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For a closed system, the integratifinace in the quantum casever one particle of a reduced
distribution function is related to the reduced distribution function of one lower order. The particular
details of this “chain” relation depend sensitively on the detailed manner in which the reduced
distribution functions are defined, specifically their normalization. Correlation functions are defined
in terms of reduced distribution functions, which fixes the normalization of the correlation functions
and, provided they exist, their associated chain relations. Chain relations for the correlation
functions are shown to exist for normalizations of generic type but not for normalizations of specific
type. The normalization requirement is shown, in general, to prevent the direct association of
correlation functions with physical clusters, which is commonly assumed in the literature. These
relations are illustrated for an ideal gas of monomers and dimers. The effect of taking the
thermodynamic limit on the chain relations for this system is discussed. This illustrates how the
thermodynamic limit generally destroys the chain relations.1998 American Institute of Physics.
[S0021-960628)51302-5

I. INTRODUCTION and is proportional to the probability of having arbitrary
_ . . set of n particles at a particular set of phase space points.
An important approach for evaluating properties of vhis normalization has the advantage that for a homoge-
N-particle systems both in equilibrium and nonequilibrium 05,5 systentin a finite volumeV) the one-particle reduced
situations is to use reduced density operators or their Class&ensity operatop(l) is associated with the density/V of

cal analogs, reduced distribution functidnd® For a closed ! ; ;
' S . X ) the gas and the two-particle reduced density o er@@rto
system, reduced distribution functions are defined with ref g P y op

the (generig probability of finding two particles at a pair of
erence to the totalN-particle distribution functionp{™¥ ,, poirggs. op Y gtwop P
and explicitly involve fewer numbers of particles. But nec-", conrast the specific reduced distribution functions
essarily, they must reflect the physical properties of the tota.(lﬂe usually defined by

system ofN particles.
For simplicity of mathematical notation a quantum ter- '\ =Tr,.;. v n. 3)
minology for density operators is used throughout this paper _ o
(with Boltzmann statistics always being assuppeulit all ~ thus having normalization
results are immediately transferrable ifigo interpretable gs Tr Sg(n) -1 )
a classical terminology of distribution functions with the re- LoonPLeen
placement ofp™—fM and Tg...,—[---fdr;---dp,. In  These functions give the probability of havingparticular
referring to these quantities, no distinction is made betweeset of n particles at a particular set of phase space points.
guantum and classical quantities, and the classical and qua¥arious factors may be added to the above definitions, but if
tum languages are used interchangeably. treated properly, these factors do not change the general na-
There are two basic ways for defining reduced distribu-ture of the normalization.
tion functions, namely, the generic type of reduced distribu-  After choosing a particular normalization convention for
tion functions and the specific type. The generic reducedhe reduced distribution functions, a series of equations be-

distribution functions are usually defined as tween lower order and higher order reduced distribution
functions can be obtained, called here “chain relations.”

m N T (N) 1 These relations between the reduced distribution functions

PLn=(N=n) fs1 - NPL.N- @ and some of their properties are summarized in this paper.

While some of the properties are well known, other proper-
If the N-particle distribution function is normalized to 1, the ties appear to be not well known or new.

n-particle distribution function is normalized according to It is standard practice to expand the reduced distribution
functions in terms of correlation functions. The normaliza-

T oo = N! ) _tion_ of the correlation functions is_, th_en fixed by t_he normal-

S (N=n)! ization chosen for the reduced distribution function. For ex-

ample, the two-particle generic reduced density operator can
dpresent address: Department of Chemistry, University of Houston, Housb'e broken down into a prOdUC.t of one-particle rgduced den-
ton, TX 77204. sity operators and the correlation operat(;%), defined by
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p(122>:p(11>p<21>+c<122>_ (5)  tained from the density operator for the bound states. See
Sec. IV for an elaboration of this illustration of the properties
It follows that the generic correlation operator has normal-of the chain relations.

ization The thermodynamic limit is useful for simplifying for-
mulas but leads to inconsistencies of the type seen indq.
Trlzc(lzz)z —N. (6) with the formally exact normalizations and chain relations.

These inconsistencies between the chain relations and the
These formal aspects of the reduced density and correlatiqnﬁermodynamic limit become particularly troublesome in
operators are treated in detail in this work. moderately dense gas kinetic theory where dynamic pro-

For a particular systenp™ is modeled by taking the cesses are usually described in terms of a combination of
physical characteristics of the system into consideration. Reeduced distribution functions of different orders. Since mac-
duced density and correlation operators may then be derivagscopic quantities are evaluated at the thermodynamic level,
from this p™. This paper also emphasizes how the correlayhich implies the use of the thermodynamic limit, consistent
tion functions are associated with different physical interprehain relations are required to ensure that all physical quan-
tations when different normalizations are used for their defitities are treated properly. A consistent incorporation of both
nition. The authors believe that these, at times subtleghe chain relation and the thermodynamic limit in dense gas
differences are not commonly appreciated, yet their underkinetic theory does not appear to exist. Actually, the chain
standing is of particular importance, for example, when eXye|ations are not utilized in most kinetic theory treatments,
tending dilute gas kinetic theory to denser systems, withsee Sec. V. for comments on Cohen’s formalism for dense
and/or without the presence of bound states. gas kinetic theory.

A system illustrating this is a gas in which individual The main purpose of this paper is to make connections
molecules(monomers can combine to form bound pairs petween various normalizations of the reduced distribution
(dimers, where it appears natural to associate correlationgynctions that have appeared in the literature and to contrast
with the physicalpresence of bound pairs. This is especiallythejr properties, such as the chain relations and to study the
the case in kinetic theory where the chemical formation angffects of taking the thermodynamic limit. This paper is di-
destruction of dimers is to be described. Such formulationsgided into six sections. Section Il is devoted to various ge-
have been adyanc;d in particmilgar b31/4OImsted and Cutiss, neric distribution functions. The discussion starts with the
Lowry and Snider; Mcl_6ennan, Eu;™ Klimontovich and  commonly used decomposition of reduced distribution func-
Kremp;'® Hoffmanet al,'® and Evans and co-worket5The  tions in terms of correlation functions. Chain relations
treatment by Lowry and Snider assumes a form for theamong these correlation functions are known and reviewed.
N-particle density operator of a finite system consisting ofy/ariants of this chain relation due to different generic nor-
monomers and dimers. Based on the form chosepfor,  malizations are illustrated in detail. Specific distribution
they derive exact expressions for tfigeneri¢ reduced den-  fynctions are briefly discussed in Sec. IIl. Chain relations are
sity operators. In applications to real physical systems, th@specially simple for these distribution functions. Some of
number of particle\ is usually large so factors likB—n  the relations of Secs. Il and Il are illustrated in Sec. IV,
are approximated bil. Formally this is usually done while \here an explicit form for théi-body distribution function
carrying out the thermodynamic limitN, V—o with  of an ideal gas system consisting of monomers and dimers is
N/V=const. In the thermodynamic limit, the analog of the assumed. It is seen that care is needed when interpreting the
Lowry—Snider two-particle reduced density operator, Withcorrelation operators for this system. In particular, the appar-

the normalization of Eq(2) is ent interpretation of a second-order correlation function as
@ (D)) describing the physical binding of two particles is in general
Pi2 =P1 Pz T Pbi12s (7 not true. It is also observed that the correlation operators

where is the bound pair density operator. see Sec. IV forhave a simpler structure for the generic reduced distribution
Pp121S . ba y op ' . functions than those for the specific reduced distribution
a detailed discussion. This structure of reduced density o

15 unctions. Section V uses Cohen’s formalism of the cluster
erators has also been assumed by otffefS.By analogy expansion to further illustrate the problems that may arise in
with the structure of Eq(5) for the two-particle reduced P b y

density operator and the normalization, E8), of the corre- regard to the chain relations when the thermodynamic limit

lation operator, it appears to follow that the bound pair den’® taken. The paper ends with a discussion.

sity operator corresponds to the correlation operator and thus
must be normalized according to Il. GENERIC REDUCED DENSITY OPERATORS

Trisppio=—N. (8) In classic treatments of equilibrium statistical mechan-
ics, see, e.g., Refs. 1-8, and(apparently a)ll modern equi-
Sincepyq, describes the probability of having a two-particle librium studies, reduced density operators for systems in
bound state, the negative normalization of BB).will appear  thermal equilibrium are normalized according to E8).
as a negative probability and thus a physically inconsisteniote that this normalization is inconsistent fo=N and is
result. It also raises the question of how, or why, informationto be applied only fom<<N. Due to its simple physical in-
regarding the total number of particles in the system is obterpretation, this normalization has been commonly used in
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the literature for both equilibrium and nonequilibrium sys-duced density operators. In particular, from the
tems. The reduction of higher-order density operators tmormalization ofp(®, c(z) is normalized according to Eq.
lower-order ones is accomplished by taking a partial trace (6). If as stated above;(z) is interpreted as describing the
_ n-1 robability of having two-particle physical clusters in the
Tr”pl“'”_(N n+1)p( ) © System, tze negativcga normglizationpo?/Ea) will appear to
This is referred to here as a chain relation. be an inconsistent result. In Sec. IV it will be demonstrated
Motivated by the cluster expansion of UrsBllan ex-  that c(z) is a complicated factor, which incorporates many
pansion in terms of correlation operators is often used for th@hysmal effects, not just two-particle clusters. Balésmted
further analysis of the reduced density operators. A formathis negative normalization but did not comment on its inter-
expression for the reduced density operators in terms of ongretation. After recognizing that the total trace of each cor-
particle reduced density operators and correlation operatorglation operator scales linearly witN, equating various
c(lg), .. has been given according to powers ofN in the normalization of Eq(13) gives a straight-
forward way of showing that the normalization for a general

(2) — (1) (1) 4 ~(2) . . -
P1z=P1 P2 +C12s (10 n-particle correlation operator is
3)_ (1 1 1 1)A(2 1 2 3
pi 3= p Moo+ p{Ve) + pteid + psetd +ci3s, (1D) Try . oo™ =(—1)"Y(n—1)IN. (14)
1 1 1 1 1 2 . . . . .
pi5a= P05 ps" P + piP Pt el + pit psH ey Since thec{" ,, are not associated with a single physical
(D, W@ 1 D oD@ ¢ W gffect, the negative val_ues for ev.erin Eq. (14) do not give _
TP3paCi PP Pyl rise to any problem of interpretation. In contrast, the associa-
1 1)~(2 1 3 1 i i i i i
+pPpMe + pPeB+ pPe+ pPe tion of correlations Wlth. physpal effects, namely clustering,
is commonly assumed in the literature.
+pHePatcided +cZcid + (1%)0(2%>+c12)34, (12) Relations between correlation operators of different or-
. ders can be obtained. The first few of these are
or in general,
" Trcly=—pt", (15)
() J— (1) cll
oon— i j.o..s" 3) _ 2 3) _ 1
Pan {aﬁzv-%| e (j,--ll)em s Tracihh=—2¢i, TraiDs=2p1". (16)

13 A general chain relation between the correlation operators
Herea is a listing of single particle labels arg] a listing of  can be derived from the chain relation, E§), namely
sets ofl-particle labels, while the sum is over all possible
P o 1 P Trct? p=—(n—1)ci" 2, (7
partitions of then labeled particles into sets,3,,...,8, . ”

This decomposition breaks down the structure of the reducedr more generally,
density operatop(™ into contributions from the one-particle

g __ |
reduced density operatgr?) and the correlation operators T (n+ (- )/+1(n+/—1)' (n-1
(n) y . .. . L. In.. n+/C n+/ —2)1 1---n—1-
c¢{” .. The motivation for this is twofold. First, it is assumed (n=2)!
that greater knowledge of the lower order correlation opera- (18)

tors can be experimentally available. Second, it is hoped thathis is the classic result of Lebowitz and Perélissho only
the main contributions te(" arise from products of lower discuss the generic normalization conditich. It also im-
order terms and that the contribution of theparticle corre-  plies, used along with Ed6), the normalization of Eq(14).
lation operator is small and may be treated as aAn obvious approximation method would appear to be to
perturbationt® The n-particle correlation operata” ., can ignore higher correlation operators, for example, to retain the
thus be either neglected, or approximated by some functiotwo-particle correlation operator but to assume there is no
without incurring too much error ip(™. This treatment may three-particle(or highe) correlation operator. Clearly such
appear equivalent to interpreting the correlation operatoran approach is inconsistent with the above chain relations for
c(f)_,n as describing isolated-particle physical clusters in the correlation operators. Such a truncation of the correlation
the system, or in other words, as giving the probability foroperators must be contrasted with the truncation of the Ursell
the existence of physical clusters in the system. But the nomperators at some order. The latter truncation of “physical”
malization of these correlation operators, as will now be disclusters must be carried out while describing the total sys-
cussed, implies that one must be very careful in pursuing thigem, that is, at thé&-particle level, which is both mathemati-
type of interpretation. cally consistent and can often lead to a physically reasonable
Even though the exact form of the correlation operatorsapproximation. This has been used for describing a chemi-
c(f)_,n may be unknown, the normalization property, E?), cally reactive ideal gas of monomers and dimeend also
and the chain relation, E9), impose certain constraints on for the nonideal gas having only binary clustérftherein
them. This can be of help both in introducing approximatecalled the “binary correlation approximation,” a designation
forms for the correlation operators of a physical system andavhich is not in agreement with the notation used in the
in understanding existing theoretical results. The normalizapresent papér
tion of the correlation operators is one constraint which fol-  Besides the normalization convention discussed above, a
lows from the normalization conditions, E(R), of the re- number of other related normalizations for reduced density
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operators may be found in the literature. The common aspeci(3) __ 1~ (1)~(1)x(1) 4 1~(1Dx(2) 4 1a(1)x(2) . 1~(1)x(2) | x(3)
of these normalizations is the combination of factorials,(;3123 WPL P2 Pa TPy G T aP2 s AP C12+C1(223'5)
N!/(N—n)!, that they all contain, which keeps them of the
generic type. One related normalization for reduced distribu®r in general
tion functions, see the books by Hitind McQuarri€?? is 1
" RS DY 1 511
VP o=t T et a9 b T PR G e
Y, (N—n)! (26)

>

See the discussion following E¢lL3) for an elaboration of
the notation. With this definition of the correlation expan-
(10), along with its higher order analogs, correlation opera-Sion' the resulting correlation operators have properties that

tors for this normalization convention may be obtained. It isPara/l€l thec{” ., but with different detailed numerical fac-
straightforward to derive a general expression for the tracelP's: For example, instead of EG) one has

This normalization is identical to that of the equilibrium “ra-
dial” distribution functions. By using the definition of Eq.

correlation operators for this normalization scheme. Thus for Trlzé(fz): —NJ/2. (27)
example,
_ The chain rule for these correlation operators becomes
Tl’lzc(lz):—VZIN. (20) . (n—l)v(nil)
It was pointed ouf that the two-particle correlation function The1n=" o (123)
associated with Debye-ldkel theory obeys the classical «(2) (D)
analog of this equation. The chain relation for this set of  172C12 = —p1 /2. (28)
correlation operators can be seen to be It is thus seen that the structure of the correlation operators
V(n—1) depends on the choice of both the particular normalization
e =————¢" Y (n=3), convention and the form for the correlation expansion.

o N o

~ A
TreC 1=~ NP i Ill. SPECIFIC REDUCED DENSITY OPERATORS
The same general classification for the various terms in the The standard definition of specific reduced density op-
expansions of the reduced density operators according terators is given in Eq3) with normalization(4). Following
their order of magnitude iN, as stated in the paragraph Bogoliubov?* various classic treatments of gas kinetic
preceding Eq.(14), applies for this normalization. Even theory*~?"define the reduced density operators in a manner
though there are differences in detail, this normalization anavhich gives them similar properties, namely,
that of Eq.(1) are similar in nature.

(M —yyn (N)
An alternate normalizatidA is 01 n=ViTns 1 NPL N (29)
NI The common property of these normalizations is the absence
o = Tr (N) (22)  of the factorials contained in the numerical factor in the defi-
1.--n (N—n)'n! n+1---NP1...N-

nition of the generic reduced distribution functions. Clearly

This was introduceld so that the bound state part of the pair these distribution functions satisfy the chain relations

density operator directly reproduces the number and density Tr,p™W=Vp"V  Tr oM=n0"1), (30)
of bound states. [5{")  is expanded in the same structure as
the correlation expansion of Eg&l0)—(12), with the corre-
lation operators labeled @$n), the resulting correlation op-
erators have a different structure from thosecf , for ex-

The correlation operators derived using the reduced density
operators of Eq(3) have very different properties from those
described in Sec. Il. On expanding the reduced density op-
erators in terms of correlations according to Ed€)—(12),

ample, . ; .
P with the corresponding correlation operators labeled &8,
A2 (N+ 1)A(1) ~2) N(N+1) it follows that the trace over any arbitrary parti¢clef the set
ey =———%—pr» TnLo=——75— (23 {12, n} gives
An) _
In order to obtain correlation operators for this normal- Tri 7100 (32)

ization that have chain relations similar to the other correla-l-hiS constraint was first recognized by Lib&%who re-

tion operators in this SeCtiOPﬁ? .n Needs to be expressed in ferred to the corresponding full trace as the “antinormaliza-
terms of correlations, labeled a&”, using a different expan- tion” property. Equation(31) shows that, in contrast to Eq.
sion from that of Eqs(10)—(12), in particular, for the pair (17), there are no chain relations between correlation opera-

and triplet reduced density operators tors when this normalization convention is used for the defi-
. A . nition of reduced density operators. Obviously, the antinor-
(2) _ 17(1) (l>+c(2) (24) . . R
P12 =32P1 P2 12 malization property prevents any direct associatior ﬁi’f) n
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with the probability of a physical clustering of particles, consecutively and consider all partitiofis, v} of theN par-
since any quantity measuring a probability must have a postticles into a setx of M unbound monomers and a gebf D

tive value(namely its probability. (ordered bound pairs. The labeling of a bound pair is natu-
rally ordered, i.e., if {k) e v, thenj <k, and the number of
IV. REDUCED DENSITY OPERATORS IN THE such partitions oN particles is
PRESENCE OF BOUND STATES NI
If dimerization occurs in the gas phase, the gas becomes 9(N,M,D)= MIDI20" (34)

a molecular mixture. From an atomic point of view, dimers _ _
are two-particle clusters. This chemical clustering must be'his symmetry can be incorporated by replacing &3 for
reflected in the(atomio reduced density operators for the the N-particle (equilibrium ideal gasdensity operator by

system. Treating the gas molecules as noninteracting gives a 1
system that is very simple, yet illustrates the differing roles  p{ D)=
. . . 1N g(N,M,D)M!ID!Q
of molecular clustering and mathematical correlations. These P THIRMD
differences are discussed here in terms of both the generic M D
and specific definitions of reduced density operators. X{E} H R (_y e A (35
a,y; lea JK)ey

A. Generic density operator: . . . .
' sity op S An alternate notation may be used in this equation to

Lowry and Snidel formulated a gas kinetic theory for a emphasize the numbers of monomer and dimer species in the
system in which monomer—dimer interconversions occursystem,
From a monomefatomig point of view, the only correla-
tions that are present are associated with pair bound states. (v,p)_ 1 D _ _
Thus theN-particle system can be considered as consisting "™ g(N,M,D)MM(2D)P(a3} ica Pl ey PoIk
of a mixture of M unbound particlegmonomers and D (36)

bound pairs(dimers. This methodology has recently been The form of Eq.(36) was used as a frame of reference for

used to motivate a description of the kinetic properties of . Y S
ormulating a kinetic theory of recombination and detay.
moderately dense g&5where the bound states have been ) . >
! ) : : Here ps; is the density operator for a free parti¢lenormal-
replaced by general pair correlations associated with the sec- .
S .- o : ized to the number of free particles
ond virial coefficient. The generalization to higher-order cor-
relations is straightforward. The arguments presented here Trip;i=M, (37)

regarding the normalization of reduced density operators and

correlation operators apply to both monomer—dimer and"d Pojk IS the bound pair density operator of particis

. with normalization to the number of particles that are bound,
moderately dense gas systems as long as the correlations are

attractive. For simplicity of presentation, only the monomer—  Trjppj=2D. (39

dimer gas system is discussed. . . "
If bound states exist, they can be considered as a SepE_XD.YESSIOI’?S for the reduced density opera can be
. . . ; erived using Eq(1).
rate chemical species so that the system now is appropriately 1) ; . .
. . . In pi~’ the single extant particle can be either free, or
treated as a binary mixture. One way of representing such a o . o
. 2 . . .. part of a bound pair, in which case it is bound to another
system is to explicitly recognize the two species. An equilib-

rium binary ideal gas canonical density operator for a systerrt1raCGd'0\/er particléghos). The form of the one-particle re-

containingM molecules of species M aridl of D is?® duced density operator is thus
1 M N!

° (1= T
(M,D) _ ef,BH:VI efﬁH}D 32 P1 T (N=1)! lo...NPT..
T LIERG 32

M,D)
N

— -1 -M -D
with partition function 9(N,M,D)""NM~"(2D)

MD:(QM)M(QD)D' (33) X g(N_llM_l,D)MMfl(ZD)Dpfl
: MID!
expressed in terms of the molecular partition functiQhg N
and Qp and molecular Hamiltoniansi™ and HP. But if +g(N—2,M,D—1)M'\"(2D)D*1i_22 Tripp1i
species D is to be the dimédiatomio of monomer(atom -
M, then there should be a symmetry between all atoms, =pi1+ Tropp1=pi1+ Pp1- (39

whether they are freéM), or bound to another atom to form
a diatomic(D). Equation(32) does not express thigoltz-
mann indistinguishability. Given that there aM unbound
and 2D bound atoms, indistinguishability requires that it can
be any set ofD pairs of theN=M+2D atoms that are
bound. To represent this, it is appropriate to labeNadtoms Tripp1=Tripp12=2D. (40

The partial trace opy1, Shown aspy;, describes the prop-
erties of a particle that is bound to a ghdparticle whose
state is not explicitly defingdand is normalized to the num-
ber of bound particles,
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For n=1, the normalization of Eq(1) is recovered from important to keep in mind those terms which have been left

Egs.(39), (37), and(40), out in using the thermodynamic limit expression such as Eq.
(46) for p'2.
Trp Y =Tri(ps1+ pp1) =M +2D=N. (41 Similar considerations lead to an expression for the

three-particle reduced density operator
In the same manner, the two-particle reduced density opera-

(2) i
tor p35’ is obtained as 3_ N M.D)

P(123— (N_3)!Tr4.~NP1.. N
N!

(-~ (M,D)
P12= (N- 2)!Tr3‘ NP1 =pi7pp5" + piPpoost 5 pp1st p5 por2
1 1 2 _low W
— VoDt ppro— PP 5 Po1Pb2- (42) +yzPipiepisT rlPy prapist prpz prs

2 1

Here use has been made of E(39) and (38). Comparing +pf1pf2p§l)]+ 52Pb1PboPbs

this equation with Eq(10), the correlation operat 122) can

be identified as
X[(p{M poa+ Pp12) Post (PS5 Po1+ Pb13) Po2

2 1 1 +(p%" post P29 poal. (47)

C12 =Pb12™ p Pf1P12™ [ Pbi1Pb2- (43 . . _ .
The first four terms on the right-hand side of the last equality

This correlation operator contains contributions from the&r® the _termss that remain in the thermodynamic limit. By
density operators of both the free and the bound particles. ﬁXPfeSS"_‘gP(lz)s in terms of correlation operators and com-
is thus seen that thmathematicaldefinition of correlation ~ Paring with Eq.(11), the three-particle correlation operator
between particles 1 and 2{2), must be distinguished from c{3; can be identified as
the physicalnotion of clusteringin an N-particle system, as
exemplified byp,1,. Also note that, even though particles 1 (3) _i i i
and 2 may be far away from each other so that they are 123 M2Pf1P12P13™ 52Pb1Pb2Pbs
physically independenpy,,,= 0, the correlation function can
be nonzero. This is because the correlation function contains
a sum of products of terms, each of which reflects a different

manner in which the particles are independent of one ana correct normalization can only be obtained by taking into

1
- 5(Pb12Pb3+ Pb13Pb2+ Pb23Pb1) - (48)

other. _ _ 2 _ account all the “small terms” that are divided by a power of
The partial trace over particle 2 of? is seen to satisfy  gjther M or D. Taking the trace of Eq(48) over all three
the chain relation, EC{15), i.e., partic|es gives
1 1 TrioL!3s=2M+ 16D — 12D =2N. (49

2
TroCl3 =Tra| poio— M PiiPi2™ o PbiPb2
It is straightforward to show thai{3) satisfies the chain re-

=po1— P11~ 2pp1=—p§" . (44 lation Eq.(9):
Thus the correct normalization of E@L3) is easily obtained, . Lo 1
Trapi3=(N— 2)[1)(1 o5+ pp1o— M PPz
Tricid=—N. (45) .
_ 2
The —N value of Trc!2 is thus the result o£{3 being the ~ D Pb1Pb2 =(N=2)pf3. (50)

composite of a number of different terms. Equat{d@) re-

produces the thermodynamic limit for a moderately densdn€ chain relation for correlation operators, E@f), can
gas system also be easily verified. Higher-order reduced density opera-

tors can be treated in a similar manner.
: @ (1) (1) Equation(35) can similarly be used in the other generic
VVN,I,\I,,rVnD_mplz TPYPZ T Por (46 normalization conventions given by Eq49) and(22). Even
though there are differences in detail, the properties of the
on the basis that the “small terms” containing factors of correlation operators in these conventions are similar to
1/M and 1D can be neglected in comparison with the domi-those already given in this section.
nant product factop{Yp$t . But these neglected terms can
be of importance, especially if the trace is taken, when it i
recognized that their traces are comparable in size to the The structure of the reduced density operators are differ-
trace of the bound pair density operatas;,. Thus it is entin this normalization. If one uses the Lowry—Snider form

SB. Specific density operators
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(M,D) _ . . . ) o _
p , .Eq..(35), for thg N-particle density operator with the o 3=0Vo WMo+ oM@+ ozt oh 2
normalization conventiofR29) for the reduced density opera-

tors, the expressions for the one- and two-particle reduced 2 D)) 1), 2 (1) o)
density operators are —mgl 0503 +m[91 s
Vv 3
(1) A2) (1) A2)
Q(ll)ZN(Pf1+Pb1) (51 +03 715+ 03 g12]+N(N—1)(N—2)
and 2 2

) X | MZP1P12P13T 52 Pb1Pb2Pb3
Y, N
ei3=ei"el+ m[pbm vzeiey” 1
~ D (Po12Pb3t PorsPat Poaapbi) |- (56)
1 1
—y PP prlpbz}- (52) By comparing with Eq(11), 73 can be identified. Explicit
calculation verifies that its trace over any particle vanishes.

The last four terms on the right-hand side of E8R) can be  The form of the correlation functiof {3} for this normaliza-
identified with 72, whose trace gives zero as predicted bytion is seen to be more complicated than the corresponding
Eqg. (31). This behavior is contrasted with Egl5). The expression given in Eq48). Clearly, in all cases, whatever
structure of the correlation operator using this normalizatiorthe normalization convention, care must be taken when try-
is more complicated than that of E@3). In the thermody- ing to assign physical meanings to the corresponding corre-
namic limit of V,N,M,D—o with each ofN/V, M/V, and lation operators.
D/V constant, the “standard” expression for the two-
particle reduced density operator is equivalent to

V. COHEN'S CLUSTER EXPANSION

V2
H 2 1 1 .o . . . .
lim  o{F—eiVel+ N2 ot (53 The difficulty of imposing the chain relations and thus
V:NM, D= the normalization requirement once the thermodynamic limit
The three-particle reduced density operator is has been taken, can also be illustrated with reference to the

classic formalism of Cohef{;*° which uses the specific re-
N duced distribution functions of E¢29). For this convention,
o+ v[Q(ll)pb23 the chain relation between consecutive reduced distribution
functions is given by

3 3
Q(3>:V— N_Q(l)gu)
128 N(N-1)(N-2) [ V351 &2

2

Lo, 1ol ;=

Q2 Po1st €3 Poral T 1z Prapi2P13 j S Dty e, X = VEI X - x0.  (8)
- l[le)szpfsﬂLple(zl)PfsﬂLPflpsz(gl)] Cohen expanded tHé-body distribution functiorDy in

VM terms of s-body distribution functions Dg and the

2 17/N Us(X1- - -Xg) defined in his work. Exact expressions for the
+ =5 Pb1Pb2Pb3— —H—Q(ll)f)bﬁpmz)ﬁ)bz reduced distribution function;(®, and their corresponding
D DV correlation functionsG(®, were then derived in terms of a
N density expansion of functiondy(x; - - - Xs). The chain rela-
vQ(Zl)pba tion Eq. (57) shows that

+ Pp2Tt

N
v 9(31)Pb1+ Pp13

+pb23)Pb1H- (54) f GO(xy- - X+ - -Xg)d¥ =0, (58)

which is similar to Eq(31). In the thermodynamic limit, the

In the thermodynamic limit the expression fok3) reduces . . e
Y P gﬁZ3 expressions for the first and second reduced distribution

t . . . .
° functions were obtained dberen is the density,
V2
i (3) (1) (1) (1) 4 — 1 (1) (1) n
V’N’Llnf’nD_lezs—’Ql 0’035+ NZ[Ql Po2st @7 P13 |:<1>(X1):U1(X1)+Ef U (X X)dXo
+oWM, 1 n?
03" Po12] (55) + EJ U3(X1XoXg) dXodXg+ - - - (59

Equation(54) can be rearranged in terms of the correlation '
expansion. The result is and,
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n n?
F@(x1%2) = U5(X1Xp) + Ff U3(X1XaX3)d X3+ ZIJ U 4(X1XoX3Xq) dXgdXg+ - - - +

n
Ui(Xp)+ Ff U,(XoX3)dX3

I’l2

n n n?
+ Ef U3(X2X3X4)dX3dX4+ A }Ul(xl)"_ F Ul(X2)+ Fj U2(X2X4)dX4+ Ef U3(X2X4X5)dX4dX5+

2

n 2
XJ Uz(X1X3)dX3+§ U

n n
1(X2)+EJ U (XoX5)dX5+ EJ U3(XoX5Xg) dX50 X +

xf Ug(X1XgXg)dXgdXg+ - - - . (60)

Cohen defined theU; and Ug for s>1 such that topic®® can be interpreted as stating that in the Debye—

JU(x)dx =V and fUg(X1- - -Xg)dX; - - -dxs=0. Note that Huckel theory, the generic normalization of E{9) was

this normalization prevents thé; from being identical to the used in defining the reduced density operator and so its cor-

Ursell functions. On integrating (?)(x,x,) over the phase responding two particle correlation function will obey Eq.

space coordinates of particle 2 we get (20).

n The chain relations stated here are exact, but in many

_+1)f Uo(XX2)d X, applications the asymptotic behavigargeN limit), N>1,

1! is used to simplify theoretical equations. The relations de-
rived above illustrate that the stage at which the asymptotic

+ 21 + F) f U 3(X1X5X3)d X0 X5 limit is taken is of importance. An extreme example is taking

' ' the largeN limit of Eq. (1), which gives
+., (61)

which is not equaF (", as given in Eq(59). Thus the use of
these expressions fé1!) andF(® in the same theory leads

1 (2)
v FY(X1X0)dxo=U (Xq) +

n2

g.n)Anan Trn+1--~Np§I_N-)~N' (62)

In this limit one obtains,

to questions of consistency. In contrast, the exact expressions e, = (63)
for F@)(x;x,) andFM)(x,) will of course satisfy the chain ~~ ~ " "
relations, Eq(57). which is similar to the result of31), and very different from

the exact form in(6). By taking the largeN limit, one ne-
glects factors of the typa/N. These are very important for
the validity of the chain relations, so neglecting them de-
The object of this paper has been to clarify the structurestroys the chain relations. The authors became aware of the
of reduced distribution functions and their associated correpossible inconsistencies between the laXyéerms for the
lation functions, in particular with regard to tliehain rela-  different reduced distribution functions when generalizing
tions between reduced distribution functions of different or-gas kinetic equations to higher density with the rigorous in-
ders. In general only a limited set of these relations havelusion of bound states. In such work it is necessary to in-
appeared in the literature at any one time. For example, theolve reduced distribution functions of different orders and if
chain relations for the generic correlation functions are disthese are not consistent, the resulting kinetic equations can
cussed by Lebowitz and Perctfshut neither the thermody- be impossible to interpret.
namic limit nor the specific correlation functions are men-  The question now arises as to when is it justified to
tioned. In contrast, Liboff discusses only the specific neglect the terms in the reduced density and correlation op-
reduced distribution functions. This paper has attempted terators containing factors such asMl/or 1D in the
give a broader perspective of the contrasting properties of themonomer—dimer problem? Certainly the operation of taking
chain relations which result when different normalizationa trace requires their presence in order to properly account
conventions are used for the definition of the reduced distrifor the makeup of lower order reduced density and correla-
bution functions. The different normalizations give rise totion operators, in particular their normalization. Otherwise
correlation functions which obey different mathematical con-these terms always involve NI/ or 1D factors and are of
straints. It has also been shown in great detail that the notewer order in the thermodynamic limit, so they act(pse-
malization requirements disallow thdirect association be- sumably minoy corrections to the product terms that have no
tween correlation functions and physical clusters for alll/M or 1D factors. On the other hand, it is desirous to retain
normalizations. the termpys, in the two-particle density operatpﬁzz) since it
Historically there seems to have been some controversiias a different structure, namely, that it describes the binding
over the validity of the Debye—Hikel theory arising from between the two specific particles 1 and 2. Thus it needs to
whether its pair correlation function obeys the “antinormal- be retained in thé1,D — ¢ limit even though its norm has a
ization” property. The discussion given by Schram on thismagnitude of comparable size to the neglected terms. It

VI. DISCUSSION
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seems that the answer to the question posed above is: it de- The results obtained in this paper show that the normal-
pends on the use being made of the reduced density or coization convention chosen for the reduced density operator
relation operator. But if “small” terms are neglected, it must has an important effect on the properties of the correlation
not be forgotten to check that their neglect is done in a maneperators. This must be carefully considered when the corre-
ner consistent with the use put to the non-neglected terms.lation operators are being modeled analytically or derived
The magnitudes and signs of the traced over correlatiofrom simulations where the lardg-limit cannot be taken.
operators also merit some discussion. For the “specific”
normalization these all vanish while in a closed system f0|’A‘CKI\IOWLEDGMENTS
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