Name: \qquad PID: \qquad

1. (3 points) Compute the derivative of $f(x)=\sec (x)\left(x^{3}+\cos (2 x)\right)$.

Solution: use the product rule

$$
f^{\prime}(x)=\tan (x) \sec (x)\left(x^{3}+\cos (2 x)\right)+\sec (x)\left(3 x^{2}-2 \sin (2 x)\right)
$$

2. (3 points) Compute the derivative of $f(x)=\frac{\sin (5 x)}{x+1}$.

Solution: first rewrite $f(x)$ as $f(x)=\sin (5 x)(x+1)^{-1}$, use the product rule:

$$
f^{\prime}(x)=5 \cos (5 x)(x+1)^{-1}-\sin (5 x)(x+1)^{-2}
$$

3. (4 points) A particle moves according to the law of motion $s=\frac{30}{t+2}, t \geq 0, t$ is in seconds and s is in feet.
(a) Compute the average velocity over the interval $[0,3]$.

Solution: average velocity $=\frac{\text { distance }}{\text { time }}=\frac{s(3)-s(0)}{3-0}=\frac{\frac{30}{3+2}-\frac{30}{0+2}}{3-0}=-3 \mathrm{ft} / \mathrm{s}$
(b) Find the velocity of the particle at time t.

Solution: rewrite the position function s as $s=30(t+2)^{-1}$, then $v(t)=s^{\prime}(t)=-30(t+2)^{-2} \mathrm{ft} / \mathrm{s}$
(c) Calculate the acceleration of the particle at time t.

Solution: use the $v(t)$ calculated above, we have $a(t)=v^{\prime}(t)=60(t+2)^{-3} \mathrm{ft} / s^{2}$

