Name:

Limits and Limit laws

1. Evaluate the following limits. Be sure that you show your work, so that you know how to show your work.
a) $\lim _{h \rightarrow 0} \frac{3(2+h)^{2}-12}{h}$
$=\lim _{h \rightarrow 0} \frac{3\left(4+4 h+h^{2}\right)-12}{h}$
$=\lim _{h \rightarrow 0} \frac{12 h+3 h^{2}}{h}=\lim _{h \rightarrow 0} 12+3 h=12$
b) $\lim _{x \rightarrow-3} \frac{x^{2}-x-12}{x^{2}+8 x+15}$

$$
=\lim _{x \rightarrow-3} \frac{(x-4)(x+3)}{(x+3)(x+5)}=\frac{-7}{2}
$$

2. Evaluate the following limits. Be sure that you show your work, so that you know how to show your work.
a) $\lim _{x \rightarrow 2^{+}} \frac{|x-2|}{x^{2}-4}=\lim _{x \rightarrow 2^{+}} \frac{x-2}{(x-2)(x+2)}=\frac{1}{4}$
b) $\lim _{x \rightarrow 2} \frac{|x-2|}{x^{2}-4} \quad \lim _{x \rightarrow 2^{-}} \frac{|x-2|}{x^{2}-4}=\lim _{x \rightarrow 2^{-}} \frac{-(x-2 \mid}{(x-2)(x+2)}=-\frac{1}{4}$
$=$ D, N, Z.

$$
\lim _{x \rightarrow 2^{+}} \frac{|x-2|}{x^{2}-4}=\frac{1}{4}
$$

3. Write an inequality that would be useful to find $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)$ using the Squeeze Theorem.

$$
\begin{aligned}
& -1 \leq \sin \frac{1}{x} \leq 1 \\
& -x^{2} \leq x^{2} \sin \frac{1}{x} \leq x^{2} \\
& \lim _{x \rightarrow 0}\left(-x^{2}\right)=\lim _{x \rightarrow 0} x^{2}=0 \text {, the squeeze theorem implies } \lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x}=0
\end{aligned}
$$

4. Please explain, in words, what the following statement means, and what it tells you about $\lim _{x \rightarrow 0} f(x)$.

- $5-x^{2} \leq f(x) \leq 5+\sin ^{2} 3 x$

$$
\lim _{x \rightarrow 0}\left(5-x^{2}\right)=5 \quad \lim _{x \rightarrow 2}\left(5+\sin ^{2} 3 x\right)=5 \text { by the spues } 2 \text { theorem, we have }
$$

5. Calculate the following limits.
a) $\lim _{x \rightarrow 0} \frac{\sin 4 x}{\sin 6 x}=\lim _{x \rightarrow 0} \frac{\sin 4 x}{\sin 6 x} \cdot \frac{4 x}{4 x} \cdot \frac{6 x}{6 x}$

$$
\text { b) } \lim _{t \rightarrow 0} \frac{\tan 6 t}{\sin 2 t}=\lim _{t \rightarrow 0} \frac{\sin 6 t}{\sin 2 t} \cdot \frac{1}{\cos 6 t} \cdot \frac{6 t}{6 t} \cdot \frac{2 t}{2 t}
$$

$$
=\lim _{x \rightarrow 0} \frac{\sin 4 x}{4 x} \frac{6 x}{\sin 6 x} \cdot \frac{4 x}{6 x}
$$

$$
=\frac{4}{6}
$$

c)* $\lim _{x \rightarrow 1} \frac{\sin (x-1)}{x^{2}+x-2}=\lim _{x \rightarrow 1} \frac{\sin (x-1)}{x^{2}+x-2} \cdot \frac{x-1}{x-1}$ $=\lim _{x \rightarrow 1} \frac{\sin (x-1)}{x-1} \cdot \frac{x-1}{x^{2}+x-2}=\lim _{x \rightarrow 1} \frac{x-x}{(x+2)(x-1)}=\frac{1}{3}$
$1 \quad$ Continuity and differentiability
6. Explain why the following function is discontinuous at $x=4$. Could you change the function (minimally) to make it continuous?
at $x=4$. Changing $f(4)=7$ t $f(4)=8$ makes it continuous

$$
\left.\begin{array}{ll}
\sin x=x \Leftrightarrow \underbrace{\sin x-x=0}_{f(x)} & f(x) \text { is continuous in }(-\infty, \infty) \\
& f(\pi)=\sin \pi-\pi<0 \\
f(-\pi)=\sin (-\pi)+\pi
\end{array}\right),
$$

7. Find a value of a such that the following function is continuous.

By Z $\cup T, \exists C \in(-\pi, \pi)$, St. $f(c)=0$ which means C is a root of $\sin x=x$.

$$
f(x)=\left\{\begin{array}{cc}
x^{2}-3 x+7 & x \leq 4 \\
a x+8 & x>4
\end{array} \quad \lim _{x \rightarrow 4^{-}} f(x)=16-12+7=11 \quad \lim _{x \rightarrow 4^{+}} f(x)=4 a+8\right.
$$

For t to be want. at 4 , we need $\lim _{x \rightarrow 4^{-}} f(x)=\lim _{v \rightarrow 4^{+}} f(x)$, use a bove
8. Prove that $\sin x=x$ has a solution. $\quad \Leftrightarrow \quad \|=4 a+\gamma$

$$
\Leftrightarrow \quad a=3 / 4
$$

Derivatives and Derivative functions
9. Calculate the derivatives of the following expressions.
a) $3 x^{2}+\cos x$
b) $\cot x+\tan x$
$6 x-\sin x$

$$
-\csc ^{2} x+\sec ^{2} x
$$

c) $x^{2} \sin x$
d) $\left(5 x^{5}+\sqrt{x}\right) \csc x$

$$
2 x \sin x+x^{2} \cos x
$$

$$
\left(25 x^{4}+\frac{1}{2} x^{-\frac{1}{2}}\right) \csc -\left(5 x^{5}+\sqrt{x}\right) \cdot \csc x \cot x
$$

e) $* \sqrt[3]{x^{5}} \sin x x^{\frac{5}{3}}$

$$
\frac{5}{3} x^{2 / 3} \cdot \frac{1}{2} \sin 2 x+x^{5 / 3} \cos 2 x
$$

f) $\frac{\sin x}{x}=\sin x \cdot x^{-1}$

$$
\cos x \cdot x^{-1}-\sin x \cdot x^{-2}
$$

$$
\begin{aligned}
& \text { g) } \frac{x^{2}+\tan x}{\sin x} \\
& \frac{\left(2 x+\sec ^{2} x\right) \sin x-\left(x^{2}+\tan x\right) \cos x}{\sin ^{2} x}
\end{aligned}
$$

i) $\sin ^{2} x$
$=\sin x \cos x$
k) $\sqrt{\cos x}$

$$
\frac{1}{2} \cos ^{-\frac{1}{2}} x \cdot(-\sin x)
$$

m) $\frac{\csc x}{4 x-7}$

$$
\frac{-\csc x \cot x(4 x-7)-4 \csc x}{(4 x-7)^{2}}
$$

$$
\begin{aligned}
& \text { 1) } \tan \sqrt{x} \\
& \sec ^{2} \sqrt{x} \cdot \frac{1}{2} x-\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { h) } \frac{x^{2}+2 x \sin x}{\cot x} \\
& \frac{(2 x+2 \sin x+2 x \cos x) \cot x+\left(x^{2}+2 x \sin x\right)}{\cot ^{2} x}
\end{aligned}
$$

j) $\sin x^{2}$

$$
\cos x^{2} \cdot 2 x
$$

n) $* \sin (\sec x \tan x)$

$$
\cos (\sec x \tan x)\left(\sec x \tan ^{2} x+\sec ^{3} x\right)
$$

