Name: \qquad PID: \qquad

1. (3 points) Find the derivative of $f(x)=\frac{\cos x}{2 x-8}$.

$$
f^{\prime}(x)=\frac{-\sin x(2 x-\delta)-\cos x \cdot 2}{(2 x-\delta)^{2}}
$$

2. (2 points) Let $f(x)=\frac{\sin (x)}{\sqrt[3]{x}}$, evaluate $\lim _{x \rightarrow 0} f(x)$.

$$
\begin{aligned}
& \text { Let } f(x)=\frac{\sin (x)}{\sqrt[3]{x}} \text {, evaluate } \lim _{x \rightarrow 0} f(x) \\
& \lim _{V \rightarrow 0} \frac{\sin x}{\sqrt[3]{x}} \cdot \frac{x}{x}=\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{x}{\sqrt[3]{x}}=\lim _{x \rightarrow 0} \frac{x}{\sqrt[3]{x}}=\lim _{x \rightarrow 0} x^{2 / 3}=0
\end{aligned}
$$

3. (2 points) Find where the function $f(x)=|x-9|$ is not differentiable.

$$
\begin{aligned}
& f(x)= \begin{cases}x-9 & x>9 \\
9-x & x \leq 9\end{cases} \\
& f^{\prime}(x)= \begin{cases}1 & x>9 \\
-1 & x<9\end{cases} \\
& -1 \quad x<9 \\
& \text { at } x=9 \quad f^{\prime}(9)=\lim _{h \rightarrow 0} \frac{f(h+h)-f(9)}{h}=\lim _{h \rightarrow 0} \frac{|q+h-g|-|9-q|}{h} \\
& =\lim _{h \rightarrow 0} \frac{|h|}{h} \text { D.N.Z. as }\left\{\begin{array}{l}
\lim _{h \rightarrow 0^{-}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{-}} \frac{-h}{h}=-1 \\
\lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=1
\end{array}\right.
\end{aligned}
$$

