MTH 132	Quiz 4
Name:	

1. (3 points) Compute the derivative of $f(x) = \sec(x)(x^3 + \cos(2x))$. Solution: use the product rule

$$f'(x) = \tan(x)\sec(x)(x^3 + \cos(2x)) + \sec(x)(3x^2 - 2\sin(2x))$$

PID: _____

2. (3 points) Compute the derivative of $f(x) = \frac{\sin(5x)}{x+1}$. Solution: first rewrite f(x) as $f(x) = \sin(5x)(x+1)^{-1}$, use the product rule:

$$f'(x) = 5\cos(5x)(x+1)^{-1} - \sin(5x)(x+1)^{-2}$$

3. (4 points) A particle moves according to the law of motion $s = \frac{30}{t+2}$, $t \ge 0, t$ is in seconds and s is in feet.

- (a) Compute the average velocity over the interval [0,3]. Solution: average velocity $=\frac{\text{distance}}{\text{time}} = \frac{s(3)-s(0)}{3-0} = \frac{\frac{30}{3+2}-\frac{30}{0+2}}{3-0} = -3 \text{ ft/s}$
- (b) Find the velocity of the particle at time t. Solution: rewrite the position function s as $s = 30(t+2)^{-1}$, then $v(t) = s'(t) = -30(t+2)^{-2}$ ft/s
- (c) Calculate the acceleration of the particle at time t. Solution: use the v(t) calculated above, we have $a(t) = v'(t) = 60(t+2)^{-3}$ ft/s²