ¼ � k
2p

ðy � y0Þegð1�r2Þ; ð15Þ
v0 ¼ k
2p

ðx� x0Þegð1�r2Þ; ð16Þ
T 0 ¼ � ðc � 1Þk2

16gcp2
e2gð1�r2Þ; ð17Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy � y0Þ2

q
is the distance to the vortex center, k ¼ 5 is the strength of the vortex and

g is a parameter determining the gradient of the solution, and is unity in this study. By the isentropic re-

lation, p ¼ qc and T ¼ p=q, the perturbed q is required to be

q ¼ ðT1 þ T 0Þ1=ðc�1Þ ¼ 1

�
� ðc � 1Þk2

16gcp2
e2gð1�r2Þ

1=ðc�1Þ

: ð18Þ

The governing equation is the compressible Euler equations with periodic boundary conditions [21]. This

problem was considered to measure the formal order and the stability in long-time integrations of many

high-order schemes [21] because it is analytically solvable.

To be consistent with the literature [21], we choose a computational domain of ½0; 10� � ½0; 10� with the

initial vortex center located at ð5; 5Þ. Our results are tabulated in Table 5. Results of other standard schemes

[21] are also listed in these tables for a comparison. To be consistent with [21], the error measure used in this

problem is defined as

L1 ¼
1

ðN þ 1Þ2
XN
i¼0

XN
j¼0

jfi;j � �ffi;jj; ð19Þ

where f is the numerical result and �ff the exact solution. Note that these definitions differ from the standard

ones used in other examples. In [21], the CFL¼ 0.5 was used and was nearly optimal. In our computation,

the optimal time increment is much smaller because the nature of high resolution. We have set CFL¼ 0.01

in some of our computations to release the full potential of the present scheme. It is noted that there is a

dramatic gain in the accuracy as the mesh is refined from 40� 40 to 80� 80. The numerical order reaches
Table 5

L1 error for the density of the 2D isentropic vortex at t ¼ 2

N CFOR1 CFOR2 C4 WENO ENOA MUSCLA WENOA

40 Error 2.37E) 5 6.45E) 6 1.13E) 3 9.39E) 4 7.81E) 4 1.29E) 3 6.11E) 4

80 Error 4.73E) 9 2.79E) 10 5.78E) 5 7.07E) 5 6.68E) 5 2.79E) 4 4.58E) 5

Order 12.29 14.50 4.29 3.73 3.55 2.19 3.74

160 Error 3.34E) 10 3.76E) 11 3.79E) 6 2.46E) 6 7.84E) 6 5.31E) 5 2.95E) 6

Order 3.82 2.89 3.93 4.84 3.09 2.40 3.97

320 Error 5.12E) 11 3.20E) 11 2.41E) 7 8.52E) 8 6.82E) 7 8.61E) 6 2.13E) 7

Order 2.71 0.23 3.97 4.85 3.52 2.62 3.79

The CFL number is 0.01 for CFOR2 and 0.5 for all the other schemes; C4 – fourth-order accurate, conservative centered scheme;

ENO – third-order; MUSCL – third-order; WENO – fifth-order; XA denotes that the C4 scheme is used as the basic scheme with the X

being a characteristic-based filter, while Harten�s artificial compression method is used as a sensor to indicate the local numerical

dissipation, see [21].
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15 indicating that the proposed scheme is of very high order. The present results obtained at the 802 mesh

are about 400 times more accurate than those of other standard schemes obtained at 3202. Therefore, by

using the present approach, a dramatical reduction of the mesh size and computing time may be gained for

3D large-scale computations.

The stability of the time integration is another useful test for numerical schemes. We choose a mesh of

80� 80 to test the accuracy at long-time computations with CFL¼ 0.5. Although the time increment is not

optimal for present scheme, practical computations usually require the time increment to be as large as

possible, especially for long-time integrations. Numerical solutions are sampled at t ¼ 2; 10; 50 and 100. To
prevent the numerical errors from their nonlinear growth, the conjugate low-pass filter is activated to

stabilize the computation. This problem differs from the advective sine-Gaussian wavepacket, where the

equation is linear and the growth of the numerical error is fairly slow. The superior stability of the present

CFOR scheme can be observed from Table 6 and Fig. 5. Even at t ¼ 100, the accuracy is still very high and

the vortex core is well preserved.
Table 6

Long time errors for the density of the 2D isentropic vortex (CFL¼ 0.5, N ¼ 80)

Time 2 10 50 100

L1 4.73E) 9 1.23E) 8 4.58E) 8 1.05E) 7

L2 1.41E) 8 3.64E) 8 1.41E) 7 3.17E) 7

Fig. 5. Density profiles of the 2D isentropic vortex in horizontal cutting at four times. Solid line is the exact profile and the circle dots

denote the numerical results (N ¼ 80; CFL¼ 0.5). See also Table 6 for numerical errors. (a) t ¼ 2. (b) t ¼ 10, (c) t ¼ 50, (d) t ¼ 100.



172 Y.C. Zhou, G.W. Wei / Journal of Computational Physics 189 (2003) 159–179
Example 4. Lax problem. As a standard shock-tube problem, the Lax problem is defined by following left-

and right-initial states

ðq; u; pÞl ¼ ð0:445; 0:698; 3:528Þ; ðq; u; pÞr ¼ ð0:5; 0; 0:571Þ: ð20Þ

The shock was moving from time t ¼ 0 at initial location x ¼ 0 to the right. The density and the pressure

profiles at t ¼ 1:5 are plotted in Fig. 6. The solution, after such a long-time integration, is still reasonably

good for this problem, which is not a good test for high-order shock-capturing schemes. We note that the

CFOR-RSK scheme [25] works better for this problem.

Example 5. Shock/entropy wave interaction. To further examine the resolution of the CFOR-Hermite

scheme in the presence of shock waves, the interaction of shock/entropy waves is employed. In this case,

small amplitude, low-frequency entropy waves are produced in the upstream of a shock. After the inter-

action with the shock, these waves are compressed in frequency and amplified in the amplitude. This is a
standard test problem for high-order shock-capturing schemes and its governing equation is the com-

pressible Euler system [9]. A linear analysis can be used to estimate the wave amplitude after the shock,

which depends only on the shock strength and the amplitude before the shock. Therefore, the performance

of a shock-capturing scheme can be evaluated by checking against the linear analysis. Low order methods

perform poorly due to the oscillatory feature of the compressed waves. The ratio of frequencies before and

after the shock depends only on the shock strength. The problem is defined in a domain of ½0; 5� and with

following initial conditions [9]:

ðq; u; pÞ ¼ ð3:85714; 2:629369; 10:33333Þ; x6 0:5;
ðe�� sinðjxÞ; 0; 1:0Þ; x > 0:5;

�
ð21Þ

where � and j are the amplitude and wavenumber of the entropy wave before the shock. These initial

conditions represent a Mach 3 shock. We fix the amplitude of the wave � before the shock to be 0.01.

Accordingly the amplitude after the shock is determined to be 0.08690716 by the linear analysis. In our
previous study [25], the CFOR-RSK scheme was successfully applied to this problem. Here, we focus on the

resolution of the Hermite kernels. A variety of pre-shock wavenumber j are considered for this purpose
Fig. 6. The Lax problem (N ¼ 100, t ¼ 1:5). (a) Density, (b) pressure.
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and the corresponding parameters are summarized in Table 7. Uniform meshes with grid spacing 1=N and

r ¼ 2:55 are used for all the cases and their entropy waves are plotted in Fig. 7.

The entropy waves after the shock are well predicted in all the test cases, as indicated by the fully de-

veloped amplitude of entropy waves after the shock. A low order scheme or a scheme with excessive dis-

sipation will lead to dramatical damping of the entropy waves. For j ¼ 13, a mesh of N ¼ 400 is enough to

well resolve the problem. When such a mesh is used in case of j ¼ 26, the resolution is still very good. On a

refined mesh N ¼ 800, the j ¼ 26 case is better resolved as shown in Fig. 7(d). In our previous test using the

CFOR-RSK scheme, the case of j ¼ 52 was quite difficult to resolve on the mesh of N ¼ 800. Such a
difficulty is postponed in the present CFOR-Hermite scheme. The entropy waves of the case j ¼ 52 with

N ¼ 800 are plotted in Fig. 7(e), where the resolution is very good. Obviously, the good performance of the

present CFOR-Hermite is attributed to its fast decay feature of the low-pass filter in its Fourier frequency

response, see Fig. 1. When a finer mesh of N ¼ 1200 is used for the case of j ¼ 52, the quality of the

solution near the shock front improves remarkably. Keeping the PPW being 5, a mesh of N ¼ 1000 is used

for the case of j ¼ 65 and results with high resolution are obtained, as shown in Fig. 7(g). It can be noted

that there is a slight over-damping at the tail of the generated entropy waves and a remarkable improve-

ment is achieved as the mesh is refined from N ¼ 1000 to N ¼ 1200, see Fig. 7(h). As the last example, the
case of j ¼ 70 is considered on the same mesh. Obviously, the CFOR-Hermite scheme yields a good so-

lution for such a high wavenumber too. To our knowledge, such a high resolution has not been reported in

the literature yet.

Example 6. Shock/vortex interaction. As the final example, we consider a shock/vortex interaction problem,
which has been extensively investigated both experimentally and numerically. In this study, the shock is

prescribed to be stationary at x ¼ 0:5 in a computational domain of ½0; 2� � ½0; 1�, whose top and bottom

boundaries are both reflective. The inlet Mach number of the right-going flow is assumed to be 1.1, with the

right state of the shock being ðqr; ur; vr; prÞ ¼ ð1; 1:1 ffiffiffi
c

p
; 0; 1Þ. The left state of the shock can then be cal-

culated accordingly. In this main flow, a vortex is initiated by perturbing the velocity ðu; vÞ, temperature T
and the entropy s with following magnitude:

u0 ¼ �seað1�s2Þ sin h; ð22Þ
v0 ¼ ��seað1�s2Þ cos h; ð23Þ
T 0 ¼ � ðc � 1Þ�2e2að1�s2Þ

4ac
; ð24Þ
s0 ¼ 0; ð25Þ

where s ¼ r=rc; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy � y0Þ2

q
and h ¼ tan�1ððy � y0Þ=ðx� x0ÞÞ. Here � specifies the strength

of the vortex, a is the decay rate of the vortex and, of course, ðx0; y0Þ is the center of the vortex. The

perturbation on the pressure p and the density q can be deduced from relations T ¼ p=q and s ¼ lnðp=qcÞ.
Table 7

A summary of test cases for the shock/entropy wave interaction

Case no. 1 2 3 4 5 6 7 8 9

k 13 13 26 26 52 52 65 65 70

N 400 800 400 800 800 1200 1000 1200 1200

PPW 10 20 5 10 5 7.5 5 6 5.58



Fig. 7. Shock/entropy wave interaction with different pre-shock wavenumbers: (a) k ¼ 13, N ¼ 400; (b) k ¼ 13, N ¼ 800; (c) k ¼ 26,

N ¼ 400; (d) k ¼ 26,N ¼ 800; (e) k ¼ 52,N ¼ 800; (f) k ¼ 52,N ¼ 1200; (g) k ¼ 65,N ¼ 1000; (h) k ¼ 65,N ¼ 1200; (i) k ¼ 70,N ¼ 1200.
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We first consider a weak vortex with parameters � ¼ 0:3; rc ¼ 0:05; a ¼ 0:204 and the initial vortex

center ðx0; y0Þ ¼ ð0:25; 0Þ, following [9]. The computation is conducted on a 250� 100 stretched Cartesian

grid by the so-called Robert transform towards the stationary shock. Apart from the DSC-Hermite filter

used in the entire evolution, our final results in this case are cosmetically processed by using a strong fourth-

order post-processing filter for visualization. Five such snapshots in the evolution process are depicted in

Fig. 8. The stretching and bifurcation of the shock during the time evolution are clearly captured. Par-

ticularly, the reflection of the shock at the top boundary is well resolved.
Fig. 8. Pressure of 2D shock/vortex interaction problem. Weak vortex: (a) t ¼ 0:05, 30 contours; (b) t ¼ 0:2, 30 contours; (c) t ¼ 0:35,

30 contours; (d) t ¼ 0:6, 30 contours from 1.01 to 1.37; (e) t ¼ 0:8, 30 contours from 1.01 to 1.29.
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Finally, we test the proposed CFOR scheme by increasing the strength of vortex to � ¼ 1:5; rc ¼
0:05; a ¼ 0:5 so that the shock is completely broken. The numerical difficulty in dealing with such a vortex

is that the pressure at vortex center is so small that negative pressure would appear if the oscillations were

not well controlled. A strong vortex also leads to a completely different interaction pattern, which can be

seen from Fig. 9. The vortex is so strong that it creates a moving circle-like shock front, which gets reflected
Fig. 9. Pressure of 2D shock/vortex interaction problem. Strong vortex: (a) t ¼ 0:05, 30 contours; (b) t ¼ 0:2, 30 contours; (c) t ¼ 0:35,

30 contours; (d) t ¼ 0:6, 60 contours; (e) t ¼ 0:8, 60 contours.
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at the top and bottom boundaries. When the vortex is convected downstream, it completely breaks the

shock in the middle. In Fig. 9(d), various shocks interact and transmit each other. However, they are

completely distorted whenever they encounter the vortex center.
4. Concluding remarks

This paper introduces the conjugate filter oscillation reduction (CFOR) scheme with a Hermite kernel

for the numerical simulation of both incompressible and compressible flows. The CFOR-Hermite scheme

is based on a discrete singular convolution (DSC) algorithm, which is a potential approach for the

computer realization of singular convolutions. In particular, the DSC algorithm provides accurate ap-

proximations for spatial derivatives, which are high-pass filters from the point view of signal processing, in
the smooth region of the solution. Therefore, the DSC algorithm makes it possible to resolve complex flow

structures with a very small ratio of point-per-wavelength (PPW) in fluid dynamical simulations. The

essential idea of the CFOR scheme is that, a similar high-resolution low-pass filter which is conjugated to

the high-pass filters will be activated to eliminate high-frequency errors whenever the spurious oscillation is

generated in the flow for whatever reasons. The conjugate low-pass and high-pass filters are nearly optimal

for shock-capturing and spurious oscillation suppression in the sense that they are generated from the

same expression and consequently have similar order of regularity, effective frequency band and compact

support.
An efficient and flexible DSC kernel plays a key role in the present CFOR scheme for resolving problems

involving sharp gradients or shocks. Fourier analysis is conducted for both regularized Shannon kernel

(RSK) and Hermite kernel. A comparison of both kernels reveals that the RSK has a wider effective fre-

quency band for its high-pass filters, whereas the Hermite kernel gives a better approximation to the idea

low-pass filter. As a consequence, the DSC-RSK scheme achieves a better PPW ratio for flows without

spurious oscillations, while the proposed CFOR-Hermite scheme performs better for shock-capturing with

natural high frequency oscillations. The effective frequency bands of both kernels are much wider than

those of most prevalent spatial discretization schemes.
Extensive numerical examples are employed to assess the accuracy, test the stability, demonstrate the

usefulness and most importantly, examine the resolution of the present CFOR-Hermite scheme. Our test

cases cover four types of flow systems: 2D incompressible Euler systems, 1D linear advective equation, 2D

compressible Euler systems and 1D shock/entropy wave interaction. The filter properties of the RSK and

Hermite kernel are studied by discrete Fourier analysis. The DSC-RSK scheme performs better than the

DSC-Hermite scheme for smooth initial values. The capability of the CFOR-Hermite scheme for flow

simulations is illustrated by a variety of test examples. It is about 105 times more accurate than some

popular shock-capturing schemes in the advancement of a 2D isentropic vortex flow. Its advantage over the
CFOR-RSK scheme is exemplified in predicting the shock/entropy wave interaction, where reliable results

are attained at about 5 PPW. Such a small ratio indicates that the present CFOR-Hermite has a great

potential for being used for large-scale computations with a very small mesh to achieve a given resolution.

However, we note that most state-of-the-art shock-capturing schemes, such as ENO and WENO, are free of

adjustable parameters. Therefore, further study to provide a black-box version of the CFOR scheme is

required and is under our consideration.
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