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For a closed system, the integration~trace in the quantum case! over one particle of a reduced
distribution function is related to the reduced distribution function of one lower order. The particular
details of this ‘‘chain’’ relation depend sensitively on the detailed manner in which the reduced
distribution functions are defined, specifically their normalization. Correlation functions are defined
in terms of reduced distribution functions, which fixes the normalization of the correlation functions
and, provided they exist, their associated chain relations. Chain relations for the correlation
functions are shown to exist for normalizations of generic type but not for normalizations of specific
type. The normalization requirement is shown, in general, to prevent the direct association of
correlation functions with physical clusters, which is commonly assumed in the literature. These
relations are illustrated for an ideal gas of monomers and dimers. The effect of taking the
thermodynamic limit on the chain relations for this system is discussed. This illustrates how the
thermodynamic limit generally destroys the chain relations. ©1998 American Institute of Physics.
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I. INTRODUCTION

An important approach for evaluating properties
N-particle systems both in equilibrium and nonequilibriu
situations is to use reduced density operators or their cla
cal analogs, reduced distribution functions.1–10 For a closed
system, reduced distribution functions are defined with r
erence to the total (N-particle! distribution functionr1•••N

(N) ,
and explicitly involve fewer numbers of particles. But ne
essarily, they must reflect the physical properties of the t
system ofN particles.

For simplicity of mathematical notation a quantum te
minology for density operators is used throughout this pa
~with Boltzmann statistics always being assumed!, but all
results are immediately transferrable into~or interpretable as!
a classical terminology of distribution functions with the r
placement ofr (n)→ f (n) and Tr1•••n→*•••*dr1•••dpn . In
referring to these quantities, no distinction is made betw
quantum and classical quantities, and the classical and q
tum languages are used interchangeably.

There are two basic ways for defining reduced distrib
tion functions, namely, the generic type of reduced distri
tion functions and the specific type. The generic redu
distribution functions are usually defined as

r1•••n
~n! 5

N!

~N2n!!
Trn11•••Nr1•••N

~N! . ~1!

If the N-particle distribution function is normalized to 1, th
n-particle distribution function is normalized according to

Tr1•••nr1•••n
~n! 5

N!

~N2n!!
~2!

a!Present address: Department of Chemistry, University of Houston, H
ton, TX 77204.
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and is proportional to the probability of having anarbitrary
set of n particles at a particular set of phase space poi
This normalization has the advantage that for a homo
neous system~in a finite volumeV) the one-particle reduced
density operatorr1

(1) is associated with the densityN/V of
the gas and the two-particle reduced density operatorr12

(2) to
the ~generic! probability of finding two particles at a pair o
points.

In contrast, the specific reduced distribution functio
are usually defined by

`1•••n
~n! 5Trn11•••Nr1•••N

~N! , ~3!

thus having normalization

Tr1•••n`1•••n
~n! 51. ~4!

These functions give the probability of having aparticular
set of n particles at a particular set of phase space poi
Various factors may be added to the above definitions, bu
treated properly, these factors do not change the genera
ture of the normalization.

After choosing a particular normalization convention f
the reduced distribution functions, a series of equations
tween lower order and higher order reduced distribut
functions can be obtained, called here ‘‘chain relations
These relations between the reduced distribution functi
and some of their properties are summarized in this pa
While some of the properties are well known, other prop
ties appear to be not well known or new.

It is standard practice to expand the reduced distribut
functions in terms of correlation functions. The normaliz
tion of the correlation functions is then fixed by the norm
ization chosen for the reduced distribution function. For e
ample, the two-particle generic reduced density operator
be broken down into a product of one-particle reduced d
sity operators and the correlation operatorc12

(2) , defined by
s-
8/108(2)/706/9/$15.00 © 1998 American Institute of Physics
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707Alavi, Wei, and Snider: Reduced distribution functions
r12
~2!5r1

~1!r2
~1!1c12

~2! . ~5!

It follows that the generic correlation operator has norm
ization

Tr12c12
~2!52N. ~6!

These formal aspects of the reduced density and correla
operators are treated in detail in this work.

For a particular system,r (N) is modeled by taking the
physical characteristics of the system into consideration.
duced density and correlation operators may then be der
from this r (N). This paper also emphasizes how the corre
tion functions are associated with different physical interp
tations when different normalizations are used for their d
nition. The authors believe that these, at times sub
differences are not commonly appreciated, yet their und
standing is of particular importance, for example, when
tending dilute gas kinetic theory to denser systems, w
and/or without the presence of bound states.

A system illustrating this is a gas in which individu
molecules~monomers! can combine to form bound pair
~dimers!, where it appears natural to associate correlati
with the physicalpresence of bound pairs. This is especia
the case in kinetic theory where the chemical formation a
destruction of dimers is to be described. Such formulati
have been advanced in particular by Olmsted and Curtis11

Lowry and Snider,12 McLennan,13 Eu,14 Klimontovich and
Kremp,15 Hoffmanet al.,16 and Evans and co-workers.17 The
treatment by Lowry and Snider assumes a form for
N-particle density operator of a finite system consisting
monomers and dimers. Based on the form chosen forr (N),
they derive exact expressions for the~generic! reduced den-
sity operators. In applications to real physical systems,
number of particlesN is usually large so factors likeN2n
are approximated byN. Formally this is usually done while
carrying out the thermodynamic limit,N, V→` with
N/V5const. In the thermodynamic limit, the analog of t
Lowry–Snider two-particle reduced density operator, w
the normalization of Eq.~2! is

r12
~2!5r1

~1!r2
~1!1rb12, ~7!

whererb12 is the bound pair density operator, see Sec. IV
a detailed discussion. This structure of reduced density
erators has also been assumed by others.11,13,15By analogy
with the structure of Eq.~5! for the two-particle reduced
density operator and the normalization, Eq.~6!, of the corre-
lation operator, it appears to follow that the bound pair d
sity operator corresponds to the correlation operator and
must be normalized according to

Tr12rb1252N. ~8!

Sincerb12 describes the probability of having a two-partic
bound state, the negative normalization of Eq.~8! will appear
as a negative probability and thus a physically inconsis
result. It also raises the question of how, or why, informat
regarding the total number of particles in the system is
J. Chem. Phys., Vol. 108,
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tained from the density operator for the bound states.
Sec. IV for an elaboration of this illustration of the properti
of the chain relations.

The thermodynamic limit is useful for simplifying for
mulas but leads to inconsistencies of the type seen in Eq~8!
with the formally exact normalizations and chain relation
These inconsistencies between the chain relations and
thermodynamic limit become particularly troublesome
moderately dense gas kinetic theory where dynamic p
cesses are usually described in terms of a combination
reduced distribution functions of different orders. Since m
roscopic quantities are evaluated at the thermodynamic le
which implies the use of the thermodynamic limit, consiste
chain relations are required to ensure that all physical qu
tities are treated properly. A consistent incorporation of b
the chain relation and the thermodynamic limit in dense
kinetic theory does not appear to exist. Actually, the ch
relations are not utilized in most kinetic theory treatmen
see Sec. V. for comments on Cohen’s formalism for de
gas kinetic theory.

The main purpose of this paper is to make connecti
between various normalizations of the reduced distribut
functions that have appeared in the literature and to cont
their properties, such as the chain relations and to study
effects of taking the thermodynamic limit. This paper is d
vided into six sections. Section II is devoted to various g
neric distribution functions. The discussion starts with t
commonly used decomposition of reduced distribution fu
tions in terms of correlation functions. Chain relatio
among these correlation functions are known and review
Variants of this chain relation due to different generic no
malizations are illustrated in detail. Specific distributio
functions are briefly discussed in Sec. III. Chain relations
especially simple for these distribution functions. Some
the relations of Secs. II and III are illustrated in Sec. I
where an explicit form for theN-body distribution function
of an ideal gas system consisting of monomers and dime
assumed. It is seen that care is needed when interpreting
correlation operators for this system. In particular, the app
ent interpretation of a second-order correlation function
describing the physical binding of two particles is in gene
not true. It is also observed that the correlation operat
have a simpler structure for the generic reduced distribu
functions than those for the specific reduced distribut
functions. Section V uses Cohen’s formalism of the clus
expansion to further illustrate the problems that may arise
regard to the chain relations when the thermodynamic li
is taken. The paper ends with a discussion.

II. GENERIC REDUCED DENSITY OPERATORS

In classic treatments of equilibrium statistical mecha
ics, see, e.g., Refs. 1–8, and in~apparently all! modern equi-
librium studies, reduced density operators for systems
thermal equilibrium are normalized according to Eq.~2!.
Note that this normalization is inconsistent forn5N and is
to be applied only forn,N. Due to its simple physical in-
terpretation, this normalization has been commonly used
No. 2, 8 January 1998
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708 Alavi, Wei, and Snider: Reduced distribution functions
the literature for both equilibrium and nonequilibrium sy
tems. The reduction of higher-order density operators
lower-order ones is accomplished by taking a partial trac

Trnr1•••n
~n! 5~N2n11!r1•••n21

~n21! . ~9!

This is referred to here as a chain relation.
Motivated by the cluster expansion of Ursell,18 an ex-

pansion in terms of correlation operators is often used for
further analysis of the reduced density operators. A form
expression for the reduced density operators in terms of o
particle reduced density operators and correlation opera
c12•••n

(n) has been given according to

r12
~2!5r1

~1!r2
~1!1c12

~2! , ~10!

r123
~3!5r1

~1!r2
~1!r3

~1!1r1
~1!c23

~2!1r2
~1!c13

~2!1r3
~1!c12

~2!1c123
~3! , ~11!

r1234
~4! 5r1

~1!r2
~1!r3

~1!r4
~1!1r1

~1!r2
~1!c34

~2!1r2
~1!r3

~1!c14
~2!

1r3
~1!r4

~1!c12
~2!1r1

~1!r3
~1!c24

~2!1r2
~1!r4

~1!c13
~2!

1r1
~1!r4

~1!c23
~2!1r1

~1!c234
~3! 1r2

~1!c134
~3!1r3

~1!c124
~3!

1r4
~1!c123

~3!1c12
~2!c34

~2!1c23
~2!c14

~2!1c13
~2!c24

~2!1c1234
~4! , ~12!

or in general,

r1•••n
~n! 5 (

$a,b2 ,•••,b l ,•••,bn%
)
i Pa

r i
~1!)

l 52

n

)
~ j ,•••,s!Pb l

cj •••s
~ l ! .

~13!

Herea is a listing of single particle labels andb l a listing of
sets of l -particle labels, while the sum is over all possib
partitions of then labeled particles into setsa,b2 ,...,bn .
This decomposition breaks down the structure of the redu
density operatorr (n) into contributions from the one-particl
reduced density operatorr (1) and the correlation operator
c1•••n

(n) . The motivation for this is twofold. First, it is assume
that greater knowledge of the lower order correlation ope
tors can be experimentally available. Second, it is hoped
the main contributions tor (n) arise from products of lowe
order terms and that the contribution of then-particle corre-
lation operator is small and may be treated as
perturbation.19 The n-particle correlation operatorc1•••n

(n) can
thus be either neglected, or approximated by some func
without incurring too much error inr (n). This treatment may
appear equivalent to interpreting the correlation opera
c1•••n

(n) as describing isolatedn-particle physical clusters in
the system, or in other words, as giving the probability
the existence of physical clusters in the system. But the n
malization of these correlation operators, as will now be d
cussed, implies that one must be very careful in pursuing
type of interpretation.

Even though the exact form of the correlation operat
c1•••n

(n) may be unknown, the normalization property, Eq.~2!,
and the chain relation, Eq.~9!, impose certain constraints o
them. This can be of help both in introducing approxima
forms for the correlation operators of a physical system
in understanding existing theoretical results. The normal
tion of the correlation operators is one constraint which f
lows from the normalization conditions, Eq.~2!, of the re-
J. Chem. Phys., Vol. 108,
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duced density operators. In particular, from t
normalization ofr (2), c12

(2) is normalized according to Eq
~6!. If as stated above,c12

(2) is interpreted as describing th
probability of having two-particle physical clusters in th
system, the negative normalization of Eq.~6! will appear to
be an inconsistent result. In Sec. IV it will be demonstra
that c12

(2) is a complicated factor, which incorporates ma
physical effects, not just two-particle clusters. Balescu6 noted
this negative normalization but did not comment on its int
pretation. After recognizing that the total trace of each c
relation operator scales linearly withN, equating various
powers ofN in the normalization of Eq.~13! gives a straight-
forward way of showing that the normalization for a gene
n-particle correlation operator is

Tr1•••nc1•••n
~n! 5~21!n21~n21!!N. ~14!

Since thec1•••n
(n) are not associated with a single physic

effect, the negative values for evenn in Eq. ~14! do not give
rise to any problem of interpretation. In contrast, the asso
tion of correlations with physical effects, namely clusterin
is commonly assumed in the literature.

Relations between correlation operators of different
ders can be obtained. The first few of these are

Tr2c12
~2!52r1

~1! , ~15!

Tr3c123
~3!522c12

~2! , Tr23c123
~3!52r1

~1! . ~16!

A general chain relation between the correlation opera
can be derived from the chain relation, Eq.~9!, namely

Trnc1•••n
~n! 52~n21!c1•••n21

~n21! , ~17!

or more generally,

Trn•••n1l c1•••n1l
~n1l ! 5~21! l 11

~n1l 21!!

~n22!!
c1•••n21

~n21! .

~18!

This is the classic result of Lebowitz and Percus,20 who only
discuss the generic normalization condition~1!. It also im-
plies, used along with Eq.~6!, the normalization of Eq.~14!.
An obvious approximation method would appear to be
ignore higher correlation operators, for example, to retain
two-particle correlation operator but to assume there is
three-particle~or higher! correlation operator. Clearly suc
an approach is inconsistent with the above chain relations
the correlation operators. Such a truncation of the correla
operators must be contrasted with the truncation of the Ur
operators at some order. The latter truncation of ‘‘physica
clusters must be carried out while describing the total s
tem, that is, at theN-particle level, which is both mathemat
cally consistent and can often lead to a physically reason
approximation. This has been used for describing a che
cally reactive ideal gas of monomers and dimers12 and also
for the nonideal gas having only binary clusters21 @therein
called the ‘‘binary correlation approximation,’’ a designatio
which is not in agreement with the notation used in t
present paper#.

Besides the normalization convention discussed abov
number of other related normalizations for reduced den
No. 2, 8 January 1998
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709Alavi, Wei, and Snider: Reduced distribution functions
operators may be found in the literature. The common as
of these normalizations is the combination of factoria
N!/(N2n)!, that they all contain, which keeps them of th
generic type. One related normalization for reduced distri
tion functions, see the books by Hill5 and McQuarrie,22 is

Nn

Vn r̃ 1•••n
~n! 5

N!

~N2n!!
Trn11•••Nr1•••N

~N! . ~19!

This normalization is identical to that of the equilibrium ‘‘ra
dial’’ distribution functions. By using the definition of Eq
~10!, along with its higher order analogs, correlation ope
tors for this normalization convention may be obtained. I
straightforward to derive a general expression for the tra
correlation operators for this normalization scheme. Thus
example,

Tr12c̃12
~2!52V2/N. ~20!

It was pointed out23 that the two-particle correlation functio
associated with Debye–Hu¨ckel theory obeys the classica
analog of this equation. The chain relation for this set
correlation operators can be seen to be

Trnc̃ 1•••n
~n! 52

V~n21!

N
c̃ 1•••n21

~n21! ~n>3!,
~21!

Tr2c̃ 12
~2!52

V

N
r̃ 1

~1! .

The same general classification for the various terms in
expansions of the reduced density operators accordin
their order of magnitude inN, as stated in the paragrap
preceding Eq.~14!, applies for this normalization. Eve
though there are differences in detail, this normalization a
that of Eq.~1! are similar in nature.

An alternate normalization12 is

r̂1•••n
~n! 5

N!

~N2n!!n!
Trn11•••Nr1•••N

~N! . ~22!

This was introduced12 so that the bound state part of the pa
density operator directly reproduces the number and den
of bound states. Ifr̂1•••n

(n) is expanded in the same structure
the correlation expansion of Eqs.~10!–~12!, with the corre-
lation operators labeled asĉ(n), the resulting correlation op
erators have a different structure from those ofc12

(2) , for ex-
ample,

Tr2ĉ12
~2!52

~N11!

2
r̂1

~1! , Tr12ĉ12
~2!52

N~N11!

2
. ~23!

In order to obtain correlation operators for this norm
ization that have chain relations similar to the other corre
tion operators in this section,r̂1•••n

(n) needs to be expressed
terms of correlations, labeled asč(n), using a different expan
sion from that of Eqs.~10!–~12!, in particular, for the pair
and triplet reduced density operators

r̂12
~2!5 1

2r̂1
~1!r̂2

~1!1 č12
~2! , ~24!
J. Chem. Phys., Vol. 108,
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r̂123
~3! 5 1

6r̂1
~1!r̂2

~1!r̂3
~1!1 1

3r̂1
~1!č23

~2!1 1
3r̂2

~1!č13
~2!1 1

3r̂3
~1!č12

~2!1 č123
~3! ,
~25!

or in general

r̂1•••n
~n! 5

1

n! (
$a,b2 ,•••,b l ,•••,bn%

)
i Pa

r̂ i
~1!)

l 52

n

)
~ j ,•••,s!Pb l

l ! č j •••s
~ l ! .

~26!

See the discussion following Eq.~13! for an elaboration of
the notation. With this definition of the correlation expa
sion, the resulting correlation operators have properties
parallel thec1•••n

(n) but with different detailed numerical fac
tors. For example, instead of Eq.~6! one has

Tr12č12
~2!52N/2. ~27!

The chain rule for these correlation operators becomes

Trnč1•••n
~n! 52

~n21!

n
č1•••n21

~n21! ~n>3!

Tr2č12
~2!52 r̂1

~1!/2. ~28!

It is thus seen that the structure of the correlation opera
depends on the choice of both the particular normalizat
convention and the form for the correlation expansion.

III. SPECIFIC REDUCED DENSITY OPERATORS

The standard definition of specific reduced density o
erators is given in Eq.~3! with normalization~4!. Following
Bogoliubov,24 various classic treatments of gas kine
theory24–27 define the reduced density operators in a man
which gives them similar properties, namely,

%1•••n
~n! 5VnTrn11•••Nr1•••N

~N! . ~29!

The common property of these normalizations is the abse
of the factorials contained in the numerical factor in the de
nition of the generic reduced distribution functions. Clea
these distribution functions satisfy the chain relations

Trn%
~n!5V% ~n21!, Trn` ~n!5` ~n21!. ~30!

The correlation operators derived using the reduced den
operators of Eq.~3! have very different properties from thos
described in Sec. II. On expanding the reduced density
erators in terms of correlations according to Eqs.~10!–~12!,
with the corresponding correlation operators labeled asC (n),
it follows that the trace over any arbitrary particlei of the set
$1,2,•••,n% gives

Tr
i
C 1••• i •••n

~n! 50. ~31!

This constraint was first recognized by Liboff,28 who re-
ferred to the corresponding full trace as the ‘‘antinormaliz
tion’’ property. Equation~31! shows that, in contrast to Eq
~17!, there are no chain relations between correlation ope
tors when this normalization convention is used for the d
nition of reduced density operators. Obviously, the antin
malization property prevents any direct association ofC 1•••n

(n)
No. 2, 8 January 1998
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710 Alavi, Wei, and Snider: Reduced distribution functions
with the probability of a physical clustering of particle
since any quantity measuring a probability must have a p
tive value~namely its probability!.

IV. REDUCED DENSITY OPERATORS IN THE
PRESENCE OF BOUND STATES

If dimerization occurs in the gas phase, the gas beco
a molecular mixture. From an atomic point of view, dime
are two-particle clusters. This chemical clustering must
reflected in the~atomic! reduced density operators for th
system. Treating the gas molecules as noninteracting giv
system that is very simple, yet illustrates the differing ro
of molecular clustering and mathematical correlations. Th
differences are discussed here in terms of both the gen
and specific definitions of reduced density operators.

A. Generic density operators

Lowry and Snider12 formulated a gas kinetic theory for
system in which monomer–dimer interconversions occ
From a monomer~atomic! point of view, the only correla-
tions that are present are associated with pair bound st
Thus theN-particle system can be considered as consis
of a mixture of M unbound particles~monomers! and D
bound pairs~dimers!. This methodology has recently bee
used to motivate a description of the kinetic properties o
moderately dense gas,21 where the bound states have be
replaced by general pair correlations associated with the
ond virial coefficient. The generalization to higher-order c
relations is straightforward. The arguments presented h
regarding the normalization of reduced density operators
correlation operators apply to both monomer–dimer a
moderately dense gas systems as long as the correlation
attractive. For simplicity of presentation, only the monome
dimer gas system is discussed.

If bound states exist, they can be considered as a s
rate chemical species so that the system now is appropria
treated as a binary mixture. One way of representing suc
system is to explicitly recognize the two species. An equil
rium binary ideal gas canonical density operator for a sys
containingM molecules of species M andD of D is29

r1•••N
~M ,D !5

1

M !D!QM ,D
)
i 51

M

e2bHi
M

)
j 51

D

e2bH j
D

~32!

with partition function

QM ,D5
~QM !M~QD!D

M !D!
, ~33!

expressed in terms of the molecular partition functionsQM

and QD and molecular HamiltoniansHM and HD. But if
species D is to be the dimer~diatomic! of monomer~atom!
M, then there should be a symmetry between all ato
whether they are free~M!, or bound to another atom to form
a diatomic~D!. Equation~32! does not express this~Boltz-
mann! indistinguishability. Given that there areM unbound
and 2D bound atoms, indistinguishability requires that it c
be any set ofD pairs of theN5M12D atoms that are
bound. To represent this, it is appropriate to label allN atoms
J. Chem. Phys., Vol. 108,
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consecutively and consider all partitions$a,g% of theN par-
ticles into a seta of M unbound monomers and a setg of D
~ordered! bound pairs. The labeling of a bound pair is nat
rally ordered, i.e., if (jk)Pg, then j ,k, and the number of
such partitions ofN particles is

g~N,M ,D !5
N!

M !D!2D
. ~34!

This symmetry can be incorporated by replacing Eq.~32! for
the N-particle ~equilibrium ideal gas! density operator by

r1•••N
~M ,D !5

1

g~N,M ,D !M !D!QM ,D

3 (
$a,g%

)
i Pa

e2bHi
M

)
~ jk !Pg

e2bH jk
D . ~35!

An alternate notation may be used in this equation
emphasize the numbers of monomer and dimer species in
system,

r1•••N
~M ,D !5

1

g~N,M ,D !M M~2D !D (
$a,g%

)
i Pa

r f i )
~ jk !Pg

rb jk .

~36!

The form of Eq.~36! was used as a frame of reference f
formulating a kinetic theory of recombination and decay12

Herer f i is the density operator for a free particlei , normal-
ized to the number of free particles

Trir f i5M , ~37!

and rb jk is the bound pair density operator of particlesjk,
with normalization to the number of particles that are bou

Trjkrb jk52D. ~38!

Expressions for the reduced density operatorsr (n) can be
derived using Eq.~1!.

In r1
(1) the single extant particle can be either free,

part of a bound pair, in which case it is bound to anoth
traced-over particle~ghost!. The form of the one-particle re
duced density operator is thus

r1
~1![

N!

~N21!!
Tr2•••Nr1•••N

~M ,D !

5g~N,M ,D !21NM2M~2D !2D

3H g~N21,M21,D !M M21~2D !Dr f 1

1g~N22,M ,D21!M M~2D !D21(
i 52

N

Trirb1iJ
5r f 11Tr2rb12[r f 11rb1 . ~39!

The partial trace ofrb12, shown asrb1, describes the prop
erties of a particle that is bound to a ghost~particle whose
state is not explicitly defined!, and is normalized to the num
ber of bound particles,

Tr1rb1[Tr12rb1252D. ~40!
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711Alavi, Wei, and Snider: Reduced distribution functions
For n51, the normalization of Eq.~1! is recovered from
Eqs.~39!, ~37!, and~40!,

Tr1r1
~1!5Tr1~r f 11rb1!5M12D5N. ~41!

In the same manner, the two-particle reduced density op
tor r12

(2) is obtained as

r12
~2![

N!

~N22!!
Tr3•••Nr1•••N

~M ,D !

5r1
~1!r2

~1!1rb122
1

M
r f 1r f 22

1

D
rb1rb2 . ~42!

Here use has been made of Eqs.~39! and ~38!. Comparing
this equation with Eq.~10!, the correlation operatorc12

(2) can
be identified as

c12
~2!5rb122

1

M
r f 1r f 22

1

D
rb1rb2 . ~43!

This correlation operator contains contributions from t
density operators of both the free and the bound particle
is thus seen that themathematicaldefinition of correlation
between particles 1 and 2,c12

(2) , must be distinguished from
the physicalnotion of clusteringin an N-particle system, as
exemplified byrb12. Also note that, even though particles
and 2 may be far away from each other so that they
physically independent,rb1250, the correlation function can
be nonzero. This is because the correlation function cont
a sum of products of terms, each of which reflects a differ
manner in which the particles are independent of one
other.

The partial trace over particle 2 ofc12
(2) is seen to satisfy

the chain relation, Eq.~15!, i.e.,

Tr2c12
~2!5Tr2H rb122

1

M
r f 1r f 22

1

D
rb1rb2J

5rb12r f 122rb152r1
~1! . ~44!

Thus the correct normalization of Eq.~43! is easily obtained,

Tr12c12
~2!52N. ~45!

The 2N value of Tr12c12
(2) is thus the result ofc12

(2) being the
composite of a number of different terms. Equation~42! re-
produces the thermodynamic limit for a moderately de
gas system

lim
V,N,M ,D→`

r12
~2!→r1

~1!r2
~1!1rb12 ~46!

on the basis that the ‘‘small terms’’ containing factors
1/M and 1/D can be neglected in comparison with the dom
nant product factorr1

(1)r2
(1) . But these neglected terms ca

be of importance, especially if the trace is taken, when i
recognized that their traces are comparable in size to
trace of the bound pair density operatorrb12. Thus it is
J. Chem. Phys., Vol. 108,
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important to keep in mind those terms which have been
out in using the thermodynamic limit expression such as
~46! for r12

(2) .
Similar considerations lead to an expression for

three-particle reduced density operator

r123
~3![

N!

~N23!!
Tr4•••Nr1•••N

~M ,D !

5r1
~1!r2

~1!r3
~1!1r1

~1!rb231r2
~1!rb131r3

~1!rb12

1
2

M2 r f 1r f 2r f 32
1

M
@r1

~1!r f 2r f 31r f 1r2
~1!r f 3

1r f 1r f 2r3
~1!#1

2

D2 rb1rb2rb32
1

D

3@~r1
~1!rb21rb12!rb31~r3

~1!rb11rb13!rb2

1~r2
~1!rb31rb23!rb1#. ~47!

The first four terms on the right-hand side of the last equa
are the terms that remain in the thermodynamic limit.
expressingr123

(3) in terms of correlation operators and com
paring with Eq.~11!, the three-particle correlation operato
c123

(3) can be identified as

c123
~3!5

2

M2 r f 1r f 2r f 31
2

D2 rb1rb2rb3

2
1

D
~rb12rb31rb13rb21rb23rb1!. ~48!

A correct normalization can only be obtained by taking in
account all the ‘‘small terms’’ that are divided by a power
either M or D. Taking the trace of Eq.~48! over all three
particles gives

Tr123c123
~3!52M116D212D52N. ~49!

It is straightforward to show thatr123
(3) satisfies the chain re

lation Eq.~9!:

Tr3r123
~3! 5~N22!Fr1

~1!r2
~1!1rb122

1

M
r f 1r f 2

2
1

D
rb1rb2G5~N22!r12

~2! . ~50!

The chain relation for correlation operators, Eq.~16!, can
also be easily verified. Higher-order reduced density ope
tors can be treated in a similar manner.

Equation~35! can similarly be used in the other gener
normalization conventions given by Eqs.~19! and~22!. Even
though there are differences in detail, the properties of
correlation operators in these conventions are similar
those already given in this section.

B. Specific density operators

The structure of the reduced density operators are dif
ent in this normalization. If one uses the Lowry–Snider fo
No. 2, 8 January 1998
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712 Alavi, Wei, and Snider: Reduced distribution functions
r (M ,D), Eq. ~35!, for theN-particle density operator with th
normalization convention~29! for the reduced density opera
tors, the expressions for the one- and two-particle redu
density operators are

%1
~1!5

V

N
~r f 11rb1! ~51!

and

%12
~2!5%1

~1!%2
~1!1

V2

N~N21!Frb121
N

V2 %1
~1!%2

~1!

2
1

M
r f 1r f 22

1

D
rb1rb2G . ~52!

The last four terms on the right-hand side of Eq.~52! can be
identified withC 12

(2) , whose trace gives zero as predicted
Eq. ~31!. This behavior is contrasted with Eq.~15!. The
structure of the correlation operator using this normalizat
is more complicated than that of Eq.~43!. In the thermody-
namic limit of V,N,M ,D→` with each ofN/V, M /V, and
D/V constant, the ‘‘standard’’ expression for the tw
particle reduced density operator is equivalent to

lim
V,N,M ,D→`

%12
~2!→%1

~1!%2
~1!1

V2

N2
rb12. ~53!

The three-particle reduced density operator is

%123
~3!5

V3

N~N21!~N22! H N3

V3 %1
~1!%2

~1!%3
~1!1

N

V
@%1

~1!rb23

1%2
~1!rb131%3

~1!rb12#1
2

M2 r f 1r f 2r f 3

2
N

VM
@%1

~1!r f 2r f 31r f 1%2
~1!r f 31r f 1r f 2%3

~1!#

1
2

D2 rb1rb2rb32
1

D F S N

V
%1

~1!rb21rb12D rb3

1S N

V
%3

~1!rb11rb13D rb21S N

V
%2

~1!rb3

1rb23D rb1G J . ~54!

In the thermodynamic limit the expression for%123
(3) reduces

to

lim
V,N,M ,D→`

%123
~3!→%1

~1!%2
~1!%3

~1!1
V2

N2
@%1

~1!rb231%2
~1!rb13

1%3
~1!rb12#. ~55!

Equation~54! can be rearranged in terms of the correlati
expansion. The result is
J. Chem. Phys., Vol. 108,
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%123
~3!5%1

~1!%2
~1!%3

~1!1%1
~1!

C 23
~2!1%2

~1!
C 13

~2!1%3
~1!

C 12
~2!

2
2

~N21!~N22!
%1

~1!%2
~1!%3

~1!1
2

N22
@%1

~1!
C 23

~2!

1%2
~1!

C 13
~2!1%3

~1!
C 12

~2!#1
V3

N~N21!~N22!

3F 2

M2 r f 1r f 2r f 31
2

D2 rb1rb2rb3

2
1

D
~rb12rb31rb13rb21rb23rb1!G . ~56!

By comparing with Eq.~11!, C 123
(3) can be identified. Explicit

calculation verifies that its trace over any particle vanish
The form of the correlation functionC 123

(3) for this normaliza-
tion is seen to be more complicated than the correspond
expression given in Eq.~48!. Clearly, in all cases, whateve
the normalization convention, care must be taken when
ing to assign physical meanings to the corresponding co
lation operators.

V. COHEN’S CLUSTER EXPANSION

The difficulty of imposing the chain relations and thu
the normalization requirement once the thermodynamic li
has been taken, can also be illustrated with reference to
classic formalism of Cohen,27,10 which uses the specific re
duced distribution functions of Eq.~29!. For this convention,
the chain relation between consecutive reduced distribu
functions is given by

E F ~s11!~x1•••xs11!dxs115VF~s!~x1•••xs!. ~57!

Cohen expanded theN-body distribution functionDN in
terms of s-body distribution functions Ds and the
Us(x1•••xs) defined in his work. Exact expressions for th
reduced distribution functions,F (s), and their corresponding
correlation functions,G(s), were then derived in terms of
density expansion of functionsUs(x1•••xs). The chain rela-
tion Eq. ~57! shows that

E G~s!~x1•••xi•••xs!dxi50, ~58!

which is similar to Eq.~31!. In the thermodynamic limit, the
expressions for the first and second reduced distribu
functions were obtained as~heren is the density!,

F ~1!~x1!5U1~x1!1
n

1!E U2~x1x2!dx2

1
n2

2!E U3~x1x2x3!dx2dx31••• ~59!

and,
No. 2, 8 January 1998
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F ~2!~x1x2!5U2~x1x2!1
n

1!E U3~x1x2x3!dx31
n2

2!E U4~x1x2x3x4!dx3dx41•••1FU1~x2!1
n

1!E U2~x2x3!dx3

1
n2

2!E U3~x2x3x4!dx3dx41••• GU1~x1!1
n

1! FU1~x2!1
n

1!E U2~x2x4!dx41
n2

2!E U3~x2x4x5!dx4dx51••• G
3E U2~x1x3!dx31

n2

2! FU1~x2!1
n

1!E U2~x2x5!dx51
n2

2!E U3~x2x5x6!dx5dx61••• G
3E U3~x1x3x4!dx3dx41••• . ~60!
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Cohen defined theU1 and Us for s.1 such that
*U1(xi)dxi5V and*Us(x1•••xs)dx1•••dxs50. Note that
this normalization prevents theUs from being identical to the
Ursell functions. On integratingF (2)(x1x2) over the phase
space coordinates of particle 2 we get

1

VE F ~2!~x1x2!dx25U1~x1!1S n

1!
11D E U2~x1x2!dx2

1S n2

2!
1

n

1! D E U3~x1x2x3!dx2dx3

1••• , ~61!

which is not equalF1
(1) , as given in Eq.~59!. Thus the use of

these expressions forF (1) andF (2) in the same theory lead
to questions of consistency. In contrast, the exact express
for F (2)(x1x2) andF (1)(x1) will of course satisfy the chain
relations, Eq.~57!.

VI. DISCUSSION

The object of this paper has been to clarify the struct
of reduced distribution functions and their associated co
lation functions, in particular with regard to the~chain! rela-
tions between reduced distribution functions of different
ders. In general only a limited set of these relations h
appeared in the literature at any one time. For example,
chain relations for the generic correlation functions are d
cussed by Lebowitz and Percus,20 but neither the thermody
namic limit nor the specific correlation functions are me
tioned. In contrast, Liboff28 discusses only the specifi
reduced distribution functions. This paper has attempted
give a broader perspective of the contrasting properties of
chain relations which result when different normalizati
conventions are used for the definition of the reduced dis
bution functions. The different normalizations give rise
correlation functions which obey different mathematical co
straints. It has also been shown in great detail that the
malization requirements disallow thedirect association be-
tween correlation functions and physical clusters for
normalizations.

Historically there seems to have been some controve
over the validity of the Debye–Hu¨ckel theory arising from
whether its pair correlation function obeys the ‘‘antinorm
ization’’ property. The discussion given by Schram on th
J. Chem. Phys., Vol. 108,
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topic23 can be interpreted as stating that in the Deby
Hückel theory, the generic normalization of Eq.~19! was
used in defining the reduced density operator and so its
responding two particle correlation function will obey E
~20!.

The chain relations stated here are exact, but in m
applications the asymptotic behavior~large-N limit !, N@1,
is used to simplify theoretical equations. The relations
rived above illustrate that the stage at which the asympt
limit is taken is of importance. An extreme example is taki
the large-N limit of Eq. ~1!, which gives

r1•••n
~n! 5Nn Trn11•••Nr1•••N

~N! . ~62!

In this limit one obtains,

Tri c1••• i •••n
~n! 50, ~63!

which is similar to the result of~31!, and very different from
the exact form in~6!. By taking the large-N limit, one ne-
glects factors of the typen/N. These are very important fo
the validity of the chain relations, so neglecting them d
stroys the chain relations. The authors became aware o
possible inconsistencies between the large-N forms for the
different reduced distribution functions when generalizi
gas kinetic equations to higher density with the rigorous
clusion of bound states. In such work it is necessary to
volve reduced distribution functions of different orders and
these are not consistent, the resulting kinetic equations
be impossible to interpret.

The question now arises as to when is it justified
neglect the terms in the reduced density and correlation
erators containing factors such as 1/M or 1/D in the
monomer–dimer problem? Certainly the operation of tak
a trace requires their presence in order to properly acco
for the makeup of lower order reduced density and corre
tion operators, in particular their normalization. Otherwi
these terms always involve 1/M or 1/D factors and are of
lower order in the thermodynamic limit, so they act as~pre-
sumably minor! corrections to the product terms that have
1/M or 1/D factors. On the other hand, it is desirous to reta
the termrb12 in the two-particle density operatorr12

(2) since it
has a different structure, namely, that it describes the bind
between the two specific particles 1 and 2. Thus it need
be retained in theM ,D→` limit even though its norm has a
magnitude of comparable size to the neglected terms
No. 2, 8 January 1998
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714 Alavi, Wei, and Snider: Reduced distribution functions
seems that the answer to the question posed above is: i
pends on the use being made of the reduced density or
relation operator. But if ‘‘small’’ terms are neglected, it mu
not be forgotten to check that their neglect is done in a m
ner consistent with the use put to the non-neglected term

The magnitudes and signs of the traced over correla
operators also merit some discussion. For the ‘‘specifi
normalization these all vanish while in a closed system
the ‘‘generic’’ normalization, Eq.~14! shows that the tota
trace of any correlation function isN, multiplied by a signed
numerical factor. Thus, since the reduced density opera
r (n) are of orderNn, the significance of then-particle corre-
lation functions can be seen to be negligible for largeN ~in
trace magnitude! and become of even less importance asn
increases. For this normalization, the signs of the traced o
correlation operators are also of interest. In particular,
traced over two-particle correlation operator is always ne
tive, irrespective of the ‘‘attractive’’ or ‘‘repulsive’’ nature
of the intermolecular potential. Similar constraints hold f
higher order correlation operators. The signs of the tra
over correlation operators indicate that in the total trace
the n-particle reduced density operator, all terms exclud
the n-particle correlation operatorc(n) overestimate
Tr1•••nr (n) for evenn, and underestimate it for oddn. These
properties arise from theN!/(N2n)! normalization chosen
for r (n). Similar arguments can be given for the other cor
lation operators of Sec. II.

As discussed by Liboff,28 modeling the correlation func
tions is a difficult task. The normalization relations stat
here provide constraints which any model functions m
satisfy in order to give consistent results. Thus, for exam
as stressed by Liboff for the classical correlation funct
C 12

(2) , this function must have at least one zero at some
terparticle separation between 0 and` in order for Eq.~31!
to be satisfied. The different constraints also show that
must be consistent in choosing the proper normalization
the correlation functions and the reduced distribution fu
tions. For example, the discussion given by Schram23 can be
interpreted as stating that the normalization for the pair c
relation function was not consistent with the normalizati
of the original reduced distribution function.

The normalization constraint can provide a test of
consistency of existing kinetic theory formalisms. Usual
this constraint isnot emphasized in the literature. Cohen
classic dense gas theory has been analyzed as an illustra
It has shown that his normalization prevents hisUs from
being identical to the Ursell cluster functions and that
F (1) andF (2) do not satisfy the corresponding chain relatio
It is also noted that the normalization constraint has actu
been included in the density functional theory for the clus
expansion of a finite number of electrons.30
J. Chem. Phys., Vol. 108,
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The results obtained in this paper show that the norm
ization convention chosen for the reduced density oper
has an important effect on the properties of the correlat
operators. This must be carefully considered when the co
lation operators are being modeled analytically or deriv
from simulations where the large-N limit cannot be taken.
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