Name: \qquad PID: \qquad

1. (4 points) For what value of the constant c is the function

$$
f(x)=\left\{\begin{array}{cc}
\sin \pi x & \text { if } x<1 \\
x^{2}-c x & \text { if } x \geq 1
\end{array}\right.
$$

continuous on $(-\infty, \infty)$
Solution: From the definition, we immediately see that $f(x)$ has two parts, one is on $x<1$ and the other is on $x \geq 1$. Inside each part, $f(x)$ is continuous because it is a polynomial (no matter what c is). In order for $f(x)$ to be continuous at $c=1$ as well, it must satisfy the definition of continuity $\lim _{x \rightarrow 1} f(x)=f(1)$, or equivalently $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} f(x)=f(1)$. We compute each of these one sided limit as follows

$$
\begin{gathered}
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \sin \pi x=0 \\
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2}-c x\right)=1-c \\
f(1)=1-c
\end{gathered}
$$

So the function is continuous at c if and only if

$$
0=1-c
$$

solving for c we get $c=1$.
2. (2 points) Use the Intermediate Value Theorem to show that $f(x)=x^{2}+x-3$ has a root.

Solution: f is continuous everywhere. To prove $f(x)$ has a root $(f(c)=0$ for some $c)$, we need to find $f(a)<0<f(b)$, and use IVT. Observing

$$
f(-3)=3>0, \quad f(0)=-3<0
$$

By IVT, there is a $c \in(-3,0)$, such that $f(c)=0$.
3. (2 points) Let $f(x)=x^{2}$, use the definition of derivatives to find $f^{\prime}(1)$.

Solution 1: Directly evaluate $f^{\prime}(1): f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{(1+h)^{2}-1^{2}}{h}=\lim _{h \rightarrow 0} \frac{2 h+h^{2}}{h}=\lim _{h \rightarrow 0}(2+h)=2$ Solution 2: First find $f^{\prime}(x)$, then plug in $x=1 . f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h}=$ $\lim _{h \rightarrow 0}(2 x+h)=2 x$.
Hence $f^{\prime}(1)=2$.

