Generative Network Complex (GNC) for Drug Discovery
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Generative Network Complex (GNC)

It remains a challenging task to generate a vast variety of novel
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compounds with desirable pharmacological properties. In this work, a string string
generative network complex (GNC) is proposed as a new platform for
designing novel compounds, predicting their physical and chemical N1CCN(CC1) N1CCN(CC1
properties, and selecting potential drug candidates that fulfill various E‘gégég}q. ;;Eéglz};cé}
druggable criteria. We combine a SMILES variational autoencoder =0)N(C3CC =0)N(C3CC
with deep neural networks, a target-specific three-dimensional (3D) 3{]};%?‘:4':(: 3)C=Cac(=

pose generator, and mathematical deep learning networks to
generate new compounds, predict their drug properties, construct 3D

poses as.s.ociated with target proteins, and finally reevaluate Experimental
druggability. verification
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The latent space is regulated by a = = Output: 62 x 1 In the proposed GNC, the first component is a variational
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to optimize druggable properties. — ——= each dimension) string as an input to generate a novel one. The newly generated
The regularized latent Maxpool 2x 2 x 2|x 2 — SI\/III._ES strir.1gs will be fed into the second component of our GNC, a
information is fed into a shape conv3D 1y E‘ﬂl‘;ﬁf“?fiti‘; 2D fingerprint-based deep neural network (2DFP-DNN), so that only
captioning network, which _“_5%:1’%_“ — ones with dgsired druggable properties.. arg kept. The nexjc
consists of a 3D-convolutional ! [Maxpool 2x 2 x 2| | Ouﬁ:i'_*IGtZLSTEM component is the MathPose model which is used to predict the 3D
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network followed by a long short ! —=— 1% 2 structure information of the compounds selected by 2DFP-DNN. The
term memory neural networkto !| 321xix1 | 4 bioactivities of those compounds are again estimated by the

bo==== === | structure-based deep learning model named MathDL. The druggable
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Maxpool2x2x 2 properties predicted by this last component of our GNC are used as

an indicator to select the promising drug candidates.

Of the 2.8 million compounds generated for the BACE target, 99 had
a predicted binding affinity smaller than -9.56 kcal/mol based on our

c 2DFP-DNN. Generated compounds had an average similarity score of
0.34 to the seed molecule.
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In our recent work, we have successfully designed an AGL-Score
model to achieve the best performances in docking power metrics
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Our MathDL is constructed by the integration of mathematical
representation features and deep learning networks to generate a

powerful binding affinity predictor. Specifically, the MathDL is the 0.12
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Graph Theory The top 1,050 generated compounds for the Cathespin S target were
N é reevaluated using MathDL. Their predicted binding affinity ranged
RS \_ ) - from -7.01 kcal/mol to -11.68 kcal/mol, with an average value of -9.27

kcal/mol. The top 4 predicted values are
-11.68 kcal/mol, -11.61 kcal/mol, -11.54 kcal/mol, and -11.54
learning kcal/mol.
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