Name: \qquad PID: \qquad

1. (5 points) a) Find $\frac{d y}{d x}$ from $y^{2}+13 x=x^{2} y+13$ using implicit differentiation.
b) Find the equation of the tangent line at the point $(4,3)$.

$$
\begin{aligned}
& 2 y y^{\prime}+13=2 x y+x^{2} y^{\prime} \\
\Rightarrow & \left(2 y-x^{2}\right) y^{\prime}=2 x y-13 \\
\Rightarrow & y^{\prime}=\frac{2 x y-13}{2 y-x^{2}} \\
\text { at } & (4.3) \quad y^{\prime}=\frac{2 \cdot 3 \cdot 4-13}{2 \cdot 3-4^{2}}=-\frac{11}{10}
\end{aligned}
$$

The tangent line is $y-3=-\frac{11}{10}(x-4)$
2. (4 points) Water is leaking out of an inverted conical tank at a rate of $10 \mathrm{~m}^{3} / \mathrm{min}$. The tank has height $6 m$ and the diameter at the top is 3 m . Find how fast the water level is dropping when the height of the water is $2 m$.

Method 1, simplify II) first: $\triangle O A D$ and $\triangle O C B$ are similar triangles.
So $\frac{A D}{C B}=\frac{O D}{O C} \Leftrightarrow \frac{r}{3 / 2}=\frac{h}{6} \Rightarrow r=\frac{h}{4}$ Plug $r=\frac{h}{4}$ into II) we get $V=\frac{1}{3} \pi\left(\frac{h}{4}\right)^{2} h$
Differentiate (2): $\quad=\frac{1}{48}$
$V^{\prime}=\frac{1}{16} \pi h^{2} h^{\prime}$

Method 2: differentiate (1)

$$
\begin{aligned}
& v^{\prime}=\frac{1}{3} \pi\left(2 r \cdot r^{\prime} h+r^{2} h^{\prime}\right) \\
& A t+=+0,-10=\frac{1}{3} \pi\left(2 r \cdot r^{\prime} \cdot 2+r h^{\prime}\right)^{\prime}
\end{aligned}
$$

need t find $r\left(t_{0}\right)$ and $r^{\prime}\left(t_{0}\right)$.to jet $h^{\prime}\left(t_{0}\right)$ since $O A D$ and $O C B$ are similar triangles

$$
\frac{r}{3 / 2}=\frac{h}{6} \Rightarrow r=h / 4 \Rightarrow r^{\prime}=h^{\prime} / 4
$$

plug these int B)

$$
\begin{aligned}
-10 & =\frac{1}{3} \pi\left(2 \cdot \frac{2}{4} \cdot \frac{h^{\prime}}{4} \cdot 2+\left(\frac{2}{4}\right)^{2} h^{\prime}\right) \\
& \Rightarrow h^{\prime}=-\frac{40}{\pi} \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

$$
-10=\frac{1}{16} \pi \cdot 2^{2} h^{\prime} \Rightarrow h^{\prime}=\frac{-40}{\pi} \mathrm{~m} / \mathrm{m} \cdot \mathrm{~h}
$$

